Newton Programmer’s
Reference

For Newton 2.0

.’ Apple Computer, Inc.

© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software and any documentation
provided on CD-ROM. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language
or format. You may use the
software on any computer owned
by you, but extra copies cannot be
made for this purpose.

Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, Espy,
LaserWriter, the light bulb logo,
Macintosh, MessagePad, Newton,
Newton Connection Kit, and New
York are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Apple Press, the Apple Press
Signature, eWorld, Geneva,
NewtonScript, Newton Toolkit,
and QuickDraw are trademarks of
Apple Computer, Inc.

Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.

CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS1S,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Preface

Table of Contents

Figures and Tables ~ xxv

About This Book Xxxiii

Chapter 1

Audience Xxxiii
Related Books XXXiv
Sample Code XXXiv
Conventions Used in This Book XXXV
Special Fonts XXXV
Tap Versus Click ~ xxxvi
Frame Code XXXVi
Developer Products and Support xXxxvii
Undocumented System Software Objects XXXViii

Getting Started Reference 1-1

Chapter 2

View Classes and Protos 1-1
clView 1-1
protoApp 1-2
Functions 1-4
Application-Defined Functions 1-4

Views Reference 21

Constants 2-1
View Class Constants 2-2
viewFlags Constants 2-4
view]Justify Constants 2-6
viewFormat Constants 2-11

iii

viewTransferMode Constants 2-13
viewEffect Constants 2-14
Functions and Methods ~ 2-18
Getting References to Views 2-18
Displaying, Hiding, and Redrawing Views 2-20
Dynamically Adding Views 2-27
Making Modal Views 2-31
Setting the Bounds of Views ~ 2-34
Animating Views 2-38
Dragging a View 2-45
Dragging and Dropping a Item 2-46
Scrolling View Contents 2-48
Working With View Highlighting ~ 2-52
Creating View Dependencies 2-55
Synchronizing Views 2-57
Laying Out Multiple Child Views 2-59
Miscellaneous View Operations 2-63
Application-Defined Methods ~ 2-65
View Warning Messages 2-86

Chapter 3 NewtApp Reference 31

Required Code 3-1
Required InstallScript and RemoveScript Functions
General Application Protos 3-2
newtSoup 3-2
newtApplication 3-8
NewtApplication Stationary Methods 3-15
NewtApplication Filing Methods 3-16
newtApplication Find Methods 3-18
newtApplication Delete and Duplicate Methods
NewtApplication Status Methods 3-22
newtInfoButton ~ 3-23
newtAboutView 3-24

iv

3-1

3-21

newtPrefsView 3-25
newtActionButton 3-26
newtFilingButton 3-26
newtAZTabs 3-27
newtFolderTab 3-28
newtClockFolderTab 3-28
newtStatusBarNoClose 3-29
newtStatusBar 3-30
newtFloatingBar 3-31
newtLayout 3-32
newtRollLayout 3-36
newtPageLayout 3-37
newtOverLayout 3-37
newtRollOverLayout 3-41
newtEntryView 3-42
newtFalseEntryView 3-44
newtRollEntryView 3-45
newtEntryPageHeader 3-46
newtEntryRollHeader 3-46
newtEntryViewActionButton 3-47
newtEntryViewFilingButton 3-47
newtInfoBox 3-47

Slot View Protos 3-49
newtROTextView 3-51
newtTextView 3-51
newtRONumView 3-52
newtNumView 3-52
newtROTextDateView 3-53
newtTextDateView 3-54
newtROTextTimeView 3-54
newtTextTimeView 3-55
newtROTextPhoneView 3-55
newtTextPhoneView 3-56
newtROEditView 3-56
newtEditView 3-57
newtCheckBox 3-58

newtStationery View 3-59
newtEntryLockedlcon ~ 3-59

Labelled Input-Line Slot View Protos 3-60
newtProtoLine 3-63
newtLabellnputLine 3-65
newtROLabellnputLine 3-67
newtROLabelNumInputLine 3-67
newtLabelNumlInputLine 3-68
newtLabelDatelnputLine 3-69
newtROLabelDatelnputLine 3-71
newtLabelSimpleDateInputLine 3-71
newtNRLabelDateInputLine = 3-72
newtROLabelTimelnputLine 3-74
newtNRLabelTimelnputLine 3-74
newtLabelTimelnputLine 3-75
newtNRLabelDateNTimelnputLine 3-75
newtLabelPhonelnputLine 3-76
newtAreaCodeLine 3-77
newtAreaCodePhoneLine 3-77

newtSmartNameView 3-78
Chapter 4 Stationery Reference 41
Data Structure 4-1
viewDef Frame 4-1
Protos 4-3

newtStationery 4-3

newtStationeryPopupButton 4-6

newtNewStationeryButton 4-8

newtShowStationeryButton 4-9

newtRollShowStationeryButton ~ 4-11

newtEntryShowStationeryButton ~ 4-11
Functions 4-11

vi

Chapter 5

Pickers, Pop-up Views, and
Overviews Reference 5-1

Data Structures 5-1
Name References 5-1

Column Specifications ~ 5-3

General Pickers 5-4

protoPopupButton 5-4
protoPopInPlace 5-6
protoLabelPicker 5-8
protoPicker 5-13
protoGeneralPopup 5-19
protoTextList 5-20
protoTable 5-24
protoTableDef 5-27
protoTableEntry 5-29

Map Pickers 5-30

protoCountryPicker ~ 5-30
protoProvincePicker 5-31
protoStatePicker 5-32
protoWorldPicker 5-34

Text Pickers 5-35

protoTextPicker 5-35
protoDateTextPicker 5-37
protoDateDurationTextPicker 5-40
protoRepeatDateDurationTextPicker
protoDateNTimeTextPicker 5-46
protoTimeTextPicker 5-49
protoDurationTextPicker 5-51
protoTimeDeltaTextPicker 5-53
protoMapTextPicker 5-54
protoCountryTextPicker 5-56
protoUSstatesTextPicker 5-56
protoCitiesTextPicker 5-58
protoLongLatTextPicker 5-61

5-43

vii

Date, Time, and Location Pop-up Views 5-63
protoDatePopup 5-63
protoDatePicker 5-64
protoDateNTimePopup 5-67
protoDatelntervalPopup 5-69
protoMultiDatePopup ~ 5-72
protoYearPopup 5-73
protoTimePopup 5-74
protoAnalogTimePopup 5-76
protoTimeDeltaPopup 5-78
protoTimelntervalPopup 5-79

Number Pickers 5-81
protoNumberPicker 5-81

Picture Picker 5-82
protoPictIndexer 5-82

Overview Protos 5-85
protoOverview 5-85
protoSoupOverview 5-90
protoListPicker ~ 5-93
protoNameRefDataDef =~ 5-97
protoPeopleDataDef 5-105
protoPeoplePicker 5-110
protoPeoplePopup 5-111

Roll Protos 5-112
protoRoll 5-112
protoRollBrowser 5-116
protoRollltem 5-119

View Classes 5-121
Outline View (clOutline) 5-121

Monthly Calendar View (cIMonthView) 5-123

Pop-up Functions and Methods 5-126

Name Reference Functions 5-129

viii

Chapter 6 Controls Reference 61

Scroller Protos 6-2
protoHorizontal2DScroller 6-2
protoLeftRightScroller ~ 6-5
protoUpDownScroller 6-5
protoHorizontalUpDownScroller 6-6

Button and Box Protos 6-6
protoTextButton 6-7
protoPictureButton 6-9
protolnfoButton ~ 6-10
protoOrientation 6-13
protoRadioCluster 6-14
protoRadioButton 6-16
protoPictRadioButton 6-18
protoCloseBox 6-20
protoLargeCloseBox 6-22
protoCheckbox 6-24
protoRCheckbox 6-26

Selection Tab Protos 6-28
protoAZTabs 6-28
protoAZVertTabs 6-29

Gauges and Slider Protos 6-30
clGaugeView 6-30
protoSlider 6-33
protoGauge 6-35
protoLabeledBatteryGauge = 6-37

Time Protos 6-38
protoDigitalClock 6-38
protoNewSetClock 6-40
protoSetClock 6-42
protoAMPMCluster 6-44

Special View Protos 6-45
protoDragger 6-45
protoDragNGo 6-47
protoDrawer 6-49

protoFloater ~ 6-49
protoFloatNGo 6-51
protoGlance 6-52
protoStaticText 6-54
View Appearance Protos 6-55
protoBorder 6-56
protoDivider ~ 6-56
protoTitle 6-58
Status Bar Protos 6-59
protoStatus 6-59
protoStatusBar 6-60

Chapter 7 Text and Ink Input and Display Reference 71
Text Constants and Data Structures 7-1
Text Flags 7-2
Font Constants for Use in Frames 7-3
Font Family Constants 7-3
Font Face Constants 7-3
Font Constants for Packed Font Integer Specifications 7-4

Built-in Fonts 7-4
Font Family Constants 7-7
Font Face Constants for Packed Integer Font
Specifications 7-7
Keyboard Constants 7-8
Keyboard Registration Constants 7-8
Key Descriptor Constants 7-9
Keyboard Modifier Keys 7-11
Line Patterns 7-11
The Rich String Format ~ 7-12
Text Views and Protos 7-12
General Input View (clEditView) 7-12
Functions and Methods for Edit Views 7-14
Paragraph View (clParagraphView) 7-15

Input Line Protos 7-17
protolnputLine 7-17
protoRichInputLine ~ 7-19
protoLabellnputLine 7-19
protoRichLabellnputLine 7-22
Text and Ink Display Functions and Methods ~ 7-22

Functions and Methods for Measuring Text Views 7-23

Functions and Methods for Determining View Ink
Types 7-25

Font Attribute Functions and Methods 7-26

Rich String Functions and Methods ~ 7-31

Functions and Methods for Accessing Ink in Views — 7-34

Keyboards 7-35
Keyboard View (clKeyboardView) 7-35
Keyboard Protos 7-37
protoKeyboard 7-37
protoKeypad 7-38
protoKeyboardButton ~ 7-39
protoSmallKeyboardButton 7-40
protoAlphaKeyboard 7-40
protoNumericKeyboard 7-41
protoPhoneKeyboard ~ 7-41
protoDateKeyboard 7-41
Keyboard Functions and Methods ~ 7-42
Keyboard Registry Functions and Methods 7-44
Caret Insertion Writing Mode Functions and Methods
Insertion Caret Functions and Methods 7-48
Application-Defined Methods for Keyboards 7-50
Input Event Functions and Methods 7-51
Functions and Methods for Hit-Testing ~ 7-51
Functions and Methods for Handling Insertions ~ 7-52
The Insert Specification Frame 7-52
Functions and Methods for Handling Ink Words 7-54
Application-Defined Methods for Handling Ink in a
View 7-56

7-47

xi

Chapter 8 Recognition System Reference s-1

Recognition System Data Structures 8-1
System-Wide Settings ~ 8-2
View Flags for Recognition 8-6
System-Supplied Dictionaries 8-16
Recognition Configuration Frames 8-17
System-Supplied recConfig Frames 8-18
Data Structures Used in recConfig Frames 8-24
Stroke Bundle Data Structures 8-28
The Stroke Bundle Frame = 8-28
Format Specification Values for Stroke Bundle
Functions 8-28
Stroke, Word, and Gesture Units 8-29
Point Arrays 8-30
CorrectInfo Frame 8-30
WordInfo Frame 8-30
WordInterp Frame 8-30
Recognition System Prototypes 8-31
protoRecToggle 8-31
protoRecConfig 8-36
protoCharEdit 8-41
Application-Defined protoCharEdit View Methods
Application-Defined protoCharEdit Template
Methods 8-52
protoCorrectInfo ~ 8-53
protoWordInfo 8-60
protoWordInterp 8-63
Recognition Functions 8-64
Recognition Configuration Functions 8-65
Application-Defined Recognition Methods 8-66
Inker Functions 8-76
Stroke Unit Functions 8-78
Stroke Bundle Functions and Methods ~ 8-83
Deferred Recognition Functions 8-89
Dictionary Functions 8-91

xii

8-52

User Dictionary Functions and Methods 8-94
Auto-Add Dictionary Functions and Methods 8-97
User Configuration Functions 8-98

Chapter 9 Data Storage and Retrieval Reference 91

Data Structures 9-1
Soup Definition Frame 9-2
Single-Slot Index Specification Frame 9-5
Multiple-Slot Index Specification Frame 9-6
Tags Index Specification Frame 9-8
Query Specification Frame 9-9
Tags Query Specification Frame 9-13
Callback Functions for Soup Change Notification 9-14
Package Reference Information Frame 9-18
Data Storage Functions and Methods 9-19
Package Functions and Methods 9-19
Store Functions and Methods 9-28
Soup Functions and Methods 9-35
Soup Change Notification Functions ~ 9-54
Store Part Functions 9-56
Methods for Manipulating Tags 9-56
Query and Cursor Methods 9-60
Entry Functions 9-65
Entry Alias Functions 9-72
VBO Functions and Methods ~ 9-74
Mock Entry Functions 9-77
Developer-Defined Entry Handler Methods ~ 9-79

Chapter 10 Drawing and Graphics Reference 101

Data Structure 10-1
Style Frame 10-1

xiii

View Classes 10-3
Shape View (clPolygonView) 10-4
Picture View (clPictureView) 10-4
Scaled View (cIRemoteView) 10-5

Graphics and Drawing Protos 10-5
protolmageView 10-6
protoThumbnail ~ 10-14
protoThumbnailFloater ~ 10-18

Functions and Methods ~ 10-18
Bitmap Functions 10-19
Hit-Testing Functions 10-24
Shape-Creation Functions ~ 10-26
Shape Operation Functions and Methods
Utility Functions 10-40

10-33

Chapter 11 Sound Reference 111
Sound Data Structures 11-1
Sound Frame 11-1
Sound Result Frame 11-3
Protos 11-3
protoSoundChannel 11-3
Functions and Methods 11-6
Sound Resources 11-10
Chapter 12 Filing Reference 121

Xiv

Target Information Frame 12-1

Filing Protos 12-2
protoFilingButton 12-2
protoNewFolderTab 12-4
protoClockFolderTab 12-7

System-Supplied Filing Methods ~ 12-11

Application-Defined Filing Methods ~ 12-16

Chapter 13 Find Reference 131
Finder Protos 13-1
ROM_SoupFinder 13-1
ROM_CompatibleFinder 13-7
System Functions and Methods 13-12
Application-Defined Methods ~ 13-14
Chapter 14 System Services Reference 141
Undo Reference 14-1
Idler Reference 14-3
Alerts and Alarms Reference 14-4
Alerts and Alarms Proto 14-5
protoPeriodicAlarmEditor 14-5
Alerts and Alarm Functions 14-7
Progress-Reporting Reference 14-12
Progress-Reporting Proto 14-13
protoStatusTemplate 14-13
Progress-Reporting Functions 14-25
Power Registry Reference 14-31
Chapter 15 Intelligent Assistant Reference 151

Data Structures 15-1
Task Frame 15-1
Action Template 15-3
Target Template 15-7
Task Template 15-11
Developer-Supplied Task Template 15-12
Help Topic Slot 15-12
Assistant Functions and Methods 15-13
Developer-Supplied Assistant Functions and Methods

15-14

XV

Built-in Applications and System
Chapter 16 Data Reference 161

Names Reference 16-1
Names Constants 16-1
Names Data Structures 16-2
Names Data Definition Frame 16-2
Names View Definition Frame 16-3
Names Protos 16-4
protoPersonaPopup l6-4
protoEmporiumPopup 16-5
Names Functions and Methods 16-5
Names Soup Format 16-15
Person Entries 16-15
Owner Entries 16-18
Group Entries 16-20
Company Entries 16-21
Worksite Entries 16-22
Dates Reference 16-23
Dates Variables and Constants 16-24
Dates Protos 16-26
protoRepeatPicker 16-27
protoRepeatView 16-28
Dates Methods and Functions 16-30
Dates Soup Formats 16-56
Meeting Frames 16-57
Notes Frames 16-62
Dates Error Codes 16-63
To Do List Reference 16-69
To Do List Methods 16-69
To Do List Soup Format 16-77
Time Zones Reference 16-78
Time Zones Functions and Methods 16-79
Notes Reference 16-81
Notes Methods 16-81
Notes Soup Format 16-82

xvi

Chapter 17

Icons and the Extras Drawer Reference 16-85
Extras Drawer Data Constants 16-85
Extras Drawer Data Structure 16-85

The Soupervisor Frame 16-86
Extras Drawer Methods 16-88

Fax Soup Entries Reference 16-94
Body Slot of Fax Soup Entries 16-94

Prefs and Formulas Rolls Reference 16-96
Proto 16-96

protoPrefsRollltem 16-96
Prefs and Formulas Functions 16-96

Auxiliary Button Reference 16-99
Auxiliary Buttons Functions and Methods 16-99

System Data Reference 16-101
User Configuration Variables 16-101
System Data and Utility Functions 16-107

Localizing Newton Applications
Reference 171

Constants and Data Structures 17-1
Contents of a Locale Bundle 17-1
String Slots 17-2
Other Slots in Locale Bundles 17-10
Date and Time Format Specifications 17-11
System-Defined Format Specifications 17-11
Constants to Create Your Own Specification 17-13
Localization Function Reference 17-16
Compile-Time Functions 17-16
Locale Functions 17-18
Date and Time Functions 17-20
System Clock Functions 17-20
Formatted Date/Time Functions 17-22
Date Frame Functions 17-27
Utility Functions 17-28

xvii

Chapter 18 Routing Interface Reference 181

Data Structures 18-1
Item Frame 18-1
RouteScripts Array 18-6
Protos 18-7
protoActionButton 18-7
protoPrinterChooserButton 18-8
Routing Format Protos 18-9
Functions and Methods ~ 18-19
Send-Related Functions and Methods 18-19
Cursor-Related Functions 18-24
Utility Functions and Methods ~ 18-26
Application-Defined Methods 18-32

Chapter 19 Transport Interface Reference 19-1

Constants 19-1
Icon Constants 19-1

Protos 19-2
protoTransport 19-2
protoTransportHeader 19-37
protoFullRouteSlip 19-38
protoAddressPicker 19-43
protoTransportPrefs 19-44

Functions and Methods ~ 19-48
Utility Functions 19-48

Chapter 20 Endpoint Interface Reference 20-1

Constants and Symbols 20-1
Data Form Symbols 20-1
Data Type Symbols 20-2
Option Opcode Constants 20-3

xviii

Endpoint Error Code Constants 20-4

Option Error Code Constants 20-5

Endpoint State Constants 20-6

Other Endpoint Constants ~ 20-6
Data Structures 20-7

Endpoint Option Frame 20-7

Callback Spec Frame 20-9

Output Spec Frame 20-10

Input Spec Frame 20-11

Input Spec Target Frame 20-15

Input Spec Termination Frame 20-16

Input Spec Filter Frame 20-17
Protos 20-18

protoBasicEndpoint 20-18

protoStreamingEndpoint 20-29
Functions and Methods ~ 20-32

Utility Functions 20-32

Chapter 21 Built-in Communications Tools Reference 211

Options for the Standard Asynchronous Serial Tool ~ 21-2
Serial Chip Location Option ~ 21-4
Serial Chip Specification Option ~ 21-6
Serial Circuit Control Option 21-10
Serial Buffer Size Option ~ 21-13
Serial Configuration Option ~ 21-14
Serial Data Rate Option ~ 21-17
Serial Flow Control Options ~ 21-18
Serial Send Break Option ~ 21-20
Serial Discard Data Option 21-20
Serial Event Configuration Option ~ 21-21
Serial Bytes Available Option =~ 21-24
Serial Statistics Option ~ 21-24
Serial External Clock Divide Option ~ 21-26

xix

XX

Options for the Serial Tool with MNP Compression
Serial MNP Data Rate Option 21-28

21-27

Options for the Framed Asynchronous Serial Tool ~ 21-29

Serial Framing Configuration Option 21-29
Serial Framing Statistics Option ~ 21-31
Options for the Modem Tool ~ 21-31
Modem Address Option ~ 21-33
Modem Preferences Option =~ 21-34
Modem Profile Option 21-38
Modem Error Control Type Option 21-45
Modem Dialing Option ~ 21-47
Modem Connection Type Option ~ 21-51
Modem Connection Speed Option ~ 21-53
Modem Fax Capabilities Option ~ 21-53
Modem Fax Enabled Capabilities Option ~ 21-56
Modem Voice Support Option 21-58
MNP Speed Negotiation Option ~ 21-59
MNP Compression Option ~ 21-61
MNP Data Statistics Option 21-62
Options for the Infrared Tool 21-65
Infrared Connection Option 21-66
Infrared Protocol Type Option ~ 21-67
Infrared Statistics Option ~ 21-69
Options for the AppleTalk Tool — 21-71
AppleTalk Address Option ~ 21-72
AppleTalk Buffer Size Option 21-73
AppleTalk Bytes Available Option 21-74
AppleTalk Tool Type Option 21-75
AppleTalk Endpoint Name Option ~ 21-76
AppleTalk Functions 21-76
AppleTalk Driver Functions 21-77
Functions for Obtaining AppleTalk Zone Information
NetChooser Methods ~ 21-81
Options for Resource Arbitration 21-82
Passive Claim Option 21-83
Passive State Option 21-84

21-78

Chapter 22

Modem Setup Service Reference 221

Chapter 23

Modem Setup General Information Constants 22-2
Modem Setup Preference Constants 22-3
Modem Setup Profile Constants 22-4
The No Error Control Configuration String 22-7
The Error Control Configuration String 22-8
The Error Control with Fallback Configuration String
The Direct Connect Configuration String ~ 22-9
Fax Profile Constants 22-10

Utility Functions Reference 231

229

Object System Functions 23-2
String Functions 23-13
Bitwise Functions 23-29
Array Functions 23-31
Sorted Array Functions 23-43
Integer Math Functions ~ 23-53
Floating Point Math Functions ~ 23-56
Managing the Floating Point Environment 23-73
Financial Functions 23-77
Exception Functions 23-80
Message-Sending Functions ~ 23-83
Deferred Message Sending Functions 23-87
Data Extraction Functions 23-92
Data Stuffing Functions 23-96
Getting and Setting Global Variables and Functions
Debugging Functions 23-104
Miscellaneous Functions 23-109

23-101

xxi

Appendix Error Codes a1

System Exceptions ~ A-1

System Errors A-2
Common Errors A-2
Application Errors A-2
1/0O Box Errors A-3
View System Errors A-3
State Machine Errors A-4
Operating System Errors A-4
Stack Errors A-7
Package Errors A-8

Newton Hardware Errors A-8
PCMCIA Card Errors A-8
Flash Card Errors A-10
Card Store Errors A-10
DMA Errors A-11
Heap Errors A-12

Communications Errors A-12
Generic AppleTalk Errors A-12
LAP Protocol Errors A-13
DDP Protocol Errors A-13
NBP Protocol Errors A-14
AEP Protocol Errors A-15
RTMP Protocol Errors A-15
ATP Protocol Errors A-15
PAP Protocol Errors A-16
ZIP Protocol Errors A-17
ADSP Protocol Errors A-17
Utility Class Errors A-17
Communications Tool Errors A-18
Serial Tool Errors A-19
MNP Tool Errors A-20
FAX Tool Errors A-20
Modem Tool Errors A-21
Communications Manager Errors A-21

xxii

Docker Errors A-22

Docker Import and Export Errors A-24

Docker Disk Errors A-24

Docker Desktop DIL Errors A-25
System Services Errors A-25

Sound Errors A-25

Compression Errors A-26

Memory Errors A-27

Communications Transport Errors A-28

Sharp IR Errors ~ A-28

Online Service Errors A-29

Printing Errors A-29

Newton Connection Errors A-30
NewtonScript Environment Errors A-30

Store and Soup Errors A-30

Object System Errors A-32

Bad Type Errors A-33

Compiler Errors A-34

Interpreter Errors A-35

Communications Endpoint Errors A-35
Device Driver Errors A-37

Tablet Driver Errors A-37

Battery Driver Errors A-37
Other Services Errors ~ A-38

Alien Store Errors A-38

Index IN-1

xxiii

Chapter 2

Chapter 3

Figures and Tables

Views Reference 2-1

Figure 2-1 Set Ori gi n example 2-49

Figure 2-2 Layout Tabl e results 2-60

Table 2-1 View class constants 2-2

Table 2-2 vi ewFl ags constants 2-4

Table 2-3 vi ewdJust i fy constants 2-6

Table 2-4 Vi ewFor mat constants 2-11

Table 2-5 vi ewTr ansf er Mode constants 2-13
Table 2-6 Vi ewkf f ect constants 2-14

Table 2-7 View warning messages 2-86

NewtApp Reference 3-1

Figure 3-1 The Information button and picker 3-23
Figure 3-2 The NewtApp About view 3-25

Figure 3-3 A NewtApp Preferences view 3-26
Figure 3-4 The Action button 3-26

Figure 3-5 The Filing button 3-27

Figure 3-6 NewtApp A-Z tabs 3-27

Figure 3-7 The plain folder tab 3-28

Figure 3-8 The digital clock and folder tab 3-28
Figure 3-9 A status bar view 3-30

Figure 3-10 A floating bar view 3-31

Figure 3-11 A page header 3-46

Figure 3-12 A roll header 3-47

Figure 3-13 A NewtApp Information slip 3-48
Figure 3-14 A newtEditView proto 3-57

Figure 3-15 A NewtApp label input line 3-66

Figure 3-16 A NewtApp label display line for text 3-68
Figure 3-17 A NewtApp label number input line 3-68
Figure 3-18 A NewtApp label date input line 3-70

XXV

Figure 3-19 A newt ROLabel Dat el nput Li ne proto 3-71

Figure 3-20 The simple date input line 3-72

Figure 3-21 Date input with picker-only access 3-73

Figure 3-22 Time input with picker-only access 3-74

Figure 3-23 A newt Label Ti nel nput Li ne proto 3-75

Table 3-1 The NewtApp filters used to set the f | avor
slot 3-60

Chapter 4 Stationery Reference 4-1

Figure 4-1 Calls application menu bar 4-9

Figure 4-2 newt NewSt at i oner yBut t on in Names 4-9

Figure 4-3 newtShowsStationeryButton 4-10

Chapter 5 Pickers, Pop-up Views, and Overviews Reference 5-1

Figure 5-1 Pop-up button and picker 5-4

Figure 5-2 A protoPopInPlace text button 5-6

Figure 5-3 A ProtoLabelPicker 5-8

Figure 5-4 Selection of items to choose 5-14

Figure 5-5 Example of a pop-up view with a close box 5-19

Figure 5-6 Scrollable list of items 5-21

Figure 5-7 Scrollable list of shapes and text 5-21

Figure 5-8 One-column table of text 5-24

Figure 5-9 Example of a country picker 5-30

Figure 5-10 Example of a province picker 5-31

Figure 5-11 Example of a state picker 5-33

Figure 5-12 Example of a world picker 5-34

Figure 5-13 Example of a text picker 5-36

Figure 5-14 Example of a date text pop-up view 5-38

Figure 5-15 Example of date picker before and after it is
tapped 5-41

Figure 5-16 Example label picker with text representation 5-44

Figure 5-17 Example of a date and time pop-up view 5-47

Figure 5-18 Example of a label picker with a text representation of
atime 5-49

Xxvi

Chapter 7

Figure 5-19
Figure 5-20

Figure 5-21
Figure 5-22

Figure 5-23
Figure 5-24

Figure 5-25
Figure 5-26
Figure 5-27
Figure 5-28
Figure 5-29
Figure 5-30
Figure 5-31
Figure 5-32
Figure 5-33
Figure 5-34
Figure 5-35
Figure 5-36
Figure 5-37
Figure 5-38
Figure 5-39
Figure 5-40

Figure 5-41
Figure 5-42

Figure 5-43
Figure 5-44

Example label picker with a text representation of a
time range 5-51

Example of a label picker with a text representation of
a time delta 5-53

Example of a map text label picker 5-55

Example of a label picker with a text representation of
a U.S. state 5-57

Example of a city picker 5-59

Example of a text representation of longitude and
latitude values 5-61

Example of a single date selection 5-63
Example of a date picker 5-65

Example of a pop-up menu 5-66

Example of a single date and time selection 5-68
Example of a date interval pop-up view 5-70
Example of a multidate pop-up view 5-72
Example of a year pop-up view 5-73
Example of a time pop-up view 5-75
Example of an analog time pop-up view 5-76
Example of a time delta pop-up view 5-78
Example of a time interval pop-up view 5-79
Example of a number picker 5-81

Example of an indexed array of pictures 5-83
Example of an overview list 5-86

Example of a soup entry proto 5-91

A protoLi st Pi cker based on
pr ot oPeopl eDat aDef 5-106

Example of a rolled list of items 5-113

Example of a collapsed and expanded rolled list
of items 5-117

Example of an expandable text outline 5-121
Monthly calendar view 5-124

Text and Ink Input and Display Reference 7-1

Table 7-1
Table 7-2

CopyPr ot ect i on constants 7-17
Valid items in an insert specification 7-53

XXvii

Chapter 8

Chapter 9

Chapter 10

Chapter 12

Xxviii

Recognition System Reference 8-1

Figure 8-1 Single-character editing box specified by
r cBasel nf o frame 8-25

Figure 8-2 Two-dimensional array of input boxes specified by
rcGidl nfo frame 8-27

Figure 8-3 pr ot oRecToggl e picker collapsed and
expanded 8-32

Figure 8-4 Typical pr ot oChar Edi t comb view and text

to correct 8-41

Table 8-1 View flags for text recognition using enumerated
dictionaries 8-7

Table 8-2 View flags for text recognition using lexical
dictionaries 8-10

Table 8-3 Nontext view flags 8-11

Table 8-4 System-supplied enumerated dictionaries 8-16

Table 8-5 System-supplied lexical dictionaries 8-17

Table 8-6 Stroke bundle data format specifications 8-29

Data Storage and Retrieval Reference 9-1

Table 9-1 Change messages and associated change
data 9-15

Drawing and Graphics Reference 10-1

Figure 10-1 pr ot ol nageVi ew Structure 10-6
Figure 10-2 Angles for arcs and wedges 10-29
Figure 10-3 Row width of picture bitmap 10-43

Filing Reference 12-1

Figure 12-1 Two examples of filing button views 12-2
Figure 12-2 The Filing slip 12-3
Figure 12-3 A pr ot oNewFol der Tab view with optional

title text 12-5

Chapter 14

Chapter 16

Chapter 17

Figure 12-4

Figure 12-5
Figure 12-6

The picker displayed by a pr ot oNewFol der Tab

view 12-6

The pr ot oC ockFol der Tab view 12-8

Selecting a filing category and store in a
pr ot oCl ockFol der Tab view 12-9

System Services Reference 14-1

Figure 14-1
Figure 14-2

Table 14-1
Table 14-2

Table 14-3
Table 14-4

Table 14-5

Status view components 14-14

Built-in status view configurations 14-20

Status view components ~ 14-15

Internally defined vi ewBounds and vi ewJustify

slots 14-18

Values for what parameter to RegPower Of f

function 14-34
Values for why parameter to RegPower O f
function 14-35
Values for why parameter to RegPower On
function 14-37

Built-in Applications and System Data Reference 16-1
Table 16-1 Names card layouts 16-2

Table 16-2 Dates variables 16-24

Table 16-3 Dates constants for the day of the week 16-24
Table 16-4 Dates constants for r epeat Type 16-25

Table 16-5 Other date constants 16-25

Table 16-6 Dates constants for the weeks in a month 16-26
Table 16-7 Compatible icon and meeting/event types 16-26
Table 16-8 Folder symbols 16-85

Localizing Newton Applications Reference 17-1

Table 17-1
Table 17-2
Table 17-3
Table 17-4

LongDat eFor nat slots 17-4
Shor t Dat eFor mat slots 17-6
TimeFormat Slots 17-7
NumberFormat Slots 17-9

xxix

Chapter 19

Chapter 20

Chapter 21

XXX

Table 17-5 Format specifications in ROM dat eTi neSt r Specs
global 17-12

Table 17-6 Elements of date strings 17-13

Table 17-7 Formats for date and time string elements 17-15

Table 17-8 Date frame slots and values 17-27

Table 17-9 ROM language codes 17-30

Transport Interface Reference 19-1

Table 19-1 Preferences slots 19-7

Table 19-2 E-mail address translations 19-30

Table 19-3 Causes of a send request 19-33

Table 19-4 Slots in si | ent Pref s frame 19-46

Table 19-5 Slots in sendPr ef s frame 19-46

Table 19-6 Slots in out boxPr ef s frame 19-47

Table 19-7 Slots ini nboxPr ef s frame 19-47

Endpoint Interface Reference 20-1

Table 20-1 Data form symbols 20-2

Table 20-2 Typel i st data type symbols 20-3

Table 20-3 Option opcode constants 20-3

Table 20-4 Endpoint error code constants 20-4

Table 20-5 Option error code constants 20-5

Table 20-6 Endpoint state constants 20-6

Table 20-7 Other endpoint constants 20-7

Table 20-8 Data translators 20-34

Built-in Communications Tools Reference 21-1

Table 21-1 Built-in communications tool service option
labels 21-2

Table 21-2 Summary of serial options 21-3

Table 21-3 Serial chip location labels 21-5

Table 21-4 Serial chip specification option fields 21-8

Table 21-5 Serial chip specification option constants 21-9

Table 21-6 Serial circuit control option fields 21-11

Chapter 22

Table 21-7

Table 21-8

Table 21-9

Table 21-10
Table 21-11
Table 21-12
Table 21-13
Table 21-14
Table 21-15
Table 21-16
Table 21-17
Table 21-18
Table 21-19
Table 21-20
Table 21-21
Table 21-22
Table 21-23
Table 21-24
Table 21-25
Table 21-26
Table 21-27
Table 21-28

Serial circuit control option constants 21-12
Serial flow control option fields 21-19

Serial event constants 21-23

Serial statistics option fields 21-25

Summary of serial tool with MNP options 21-28
Summary of framed serial options 21-29
Serial framing configuration option fields 21-30
Summary of modem options 21-32

Modem preferences option fields 21-36
Modem profile option fields 21-41

Modem profile configuration strings 21-43
Modem error control type 21-46

Modem dialing option fields 21-49

Modem connection type option fields 21-52
Modem fax capabilities option fields 21-55
Modem fax modulation return values 21-56
MNP compression type 21-62

MNP data statistics option fields 21-64
Summary of infrared options 21-66

Infrared statistics option fields 21-70
Summary of AppleTalk options 21-71
Summary of resource arbitration options 21-83

Modem Setup Service Reference 22-1

Table 22-1

Table 22-2
Table 22-3
Table 22-4
Table 22-5
Table 22-6

Constants for modem setup general
information 22-2

Constants for modem setup preferences 22-3
Constants for the modem setup profile 22-5
Constants for the fax profile 22-10

Available fax speeds 22-11

Available fax service classes 22-12

xxxi

Chapter 23 Utility Functions Reference 23-1

Table 23-1 Instruction symbols for St ri ngFi | t er 23-23
Table 23-2 Floating point exceptions 23-73
Table 23-3 Exception frame data slot name and

contents 23-81

xxxii

PRETFAUCE

About This Book

Audience

This book, Newton Programmer’s Reference, is the definitive
reference for Newton programming. It describes all of the protos,
methods, functions, data structures, error codes, and other
constructs that are part of the Newton application programming
interface (API).

This book is a companion to Newton Programmer’s Guide, which
provides conceptual information and instructions for using the
Newton application programming interfaces.

This reference is for anyone who wants to write NewtonScript
programs for the Newton family of products.

Before using this reference, you should read Newton Toolkit User’s
Guide to learn how to install and use Newton Toolkit, which is the
development environment for writing NewtonScript programs for
Newton. You may also want to read The NewtonScript
Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is
used throughout the Newton Programmer’s Guide.

To make best use of this reference, you should already have a
good understanding of the information presented in the
companion volume to this book, Newton Programmer’s Guide.

xxxiii

Related Books

P

R EFACE

Sample Code

This book is one in a set of books available for Newton
programmers. You'll also need to refer to these other books in
the set:

Newton Programmer’s Guide. This companion volume is the
definitive guide to Newton programming.

Newton Toolkit User’s Guide. This book comes with the Newton
Toolkit development environment. It introduces the Newton
development environment and shows how to develop Newton
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

The NewtonScript Programming Language. This book comes with
the Newton Toolkit development environment. It describes the
NewtonScript programming language.

Newton Book Maker User’s Guide. This book comes with the
Newton Toolkit development environment. It describes how to
use Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.

Newton 2.0 User Interface Guidelines. This book contains
guidelines to help you design Newton applications that
optimize the interaction between people and Newton devices.

XXxiv

The Newton Toolkit development environment, from Apple
Computer, includes many sample code projects. You can examine
these samples, learn from them, and experiment with them. These
sample code projects illustrate most of the topics covered in this
book. They are an invaluable resource for understanding the

PRETFAUCE

topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. The
latest sample code is included each quarter on the Newton
Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly
mailing. Sample code is updated on the Newton Development
side on the World Wide Web (htt p: / / dev. i nf 0. appl e. com
newt on) shortly after it is released on the Newton Developer CD.
For information about how to contact Apple Computer regarding
the Newton Developer Program, see the section “Developer
Products and Support,” on page xxxvii.

The code samples in this book show methods of using various
routines and illustrate techniques for accomplishing particular
tasks. All code samples have been compiled and, in most cases,
tested. However, Apple Computer does not intend that you use
these code samples in your application.

To make the code samples in this book more readable, only
limited error handling is shown. You need to develop your own
techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

m Boldface. Key terms and concepts appear in boldface on first
use. These terms are also defined in the Glossary.

XXXV

XXXVi

PREFAUCE

m Courier typeface. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,
slot names, function names, method names, symbols, and
constants are shown in the Courier typeface to distinguish
them from regular body text. If you are programming, items
that appear in Courier should be typed exactly as shown.

m [talic typeface. Italic typeface is used in code to indicate
replaceable items, such as the names of function parameters,
which you must replace with your own names. The names of
other books are also shown in italic type, and rarely, this style is
used for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the
word “click” sometimes appears as part of the name of a method
or variable, asin Vi ewd i ckScri pt or ButtonC i ckScri pt.
This may lead you to believe that the text refers to mouse clicks. It
does not. Wherever you see the word “click” used this way, it
refers to a tap of the pen on the Newton screen (which is
somewhat similar to the click of a mouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development
environment in conjunction with this book, you may notice that
this book displays the code for a frame (such as a view) differently
than NTK does.

In NTK, you can see the code for only a single frame slot at a time.
In this book, the code for a frame is presented all at once, so you
can see all of the slots in the frame, like this:

{ viewd ass: clView,
vi ewBounds: Rel Bounds(20, 50, 94, 142),
vi ewFl ags: vNoFl ags,

PRETFAUCE

vi ewFormat: vfFillWhite+vfFraneBl ack+vfPen(1),
viewdustify: vjCenterH,

Vi ewSet upDoneScript: func()
: Updat eDi spl ay(),

Updat eDi spl ay: func()
Set Val ue(di spl ay, 'text, value);
b

If while working in NTK, you want to create a frame that you see
in the book, follow these steps:

1. On the NTK template palette, find the view class or proto
shown in the book. Draw out a view using that template. If the
frame shown in the book contains a _pr ot o slot, use the
corresponding proto from the NTK template palette. If the
frame shown in the book contains a vi ewCl ass slot instead of
a_pr ot o slot, use the corresponding view class from the NTK
template palette.

2. Edit the vi ewBounds slot to match the values shown in the
book.

3. Add each of the other slots you see listed in the frame, setting
their values to the values shown in the book. Slots that have
values are attribute slots, and those that contain functions are
method slots.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer’s
worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone
interested in developing applications on Apple computer
platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple development tools and the most

xXxxvii

PREFAUCE

popular third-party development tools. ADC offers convenient
payment and shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple
Developer Catalog contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511
AppleLink ORDER.ADC
Internet order.adc@applelink.apple.com

World Wide Web http:/ /www.devcatalog.apple.com

If you provide commercial products and services, call
408-974-4897 for information on the developer support programs
available from Apple.

For Newton-specific information, see the Newton developer
World Wide Web page at:

http://dev.info.apple.com newton

Undocumented System Software Objects

xxxviii

When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

CHAPTER 1

Getting Started Reference

This chapter describes the view classes, protos, and functions useful for
creating any application.

View Classes and Protos

clView

The cl Vi ewview class is the base view class. It implements a generic view
that has no special characteristics or specific kind of data associated with it.
This view class does not support recognition, gestures, or user input of any
kind.

When a cl Vi ewis used as the base view of an application, it typically
includes many application-specific slots containing global data and methods
for use by its child views (which automatically inherit parental slots if they
are not overridden). The minimal slots of interest are listed below.

View Classes and Protos 1-1

CHAPTER 1

Getting Started Reference

Slot descriptions

vi ewBounds Set to the size and location where you want the view to
appear.

vi ewFl ags The default setting is vVi si bl e.

vi ewFor mat Optional. The default setting is ni | .

Here is an example of a template defining a view of the cl Vi ewclass:

sanpl eApp :={...
vi ewCl ass: cl Vi ew,
vi ewBounds: {left:0, top:0, right:200, bottom 200},
vi ewFl ags: vApplication+vdickabl e,
vi ewFor mat : vf FrameBl ack+vf Penl+vf Shadowl,
vi ewdustify: vjParent CenterH,
vi ewef fect: fxUp+fxSteps(8),
decl areSel f: 'base, // for closebox child

/1 methods and other viewspecific slots

Vi ewSet upForncript: func()...
-}

protoApp

This proto is used to create a simple application base view. It is a view with a
title at the top and a status bar at the bottom. The user can tap on the clock

View Classes and Protos

CHAPTER 1

Getting Started Reference

icon to see the current time, or on the close box to close the application. Here

is an example:

My Application

©

£3)

Slot descriptions
title
vi ewBounds

Vi ewFl ags

vi ewdustify

A string that is the title. This title appears in a title bar at
the top of the view.

Set to the size and location where you want the view to
appear. By default it is centered horizontally within its
parent view.

The default setting is vVi si bl e + vApplicati on.
Do not change these flags, but you can add others if you
wish.

Optional. The default setting is vj Par ent Cent er H.

View Classes and Protos 1-3

CHAPTER 1

Getting Started Reference

vi ewFor mat Optional. The default setting isvf Fi | | White +
vf FrameBl ack + vfPen(1l) + vflnset(1l) +
vf Shadow(1) .

decl ar eSel f Do not change. This slot is set by default to ' base. This
identifies the view to be closed when the user taps the
close box.

The pr ot 0App has two child views: a title and a status bar.

Here is an example of a template using pr ot 0App:

myApp = {...
_proto: protoApp,

title: "My Application",
/1 set bounds relative to screen size

Vi ewSet upFor nScri pt: func()
begi n
[ocal b := Get AppParans();
sel f.viewBounds.top : = b.appAreaTop + 2;

sel f.viewBounds. |l eft := b.appArealeft;
sel f.vi ewBounds. bottom : = b. appAreaHei ght - 7;
sel f.viewBounds.right := b.appAreaWdth - 21;
end

-}

Functions

Application-Defined Functions

This section describes functions that are called when applications and other
parts are installed and removed from the Newton device.

Functions

CHAPTER 1

Getting Started Reference

InstallScript

Instal | Scri pt (partFrame) [/ for application part
I nstal | Scri pt (partFrame, removeFrame) [/ for auto part

This function in the application or auto part is executed when the package is
activated on the Newton or when the Newton is reset.

partFrame The part frame. For an application part, this frame
contains a slot named t heFor m which contains a
reference to your application’s base template. For an
auto part, there is no t heFor mslot.

removeFrame This parameter is passed to this function only if an auto
part is being installed, otherwise, only one parameter is
passed. The removeFrame parameter is the frame that
will be passed to the auto part RenpveScri pt
function. This frame contains a single slot,
RenpveScri pt, which contains a copy of the
RenpveScri pt function. Note that you can add
additional slots to this frame.

For application parts, the system executes a deep clone of the

I nstal | Scri pt function, so you don’t normally need to use

Ensur el nt er nal within it. It's recommended that you keep the

I nstal | Scri pt function as small as possible for application parts, because
the function is copied into the NewtonScript heap as a result of the deep
clone. If you need to execute a lot of code, you might want to make a method
in the application base template and send it a message from your

I nstal | Scri pt.You can access the base template using the expression
partFrame. t heFor m The code in the application method won’t be deep
cloned since it’s not part of the I nst al | Scri pt function.

For auto parts, the I nst al | Scri pt function is not cloned or copied. You
must use Ensur el nt er nal within this function as appropriate, to prevent
the warning to reinsert the card.

Functions 1-5

1-6

CHAPTER 1

Getting Started Reference

DeletionScript

Del etionScri pt ()

This function in the part is executed when the package is deleted by the user
from the Extras drawer. Typically this function is used to do clean-up
operations that you might need to do when the part is deleted.

This function applies to all types of package parts, except for store parts.

After the Del eti onScri pt function is executed, the RenoveScr i pt
function is also executed (for application and auto parts only).

DoNotlInstallScript

DoNot I nstal | Scri pt ()

This function in the part is executed before the package is first loaded onto a
Newton store from some external source. It gives the parts in the package a
chance to prevent installation of the package. If any part returns a non-ni |
value from this function, the package is not installed.

You should provide the user with some kind of feedback if package
installation is prevented, rather than silently failing.

This function applies to all types of package parts, except for store parts.

RemoveScript

RenoveScr i pt (frame)

This function in the application or auto part is executed when the package is
deactivated.

frame For an application part, this parameter is equivalent to
the part frame. Note that because the application has
been removed, the t heFor mslot contains an invalid
reference. For an auto part, this parameter is the same
removeFrame parameter passed to the | nstal | Scri pt
function. Note that the | nst al | Scri pt function can
add additional slots to this frame.

Functions

CHAPTER 1

Getting Started Reference

Note that the function that is executed is actually a clone of the
RenpveScri pt function in your part.

If the application or auto part package is deleted by the user from the Extras
drawer, the Del eti onScri pt function is executed before the
RenoveScri pt function.

Functions 1-7

C

Views Reference

HAPTETR 2

This chapter describes the constants, functions, and methods used by the

view system interface.

Constants

The following sections contain descriptions of the constants used in the view
interface:

view class constants

vi ewFl ags constants

vi ewJusti f y constants

Vi ewFor mat constants

vi ewTr ansf er Mode constants

vi ewEf f ect constants

Constants

2-1

CHAPTER 2

Views Reference

View Class Constants

The view class constants are listed and described in Table 2-1.

Table 2-1 View class constants
Constant Value Description
cl Vi ew 74 The base view class. This class is used for

cl Pi ctureVi ew

cl Edi t Vi ew

cl Par agr aphVi ew

2-2 Constants

76

77

81

a generic view that has no special
characteristics. A view of this class is
generally a container view that encloses
other more specialized views. Such a
high-level view would include global
data and methods shared by its child
views. See Chapter 2, “Getting Started,”
in the Newton Programmer’s Guide for
more information.

Used for pictures. See Chapter 13,
“Drawing and Graphics,” in the Newton
Programmer’s Guide for more information.

Used for editing views that can accept
both text and graphic user input. This
view class typically has child views that
are of class cl Par agr aphVi ewand

cl Pol ygonVi ew. See Chapter 8, “Text
and Ink Input and Display,” in the
Newton Programmer’s Guide for more
information.

A static or editable text view. When text is
recognized, it is displayed in one of these
views. Text is grouped into paragraphs so
that many words can be shown in a single
paragraph view. See Chapter 8, “Text and
Ink Input and Display,” in the Newton
Programmer’s Guide for more information.

CHAPTER 2

Views Reference

Table 2-1 View class constants (continued)

Constant
cl Pol ygonVi ew

cl Keyboar dVi ew

cl Mont hVi ew

cl Renot eVi ew

cl Pi ckVi ew

Constants

Value
82

79

80

88

91

Description

A graphic view used in an edit view.
When a shape is recognized, it is
displayed in one of these graphic views.
See Chapter 13, “Drawing and Graphics,”
in the Newton Programmer’s Guide for
more information.

Used to define keyboard-like arrays of
buttons that can be tapped. No other
forms of input recognition are available.
See Chapter 8, “Text and Ink Input and
Display,” in the Newton Programmer’s
Guide for more information.

Used to define a calendar view of a
month that lets the user select a date
range. See Chapter 6, “Pickers, Pop-up
Views, and Overviews,” in the Newton
Programmer’s Guide for more information.

Used for a view that displays another
view as its contents. This can be used to
show a page preview of a full-page view,
for example. This view provides the
scaling necessary to display the entire
remote view. See Chapter 13, “Drawing
and Graphics,” in the Newton
Programmer’s Guide for more information.

Used to display a list from which you can
pick an item. The list can display both
text and graphic items. This view class is
supported through the pr ot oPi cker
view proto. See Chapter 6, “Pickers,
Pop-up Views, and Overviews,” in the
Newton Programmer’s Guide for more
information.

2-3

CHAPTER 2

Views Reference

Table 2-1 View class constants (continued)

Constant
cl GaugeVi ew

clautline

Value
92

105

viewFlags Constants

Description

Used to define a gauge-like view that can
display a visual sliding bar indicator. The
view can be read-only or changeable.
With a changeable view, the user can drag
the indicator to a new position. See
Chapter 7, “Controls and Other Protos,”
in the Newton Programmer’s Guide for
more information.

Used for a text outline with expandable
headings that have indented subheadings.
The user can tap headings to expand and
collapse them and to choose items. See
Chapter 7, “Controls and Other Protos,”
in the Newton Programmer’s Guide for more
information.

The vi ewFl ags constants are listed and described in Table 2-2. Several
additional constants can be specified in the vi ewFl ags slot that control
what kinds of pen input (taps, strokes, words, letters, numbers, and so on)
are recognized and handled by the view. These other constants are described
in “Text and Ink Input and Display Reference” (page 7-1).

Table 2-2 vi ewFl ags constants
Constant Value Description
vVisible 1 The view is visible. (Don't set this flag for your

Constants

application base view, because you don’t want it
to be shown until the user taps its icon in the
Extras Drawer.) If you Show, Hide, Open, Close,
or Toggle a view, this flag is changed in the view
by the system to reflect the current state of the

view.

CHAPTER 2

Views Reference

Table 2-2 vi ewFl ags constants (continued)

Constant Value
vAppl i cation 4

vCal cul at eBounds 8

vC i ppi ng 32
VvFl oati ng 64
vReadOnl y 2

vWiteProtected 128

Constants

Description

Identifies a view that should receive scrolling and
other high-level events. For example, when the
user taps the scroll arrows, the system searches all
views to find the frontmost view that has this bit
set, and then sends the scroll event to that view.
Generally, this flag is set for the application base
view. Views with this flag set can be found with
the special view symbols ' vi ewFr ont Most or

' vi ewFr ont Most App.

The view bounds are not fixed, but are
recalculated and will grow if the user enters more
information than the view can hold. Used by
views of the class cl Par agr aphVi ewand

cl Pol ygonVi ewonly, and only when they are
enclosed in a view of the class cl Edi t Vi ew

The view’s contents, including child views, are
clipped to its bounds when it is drawn. Note that
the base view of all applications is automatically
clipped, whether or not this flag is set.

The view is a floating view; that is, it floats above
its non-vFl oat i ng sibling views. A view without
this flag will never come in front of a floating
sibling view.

The view cannot be changed, but it can be scaled
or distorted. It is read-only.

The same as vReadOnl y, except that this flag
propagates automatically to all of the view’s child
views. Additionally, scaling and distortion of the
view are not allowed.

2-5

CHAPTER 2

Views Reference

Table 2-2

vi ewFl ags constants (continued)

Constant
vNoScri pts

vC i ckabl e

vNoFI ags

Value
134217728

512

Description

Prevents the system from sending in the view any
of the system messages described

“ Application—-Defined Methods” (page 2-65)
(except for the Vi ewChangedScri pt, and

Vi ewSet upFor nScr i pt messages, which are
still sent). Setting this flag speeds up the
processing for a view if it has no application-
defined handling methods, because the system
won’t bother trying to send it messages. This flag
is set internally for views of the classes

cl Par agr aphVi ew cl Pi cut ur eVi ew and

cl Pol ygonVi ewthat are created dynamically as
the user writes in a cl Edi t Vi ew

Allows the view to receive pen input. The system
sends the Vi enCl i ckScri pt message to the
view once for each pen tap (click) that occurs
within the view. See to “Text and Ink Input and
Display” (page 8-1) in the Newton Programmer’s
Guide for more information.

There are no flag attributes for the view.

viewJustify Constants

The constants used for the vi ewdust i f y slot are listed and described in

Table 2-3.

Table 2-3

vi ewJust i fy constants

Constant

Value

Horizontal alignment of view contents

vj LeftH
vj CenterH

Constants

0
2

Description

Left alignment (default).

Center alignment (default for cl Pi ct ur eVi ew
only).

CHAPTER 2

Views Reference

Table 2-3 vi ewdust i fy constants (continued)
Constant Value Description
vj Ri ghtH 1 Right alignment.

vj Ful | H 3

Vertical alignment of view contents®

vj TopV 0
vj CenterV 4
vj Bot t onVv 8
vj Ful I V 12

Stretches the view contents to fill the entire view
width.

Top alignment (default).

Center alignment (default for cl Pi ct ur eVi ew
only).

Bottom alignment.

For views of the cl Pi ct ur eVi ewclass only;
stretches the picture to fill the entire view height.

Horizontal alignment of the view relative to its parent or sibling view?

vj Parent LeftH 0
vj Parent Center H 16
vj Parent Ri ghtH 32
vj Parent Ful | H 48
vj Si bl i ngNoH 0

Constants

The left and right view bounds are relative to the
parent’s left side (default).

The difference between the left and right view
bounds is used as the width of the view. If you
specify zero for left, the view is centered in the
parent view. If you specify any other number for
left, the view is offset by that much from a centered
position (for example, specifying left = 10 and
right = width+10 offsets the view 10 pixels to the
right from a centered position).

The left and right view bounds are relative to the
parent’s right side, and will usually be negative.

The left bounds value is used as an offset from the
left edge of the parent and the right bounds value
as an offset from the right edge of the parent (for
example, specifying left = 10 and right = -10 leaves
a 10-pixel margin on each side).

(Default) Do not use sibling horizontal alignment.

CHAPTER 2

Views Reference

Table 2-3 vi ewJust i fy constants (continued)
Constant Value Description
vj Si blingLeftH 2048 The left and right view bounds are relative to the
sibling’s left side.
vj Si bl i ngCent erH 512 The difference between the left and right view

bounds is used as the width of the view. If you
specify zero for left, the view is centered in relation
to the sibling view. If you specify any other number
for left, the view is offset by that much from a
centered position (for example, specifying left = 10
and right = width+10 offsets the view 10 pixels to
the right from a centered position).

vj Si bl i ngRi ghtH 1024 The left and right view bounds are relative to the
sibling’s right side.
vj SiblingFullH 1536 The left bounds value is used as an offset from the

left edge of the sibling and the right bounds value
as an offset from the right edge of the sibling (for
example, specifying left = 10 and right =-10
indents the view 10 pixels on each side relative to
its sibling).

Vertical alignment of the view relative to its parent or sibling view?

vj Par ent TopV 0 The top and bottom view bounds are relative to the
parent’s top side (default).

vj Parent Center V 64 The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in the
parent view. If you specify any other number for
top, the view is offset by that much from a centered
position (for example, specifying top =-10 and
bottom = height-10 offsets the view 10 pixels above
a centered position).

vj Par ent Bot t onV 128 The top and bottom view bounds are relative to the
parent’s bottom side.

2-8 Constants

CHAPTER 2

Views Reference

Table 2-3 vi ewdust i fy constants (continued)
Constant Value Description
vj Parent Ful | V 192 The top bounds value is used as an offset from the

vj Si bl i ngNoV 0
vj Si bl i ngTopV 16384

vj Si bl'i ngCenterV 4096

vj Si bl i ngBot t onVv 8192

vj Si bli ngFul | V 12288
Text limits

noLineLimts 0

onelLi neOnly 8388608
oneWwrdOnl y 16777216

Indicate that a bounds value is a ratio
vj NoRat i o 0

Constants

top edge of the parent and the bottom bounds
value as an offset from the bottom edge of the
parent (for example, specifying top = 10 and
bottom = 10 leaves a 10-pixel margin on both the
top and the bottom).

(Default) Do not use sibling vertical alignment.

The top and bottom view bounds are relative to the
sibling’s top side.

The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in relation
to the sibling view. If you specify any other number
for top, the view is offset by that much from a
centered position (for example, specifying top = -10
and bottom = height-10 offsets the view 10 pixels
above a centered position).

The top and bottom view bounds are relative to the
sibling’s bottom side.

The top bounds value is used as an offset from the
top edge of the sibling and the bottom bounds
value as an offset from the bottom edge of the
sibling (for example, specifying top = 10 and
bottom = 10 indents the view 10 pixels on both the
top and the bottom sides relative to its sibling).

(Default) No limits, text wraps to next line.
Allows only a single line of text, with no wrapping.

Allows only a single word. (If the user writes
another word, it replaces the first.)

(Default) Do not use proportional alignment.

2-9

CHAPTER 2

Views Reference

Table 2-3

vi ewJust i fy constants (continued)

Constant
vjLeftRatio

Vj Ri ght Rat i

vj TopRati o

vj Bot t onRat

vj Par ent Anc

o

io

hor ed

Value
67108864

134217728

268435456

-536870912

256

Description

The value of the slot vi ewBounds. | ef t is
interpreted as a percentage of the width of the
parent or sibling view to which this view is
horizontally justified.

The value of the slot vi ewBounds. ri ght is
interpreted as a percentage of the width of the
parent or sibling view to which this view is
horizontally justified.

The value of the slot vi ewBounds. t op is
interpreted as a percentage of the height of the
parent or sibling view to which this view is
vertically justified.

The value of the slot vi ewBounds. bot t omis
interpreted as a percentage of the height of the
parent or sibling view to which this view is
vertically justified.

The view is anchored at its location in its parent
view, even if the origin of the parent view is

changed. Other sibling views will be offset, but not

child views with this flag set.

For views of the cl Par agr aphVi ewclass, the vertical alignment constants vj TopV, vj Cent erV,
and vj Bot t onV apply only to paragraphs that also have the oneLi neOnl y vi ewdust i f y flag set.
If you are applying horizontal sibling-relative alignment and the view is the first child, it is positioned
according to the horizontal parent-relative alignment setting.

If you are applying vertical sibling-relative alignment and the view is the first child, it is positioned

according to the vertical parent-relative alignment setting.

2-10

Constants

CHAPTER 2

Views Reference

viewFormat Constants

The constants used for the vi ewFor mat slot are listed and described in

Table 2-4.

Table 2-4 vi ewFor mat constants
Constant Value Description
vf None 0 There are no format attributes set for the view

(default).
View fill color
viFillWite 1 Fill view with white.
viFillLtGay 2 Fill view with light gray.
viFill Gay 3 Fill view with gray.
viFill DkG ay 4 Fill view with dark gray.
viFill Bl ack 5 Fill view with black.
viFill Custom 14 Fill the view with the custom pattern specified in the
vi ewFi | | Pat t er n slot.

View frame color
vf FraneWi te 16 White frame.
vf FraneLt G ay 32 Light gray frame.
vf FranmeG ay 48 Gray frame.
vf FrameDkGr ay 64 Dark gray frame.
vf FranmeBl ack 80 Black frame.
vf FrameMatte 240 Thick gray frame bordered by a black frame, giving a

Constants

matte effect.

2-11

CHAPTER 2

Views Reference

Table 2-4 vi ewFor mat constants (continued)

Constant Value
vf Fr aneDr agger 208

vf FranmeCust om 224

View frame thickness

vf Pen(pixels) pixels *
256

View frame roundedness

vf Round(pixels) pixels *
16777216

View frame inset

vf | nset (pixels) pixels *
65536

View shadow style

vf Shadow(pixels) pixels *
262144

Description

Similar effect to vf Fr ameMat t e, except that

vf Fr aneDr agger includes a small control nub in the
top portion of the frame at the center. This nub
indicates that the user can tap there and drag the view
around.

Use the custom frame pattern specified in the
vi ewFr anePat t er n slot.

Sets the frame width; pixels specifies the pen thickness
in pixels, from 0 through 15. (Note that this is a
compile-time only function.)

Sets the corner radius for a rounded frame. pixels
specifies the corner radius in pixels, from 0 through
15. (Note that this is a compile-time only function.)

Sets the inset style for the frame; that is, the amount of
white space (in pixels) between the view bounds and
the frame. pixels specifies the inset, from 0 through 3.
(Note that this is a compile-time only function.)

Sets the shadow style for the view; pixels specifies the
thickness of the shadow in pixels that is shown on the
bottom and right sides of the view frame. Specify a
number from 0 through 3. (Note that this is a
compile-time only function.)

View line style (for cl Edi t Vi ewand cl Par agr aphVi ewview classes only)

vf Li nesWi te 4096

2-12 Constants

Draw horizontal lines in white.

CHAPTER 2

Views Reference

Table 2-4 vi ewFor mat constants (continued)
Constant Value Description
vf Li nesLt G ay 8192 Draw widely dotted horizontal lines.
vf Li nesG ay 12288 Draw dotted horizontal lines.
vf Li nesDkG ay 16384 Draw dashed horizontal lines.
vf Li nesBl ack 20480 Draw solid black horizontal lines.

vf Li nesCust om 57344

Use the custom line pattern specified in the
vi ewLi nePat t er n slot.

viewTransferMode Constants

The constants that you can specify for the vi ewTr ansf er Mode slot are
listed and described in Table 2-5.

Table 2-5 vi ewTr ansf er Mode constants
Constant Value Description
nodeCopy 0 Replaces the pixels in the destination with the

modeOr

nmodeXor

nmodeBi ¢

Constants

pixels in the source, “painting” over the screen
without regard for what’s already there.

Replaces screen pixels under the black part of
the source image with black pixels. Screen
pixels under the white part of the source image
are unchanged.

Inverts screen pixels under the black part of
the source image. Screen pixels under the
white part of the source image are unchanged.

Erases screen pixels under the black part of the
source image, making them all white. Screen
pixels under the white part of the source image
are unchanged.

2-13

CHAPTER 2

Views Reference

Table 2-5 vi ewTr ansf er Mode constants (continued)

Constant Value
nodeNot Copy 4

nodeNot Or 5
nodeNot Xor 6
nodeNot Bi ¢ 7
nodeMask 8

viewEffect Constants

Description

Replaces screen pixels under the black part of
the source image with white pixels. Screen
pixels under the white part of the source image
are made black.

Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are made black.

Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are inverted.

Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are made white.

This is a special transfer mode used for
drawing views of the cl Pi ct ur eVi ewclass
only. It causes the picture mask image to be
erased first and then the picture bit image is
drawn over it using the nodeOr transfer mode.

Table 2-6 lists all of the constants that you can use in the vi ewEf f ect slot to
create custom animation effects.

Table 2-6 vi ewkEf f ect constants

Constant
f xSt eps(x)

2-14

Integer Value

(x-1)*
2097152

Constants

Description

Sets the number of steps (x) that the animation
should take to complete. Specify an integer from 1
to 15.

CHAPT

ER 2

Views Reference

Table 2-6

vi ewEf f ect constants (continued)

Constant
f xSt epTi ne(x)

f xCol umms(x)

f XRows (x)

f xMoveH

f xHSt ar t Phase

f xCol Al t HPhase

f xRowAl t HPhase

f xMbveV

f xVSt ar t Phase

Integer Value
x*33554432

x-1

(x-1)*32

65536

1024

4096

16384

131072

2048

Constants

Description

Sets the amount of time (x) to take for each
animation step, in ticks. There are 60 ticks per
second, or 16.6 milliseconds per tick. Specify an
integer from 0 to 15.

Sets the number (x) of columns in which to divide
the view for animation purposes.

Sets the number (x) of rows in which to divide the
view for animation purposes.

Indicates that you want the animation to include
horizontal movement. (Note that you can also
specify f xMoveV)

If specified, indicates that you want the first
column to begin moving towards the left. If not
specified, the first column begins moving towards
the right. This flag can be used only if f xMoveHis
specified.

If specified, the direction of horizontal movement
alternates for each column in the view. If not
specified, all columns move in the same direction
(left or right) as the first column. This flag can be
used only if f xMoveHis specified.

If specified, the direction of horizontal movement
alternates for each row in the view. If not specified,
all rows move in the same direction (left or right)
as the first row. This flag can be used only if

f xMoveH s specified.

Indicates that you want the animation to include
vertical movement. (Note that you can also specify
f xMoveH.)

If specified, indicates that you want the first row to
begin moving upwards. If not specified, the first
row begins moving downwards. This flag can be
used only if f xMoveV is specified.

2-15

CHAPT

ER 2

Views Reference

Table 2-6

vi ewEf f ect constants (continued)

Constant
f xCol Al t VPhase

f xRowAl t VPhase

fxLeft

f xRi ght

f xUp

f xDown

f xReveal Li ne

f XW pe

Integer Value
8192

32768

66560

65536

133120

131072

262144

524288

2-16 Constants

Description

If specified, the direction of vertical movement
alternates for each column in the view. If not
specified, all columns move in the same direction
(up or down) as the first column. This flag can be
used only if f xMbveV is specified.

If specified, the direction of vertical movement
alternates for each row in the view. If not specified,
all rows move in the same direction (up or down)
as the first row. This flag can be used only if

f xMoveV is specified.

Indicates that motion should be towards the left.
(This flag is the same as specifying
f xHSt ar t Phase+f xMbveH.)

Indicates that motion should be towards the right.
(This flag is the same as specifying f xMoveHand
not specifying f xHSt ar t Phase.)

Indicates that motion should be towards the top.
(This flag is the same as specifying
f xVSt ar t Phase+f xMoveV.)

Indicates that motion should be towards the
bottom. (This flag is the same as specifying
f xMoveV and not specifying f xVSt ar t Phase.)

If specified, causes a line to be drawn at the
edge(s) from which the animation is being
revealed. For some types of animation, this setting
improves the effect.

If specified, causes the view to be revealed in place
rather than actually moved into place. In other
words, the view is revealed just like a window is
revealed by rolling a shade away. Without this
flag, the view is actually moved into place.

CHAPTER 2

Views Reference

Table 2-6 vi ewEf f ect constants (continued)
Constant Integer Value Description
f xFr onkdge 1048576 If specified, causes the animation to begin at the

f xChecker boar dEf f ect
155879

f xBar nDoor QpenEf f ect
627713

f xBar nDoor Cl oseEf f ect
626689

f xVeneti anBl i ndsEf f ect

131296
fxlrisOpenEff ect

1023009
fxlrisC oseEffect

986145

Constants

edge of the screen, ending up at the ultimate view
location. Without this flag, the entire animation
occurs within the bounds of the view being
animated.

Reveals a view using a checkerboard effect, where
adjoining squares move in opposite (up and
down) directions.

Reveals a view from center towards left and right
edges, like a barn door opening where the view is
the inside of the barn.

Reveals a view from left and right edges towards
the center, like a barn door closing where the view
is painted on the doors.

Reveals a view so that it appears behind venetian
blinds that open.

Changes the size of an invisible “aperture”
covering the view, revealing an ever-increasing
portion of the full-size view as the aperture opens.

Like f xI ri sQpenEf f ect, but decreases the size
of an invisible “aperture” covering the view, as the
aperture closes.

2-17

CHAPTER 2

Views Reference

Table 2-6 vi ewEf f ect constants (continued)

Constant Integer Value Description

f xPopDownEf f ect

393216 Reveals a view as it slides down from its top
boundary.
f xDr awer Ef f ect 133120 Reveals a view as it slides up from its bottom
boundary.
f xZoomOpenEf f ect
236577 Expands the image of the view from a point in the

center until it fills the screen; that is, the entire
view appears to grow from a point in the center of
the screen.

f xZoonl oseEf f ect

199713 Opposite of f xZoonOpenkEf f ect . This value
shrinks the image of the view from a point in the
center until it disappears or closes on the screen.

f xZoonVerti cal Ef f ect

165920 The view expands out from a horizontal line in the
center of its bounds. The top half moves upward
and lower half moves downward.

Functions and Methods

The following sections describe view functions and methods.

Getting References to Views

The following sections describe the functions and methods used to get
references to views.

2-18 Functions and Methods

CHAPTER 2

Views Reference

ChildViewFrames
view: Chi | dVi ewFr anmes()

Returns an array of views that correspond to the child views of the view to
which this message is sent. The views are returned in the same order they
appear in the view hierarchy, from back to front. The most recently opened
views (which appear on top of the hierarchy) will be later in the list. Views
with the vFI oat i ng flag will be located at the end of the array.

IMPORTANT

Use this method to get to the child views of a view. If you
just reference the vi ewChi | dr en or st epChi | dr en slots
in the view, you get references to the child templates, not the
views. Of course, you can also directly reference any
declared child view. a

Parent

view: Par ent ()

Returns the parent view of the view to which this message is sent. This is the
recommended method of getting a reference to a view’s parent view, rather
than directly referencing the _par ent slot.

GetRoot
CGet Root ()

Returns the system root view.

All applications are normally declared in the root view under their
application symbol. This means there is a slot in the root view whose name is
the application symbol and whose value is that view. You can use this code
to test if an application is open:

Get Root () . applicationSymbol. vi ewCCbj ect ;

If the application is open, this function returns a non-ni | value; otherwise,
ni | is returned. This reference is always present as long as a view is open, and
ni | when a view is closed.

Functions and Methods 2-19

2-20

CHAPTER 2

Views Reference

GetView

Get Vi ew(symbol)

Returns the first view found that corresponds to the specified symbol. If no
view is found, ni | is returned.

symbol A symbol identifiying a view template you want to get.
Besides a view template name, you can pass in the
following special symbols (which are evaluated at run
time):

m ' Vi ewFr ont Most, to return the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewFl ags slot.

m ' Vi ewFr ont Mbst App, to return the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewFl ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

m ' vi ewFr ont Key, to return the view on the screen that accepts keys (there
can be only one view that is the key receiver) See “Text and Ink Input and
Display” (page 8-1) in the Newton Programmer’s Guide for more
information on key receivers.

Displaying, Hiding, and Redrawing Views

The methods and functions described in the following subsections describe
how to display, hide, and redraw views.

Open

view: Open()
Creates the graphic representation of the view. This method then plays the

“show” sound (stored in the showsound slot), brings the view to the front,
and shows it and all of its child views.

The view receives the following system messages: Vi ewSet upFor nScri pt,
Vi ewSet upChi | drenScri pt, Vi ewSet upDoneScri pt,

Vi ewShowScr i pt, and Vi ewDr awScr i pt . Note that these same system
messages (except for Vi ewShowScr i pt) are sent to all visible child views of

Functions and Methods

CHAPTER 2

Views Reference

the view as they are created and shown as well. For information about these
system messages, refer to “Application-Defined Methods” (page 2-65).

This method always returns t r ue.

Note that this message must be sent to a view, not to a template. To ensure
that a view exists for the template, you must have declared it. For details on
declaring a view, see “View Instantiation” (page 3-26) in Newton
Programmer’s Guide.

You can use this code to test if a view is open:

view. vi ewCObj ect ;

If the view is open, this code returns a non-ni | value; otherwise, ni | is
returned. This reference is always present as long as a view is open, and is
always ni | when a view is closed.

Close

view: Cl ose()

Closes the specified view. This means that if the view is currently visible, this
method plays the “hide” sound (stored in the hi desound slot), calls

Vi ewHi deScri pt, hides the view and all of its child views, calls

Vi ewQui t Scri pt, and then deletes the view from memory. This method
always returns non-ni | .

Note that if the view is hidden (it was opened and then sent the Hi de
message), and you send it the Cl ose message, it will be closed. This is
because the view is still considered open even when it is hidden. You won’t
see anything change on the screen since the view is already not visible, but
the view will be deleted from memory. Also, in this case, the “hide” sound is
not played and the Vi ewHi deScri pt message is not sent.

If the view has already been closed, nothing happens.

If the view is a declared view, the view memory object is not deleted as a
result of the Cl 0se message, as long as the view it is declared in is still open.
Only the graphic representation of the view is deleted. If you want to reopen
the view, send it an Open or a Toggl e message.

Functions and Methods 2-21

2-22

CHAPTER 2

Views Reference

Note

If you need to close a view from a method within the view
itself, you may want to send the Cl 0ose message using the
function AddDef er redCal | so that the Cl ose message is
delayed until after the currently executing method finishes.
For example, you could use code like this:

begi n

local me := self;

AddDef erredCal I (func() ne:close(), '[]);
end

.

Toggle

view: Toggl e()

If the view is currently closed, this method performs the same operations as
if the view had been sent the Open message.

If the view is currently open, this method performs the same operations as if
the view had been sent the O ose message.

Note that if the view is hidden (it was opened and then sent the Hi de
message), and you send it the Toggl e message, it will be closed. This is
because the view is still considered open even when it is hidden. You won’t
see anything change on the screen since the view is already invisible, but the
view will be deleted from memory. Also, in this case, the “hide” sound is not
played.

Toggl e returns non-ni | if the view is to be opened, or ni | if the view is to

be closed, as a result of calling this method.

Note that this message must be sent to a view, not to a template. To ensure
that a view exists for the template, you must have declared it. For details on
declaring a view, see “View Instantiation” (page 3-26) in Newton
Programmer’s Guide.

Functions and Methods

CHAPTER 2

Views Reference

Note that Toggl e actually creates and destroys view objects (like Open and
d ose), while Showand Hi de simply make existing views visible or
invisible.

Show

view: Show()

If the view is currently hidden, this method plays the “show” sound (stored
in the showsound slot), brings the view to the front, shows it and all of its
visible child views, and calls the Vi ewShowScr i pt . Note that you must
specify a view. The return value is unspecified.

You can use this method only if the view has previously been opened (you
have sent it the Open or Toggl e message) and then hidden (you have sent it
the Hi de message).

Even though all children of the view being shown are also shown, the child
views are not sent the Vi ewShowScr i pt message. This message is sent only
to the view on which you use the Showmethod directly.

Hide
view: Hi de()

If the view is currently shown, this method plays the “hide” sound (stored in
the hi desound slot), calls the Vi ewHi deScri pt, and hides the view and all
of its child views. The return values is unspecified.

Even though all children of the view being hidden are also hidden, the child
views are not sent the Vi ewHi deScr i pt message. This message is sent only
to the view on which you use the H de method directly.

To show the view again, send it the Showmessage.

Note that when a view is hidden, the view in memory is not destroyed. All
that actually happens is the bits are removed from the screen. The view is
still considered open. This allows fast performance when the view is
subsequently shown again.

Functions and Methods 2-23

2-24

CHAPTER 2

Views Reference

Dirty

view: Dirty()

Marks the view as needing redrawing. The view (and its visible child views)
will be redrawn the next time the system idle task is executed. This method
always returns non-ni | .

The system tries to handle redrawing only the parts of the view hierarchy
that have been dirtied, but it has a limited cache of update nodes (places in
the view hierarchy where it starts drawing from). If you dirty several views,
the update nodes may merge by remembering a common ancestor of two
dirty views and starting the redrawing from there when the time comes to
update. To flush out the updates, call Ref r eshVi ews, which sometimes
may be more efficient since the update is more precise.

When a view is redrawn as a result of the Di r t y method, the system does
not necessarily reread all of the slots in the view. For example, slots
describing the view contents are not read—the contents are assumed to have
not changed. If you were to directly change the t ext slot of a

cl Par agr aphVi ewand then send it the Di r t y message, you would not see
the text in the view change.

Usually, you want a view to redraw with its new contents, if the contents
change. To do this, use the global function Set Val ue (page 2-25) to change
the contents of slots in the view. The Set Val ue function causes the system
to reread the changed slots in the view before it is redrawn, and it
automatically dirties the view so you don’t have to send it the Di rty
message.

If you change the bounds of a view directly, Di r t y does not cause the view
to be redrawn with new bounds. To do that, send the view the SyncVi ew
(page 2-26) message.

OffsetView

view: OF f set Vi ew(dx, dy)

Offsets a view by dx horizontally and dy vertically. The return values is
unspecified.

Functions and Methods

CHAPTER 2

Views Reference

dx The x coordinate of amount you want to offset the view.
dy The y coordinate of amount you want to offset the view.

O f set Vi ewdoes the redraw faster and more easily than Set Ori gi n.
O f set Vi ew changes where a view is within its parent, Set Ori gi n
changes the locatin of the children/contents of a view.

RefreshViews
Ref reshVi ews()

Redraws all views immediately, if they need to be updated. This function
always returns non-ni | .

SetValue

Set Val ue(view, slotSymbol, wvalue)

Sets the value of a slot in a view. The view is flagged as dirty, so it will be
redrawn using the new information.

view The view in which you want to change a slot value.

slotSymbol A symbol naming the slot whose value you want to
change. Note that you must specify a symbol (quoted
identifier), for example, ' my Sl ot .

value The new value of the slot.
This function always returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for the view parameter:

m ' Vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

m ' Vi ewFr ont Mbst App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewF| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

m ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Functions and Methods 2-25

2-26

CHAPTER 2

Views Reference

As expected, the view is redrawn immediately with its new settings if you
set the value of one of the following slots: vi ewBounds, vi ewFor mat,

vi ewdusti fy, vi ewFont, vi ewFl ags. Additionally, for these slots, the
effect is as if you had sent the SyncVi ewmessage to the view, including
calling the Vi ewSet upFor nScr i pt method (see the SyncVi ewmethod,
next).

If the view exists, any dependent views (see the Ti eVi ews function on
(page 2-55)) are notified, and the Vi ewChangedScr i pt message is sent to
the view.

If you specify a slot that does not exist in the view, the slot is created in the
view.

Note

Set Val ue now changes the recognition behavior of a view
at run time by setting new recognition flags in the

vi ewFl ags slot. The new recognition behavior takes effect
immediately following the Set Val ue call. See the 1.0
Newton Programmer’s Guide for details on this call’s previous
behavior.

SyncView

view: SyncVi ew()

Redraws a view after you change its vi enBounds slot. Before the view is
redrawn with new bounds, the Vi ewSet upFor nfScr i pt message is sent to
the view. SyncVi ewalways returns t r ue.

MoveBehind

viewToMouve: MoveBehi nd(view)

Moves a view behind another view, redrawing the screen as appropriate.

view The view identified by viewToMove is moved behind
this view. If the view parameter is ni | , viewToMove is
brought to the front.

Functions and Methods

CHAPTER 2

Views Reference

If the view is a floating view (has the VFI oat i ng vi ewFl ags bit set), it can
be moved behind only another floating sibling view, because floating views
cannot appear behind nonfloating views.

The return value of this method is undefined.

Dynamically Adding Views

The following functions are useful for creating and removing views at run
time.

AddStepView
AddSt epVi ew(parentView, childTemplate)

Dynamically instantiates a new view based on the specified child template
and adds it to the parent’s st epChi | dr en array. You must send the Di rty
message to the new view or to its parent view to cause the new view to be
drawn. See “Using the AddStepView Function” (page 3-35) in Newton
Programmer’s Guide for information on using this function.

parentView The parent view to which you want to add the new
view.
childTemplate A template describing the new view you want to add.

This function returns the view if it was successfully created; otherwise, ni |
is returned.

You can pass in the following special symbols (which are evaluated at run
time) for the parentView parameter:

m ' Vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

m ' Vi ewFr ont Mbst App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewFl ags slot, but not including
floating views (those with VFIl oat i ng set in their vi ewFl ags slot).

m ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Functions and Methods 2-27

2-28

CHAPTER 2

Views Reference

Because this function adds an item to the parent’s st epChi | dr en array, you
must ensure that the array is in RAM, or AddSt epVi ewwill fail. You can use
this code:

i f not HasSl ot (parentView, ' stepChildren) then
parentView. st epChi | dren : = O one(parentView. st epChi | dr en) ;

Thei f statement checks if the st epChi | dr en slot already exists in the
parent view (in RAM). If it does not, it is copied out of the template in your
package into RAM.

Note that you can add an invisible view; that is, one with its vVi si bl e flag
not set. You might want to do this if you want the view to show itself with an
effect. First add it invisibly, then send it the Showmessage. (If you just add it
as a visible view, any view effect you specify is not done when it is first
displayed.)

RemoveStepView

RenoveSt epVi ew(parentView, childView)

Removes a child view from its parent view. The child view is closed, if visible.

parentView The parent view from which you want to remove the
child view.
childView The child view you want to remove.

This function always returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for either the parentView or childView parameters:

m ' Vvi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewFl ags slot.

m ' vi ewFr ont Most App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewf| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

m ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Functions and Methods

CHAPTER 2

Views Reference

If the specified child view is a root-level view (a child of the root view), this

function plays the “hide” sound (stored in the hi desound slot in the view),
sends the view a Vi ewHi deScri pt message, sends the view a

Vi ewQui t Scri pt message, and hides the view (and all of its child views).

If the specified child view is not a child of the root view, the same operations
occur, except that the hide sound is not played and the Vi ewH deScr i pt
message is not sent.

Note

This function removes the view template from the

st epChi | dr en array of the parent view. You do not need to
remove the template yourself. For a description of how this
function worked in the previous release, see “Views” in the
1.0 Newton Programmer’s Guide.

AddView
AddVi ew(parentView, childTemplate)

Dynamically instantiates a new view based on the specified child template
and adds it to the parent’s vi ewChi | dr en array. You must send the Di rty
message to the new view or to its parent view to cause the new view to be
drawn.

parentView The parent view to which you want to add the new
view.
childTemplate A template describing the new view you want to add.

This function returns the view if it was successfully created; otherwise, it
returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for the parentView parameter:

m ' vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

m ' vi ewFr ont Most App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewFl ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

Functions and Methods 2-29

2-30

CHAPTER 2

Views Reference

m ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Because this function adds an item to the parent’s vi ewChi | dr en array, you
must ensure that the array is in RAM, or AddSt epVi ewwill fail. You can use
this code:

i f not HasSl ot (parentView, ' viewChildren) then
parentView. vi ewChi | dren : = O one(parentView. vi ewChi | dr en) ;

Thei f statement checks if the vi ewChi | dr en slot already exists in the
parent view (in RAM). If it does not, it is copied out of the template in your
package into RAM.

Note that you can add an invisible view; that is, one with its vVi si bl e flag
not set. You might do this if you want the view to show itself with an effect.
First add it invisibly, then send it the Showmessage. (If you just add it as a
visible view, any view effect you specify is not done when it is first
displayed.)

RemoveView

RenmoveVi ew(parentView, childView)

Removes a child view from its parent view. The child view is closed, if visible.

parentView The parent view from which you want to remove the
child view.
childTemplate The child view you want to remove.

This function always returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for the either the parentView or childView parameters:

m ' Vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

m ' Vi ewFr ont Mbst App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewf| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

Functions and Methods

CHAPTER 2

Views Reference

m ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

If the specified child view is a root-level view (a child of the root view), this

function plays the “hide” sound (stored in the hi desound slot in the view),
sends the view a Vi ewHi deScri pt message, sends the view a

Vi ewQui t Scri pt message, and hides the view (and all of its child views).

If the specified child view is not a child of the root view, the same operations
occur, except that the hide sound is not played and the Vi ewHi deScri pt
message is not sent.

BuildContext

Bui | dCont ext (template)

Dynamically instantiates a new view based on the specified template and
adds it to the root view.

template A template describing the new view you want to add.
This function returns the view that it creates.

To display the newly created view, send it the Open message. The vi ewFl ags
slot must not have the vVi si bl e flag set. It's best if you don’t set the

vVi si bl e flag in the template; that way you can display the view with a
simple Open message, and this also allows any view effect you specify to be
done when the view is first shown.

The parent of the new view is set to the root view. The template is not added
to the vi ewChi | dr en or st epChi | dr en array of any view. The _pr ot o
slot of the new view is set to the template that it was created from.

Making Modal Views

The following methods are used to make modal views.

Functions and Methods 2-31

2-32

CHAPTER 2

Views Reference

AsyncConfirm

AsyncConf i r m(confirmMessage, buttonList, fn)

This method creates and displays a slip that the user must dismiss before
continuing. The slip is created at a deferred time, so the call to

AsyncConf i r mreturns immediately, allowing the currently executing
NewtonScript code to finish. AsyncConf i r nis return value is unspecified.

confirmMessage A string to be displayed to the user.
buttonList A symbol (' okCancel ,' yesNo), an array of strings,
for example [" Three", "Two", "One"], or an array

of frames; each frame has two slots, ' val ue and

"t ext . The slot' t ext holds the value for the button, a
string. The slot ' val ue holds the result that tapping the
button generates.

If a symbol was passed, the result is non-ni | for the
“OK” and “Yes” buttons, and ni | for the “Cancel” and
“No” buttons. If an array of strings was passed, the
result is the index into the array of the item that was
chosen. If an array of frames was passed, the result is
the contents of the value slot for the item that was
chosen.

fn A closure to be called when the slip is dismissed. It is
passed as one argument, the value of the button tapped.

ModalConfirm

Modal Conf i r n{ confirmMessage, buttonList)

This method creates and displays a slip that returns the result of the user’s
choice. Because this method causes a new task to be spawned, it is less
efficient and takes more system overhead, so you should use

AsyncConf i r min most cases.

Functions and Methods

CHAPTER 2

Views Reference

For example:

i f Modal Confirm("Do you want to erase?", 'okCancel) then

confirmMessage A string to be displayed to the user.

buttonList See AsyncConf i r mfor a list of symbols and arrays that
you can pass in for the buttonList.

FilterDialog

view: Fi | t er Di al og()

This method opens a view and returns t r ue immediately after opening.

Fi | t er Di al og is the same as Open except that the view is modal. This
means that all taps outside the modal view are ignored while the modal view
is open. The modal state is exited when the modal view is closed.

Fi | ter D al og is preferred over Mbdal Di al og as it does not spawn a new
task when it is used.

Like Open, the Fi | t er Di al og method creates the graphic representation of
the view. It then plays the “show” sound (stored in the showsound slot),
brings the view to the front, and shows it (and all of its child views). The
view receives the following system messages: Vi ewSet upFor nScri pt,

Vi ewSet upChi | drenScri pt, Vi ewSet upDoneScri pt,

Vi ewDr awScr i pt, and Vi ewShowScr i pt . For information about these
system messages, refer to “Application-Defined Methods” (page 2-65).

Note that the Fi | t er Di al 0g message must be sent to a view, not to a
template. To ensure that a view exists for the template, you must have
declared it. For details on declaring a view, see “View Instantiation”
(page 3-26) in Newton Programmer’s Guide..

ModalDialog
view: Modal Di al og()

This method is the same as Fi | t er Di al 0g, except that it spawns a separate
OS task and doesn’t return until after the dialog is closed.

Functions and Methods 2-33

CHAPTER 2

Views Reference

This method always returns t r ue.
Note

Modal Di al og will not work correctly if it is sent to a
non-root child.

Setting the Bounds of Views

The following functions and view methods calculate and return a
vi ewBounds frame.

RelBounds

Rel Bounds(left, top, width, height)

Returns a bounds frame, if you know the top-left coordinate and the width
and height of the view. This function calculates the right and bottom values
and returns a bounds frame. The value returned can be used for the value of
the vi ewBounds slot in a template.

left The left coordinate of the view.
top The top coordinate of the view.
width The width of the view.

height The height of the view.
SetBounds

Set Bounds(left, top, right, bottom)

Returns a bounds frame when supplied with the four bounds values. The
value returned can be used for the value of the vi ewBounds slotin a

template.

left The left coordinate of the view.

top The top coordinate of the view.
right The right coordinate of the view.
bottom The bottom coordinate of the view.

2-34 Functions and Methods

CHAPTER 2

Views Reference

GlobalBox

view: A obal Box()

Returns the rectangle, in global coordinates, of the specified view. The
rectangle is returned as a bounds frame. If a valid view is not found, this
method throws an exception.

Note

If called from the Vi ewSet upFor nScr i pt method,

d obal Box gets the vi enBounds and vi ewJust i fy slots
from the view, calculates the effects of the sibling and parent
alignment on the view bounds, and then returns the
resulting bounds frame in global coordinates. &

GlobalOuterBox
view: A obal Qut er Box()

Returns the rectangle, in global coordinates, of the specified view, including
any frame that is drawn around the view. The rectangle is returned as a
bounds frame. If a valid view is not found, this method returns ni | .

This method is just like G obal Box, except that G obal Qut er Box includes
the frame around the view.

Note

If called from the Vi ewSet upFor nScr i pt method,

d obal Qut er Box gets the vi enBounds and

vi ewdust i f y slots from the view, calculates the effects of
the sibling and parent alignment on the view bounds, and
then returns the resulting bounds frame in global
coordinates. &

Functions and Methods 2-35

2-36

CHAPTER 2

Views Reference

LocalBox

view: Local Box()

Returns a vi ewBounds frame containing the view bounds relative to the
view itself. That is, the top-left coordinates are both zero, the right coordinate
is the width of the view, and the bottom coordinate is the height of the view.
If a valid view is not found, this method throws an exception.

Note

If called from the Vi ewSet upFor nScr i pt method,

Local Box gets the vi ewBounds and vi ewJust i fy slots
from the view, calculates the effects of the sibling and parent
alignment on the view bounds, and then returns the
resulting bounds frame in local coordinates.

DirtyBox

view: Di rt yBox(boundsFrame)

Marks a portion of a view (or views) as needing redrawing. The view (and its
visible child views) is redrawn the next time the system idle task is executed.

boundsFrame Abounds frame describing the area of the screen to be
dirtied, in global coordinates.

The return value of this method is undefined.

This method may save screen update time if only a portion of a view needs
redrawing, rather than the whole view.

You can use the Di rt yBox method anywhere you would use the Di rty
method.

GetDrawBox

view: Get Dr awBox()

Returns the bounds of the area on the screen that needs redrawing (the area
marked as dirty). The dirty area is always non-ni 1. This method returns a
bounds frame containing global coordinates.

Functions and Methods

CHAPTER 2

Views Reference

Note

Cet Dr awBox will provide meaningful results only when
called from Vi ewDr awScri pt. e

ButtonBounds

But t onBounds (width)

Returns a vi ewBounds frame when supplied with the width of a button to
be placed in the status bar. You can use this return value for the value of the
button vi ewBounds slot.

width The width of the button to place in the status bar.

For the first button you place in the status bar, specify the width as a
negative number. For example, if you want the button to be 30 pixels wide,
specify -30. This signals that this is the first button, and the bounds are
calculated to place it at a standard offset (36 pixels) from the left side of the
status bar.

For subsequent buttons that you place in the same status bar, specify the
width as a positive number. For subsequent buttons, you must also use the
vi ewJusti fy flagvj Si bl i ngRi ght H.

Note

This function is available in the Newton Toolkit
development environment at compile time only. It is not
available at run time. &

StdButtonWidth
St dBut t onW dt h(str)

Returns the button size necessary to fit a string of specified text.
str A string that contains the button name.

This function internally calls St r Font W dt h.

Functions and Methods 2-37

2-38

CHAPTER 2

Views Reference

PictBounds

Pi ct Bounds(name, left, top)

Returns a vi ewBounds frame for views containing pictures. This function
opens the picture resource, finds the width and height of the picture, and
returns the proper bounds frame. The value returned is used for the value of
the vi ewBounds slot in a template.

name A string that is the name of a PICT resource.
left The left coordinate of the view.

top The top coordinate of the view.

Note

This function is available in the Newton Toolkit
development environment at compile time only. It is not
available at run time.

Animating Views

There are four view methods that perform special animation effects on views.

Effect

view: Ef f ect (effect, offScreen, sound, methodName, methodParameters)

Posts a message to the specified view to redraw it with an animation.
However, the system does not actually do the animation until after it calls
the method that you specify, in which you can do any operations required
before the animation is done. For example, you might want to animate a
view as you change its contents.

effect Specifies an animation effect. You can specify any of the
effect constants that are used in the vi ewEf f ect slot
(see “Opening and Closing Animation Effects”
(page 3-23) in Newton Progammer’s Guide).

offScreen Specifies whether or not the view should appear to
animate off or onto the screen. Specify non-ni | to make

Functions and Methods

CHAPTER 2

Views Reference

the animation appear as if the view is moving off the
screen (for example, closing). Specify ni | to make the
animation appear as if the view is moving onto the
screen (for example, opening).

sound A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify ni | .)

methodName This method changes the state of your view (the two
states that the effect transitions between). You must
specify a symbol (for example, ' myScr i pt). Do not
change the state of your view before calling Ef f ect .
This method must be accessible from the view to which
the Ef f ect message is sent; that is, this method must
reside in that view or be accessible from that view
through inheritance.

methodParameters ~ An array of parameters that are passed to your method.

The Ef f ect method always returns ni | .

Here is an example using this method:

aView := {...
doEf fect: func()
begin

vi ewl: Ef f ect (f xZoomVertical Effect, nil, ROM pl unk,
"effectScript,[]);

end,

-}

viewl 1= {...

text: "",

effectScript: func()
begin
Set Val ue(vi ewl, 'text,

Functions and Methods

"This is a paragraph view ..");

2-39

2-40

CHAPTER 2

Views Reference

end,

-}

SlideEffect

view: Sl i deEf f ect (contentOffset, viewOffset, sound, methodName,

methodParameters)

Posts a message to the specified view to perform a vertical sliding animation
on it. However, the system does not actually do the animation until after it
calls the method that you specify, in which you must do any operations that
change the state of your view.

contentOffset

viewOffset

sound

methodName

The number of pixels to animate the view contents
scrolling in a vertical direction. A positive number
makes the view contents appear to move downwards. A
negative number makes the view contents appear to
move upwards. Note that only the bits on the screen are
moved; the location of the actual view data is not
affected.

The number of pixels to animate the whole view
moving up or down on the screen. Specify a positive
number to make the view appear to move up on the
screen. To make the view appear to move down, specify
a negative number.

If you don’t want to make the view appear to move, but
just want to scroll its contents, specify zero.

A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify ni | .)

The method that you want called before the animation
occurs. You must specify a symbol (for example,

' nyScri pt). This method must be accessible from the
view to which the S| i deEf f ect message is sent; that

Functions and Methods

CHAPTER 2

Views Reference

is, this method must reside in that view or be accessible
from that view through inheritance.

methodParameters ~ An array of parameters that are passed to your method.
The Sl i deEf f ect method always returns ni | .

Note that this method does not actually change the bounds of the view or the
position of its contents. The bits are moved on the screen, but that is all that
occurs.

If you want to change the bounds or the position of the contents, you must
do so in the method that you supply, appropriately to correspond to the
visual effect that you specified in this call.

To animate a view scrolling in place, without changing its size, specify a
positive or negative contentOffset and zero for viewOffset (for example, -50, 0).
To slide a view up from the bottom, showing more of it, but keeping the data
that was near the top still near the top, specify a negative contentOffset and a
viewOffset that is the same as contentOffset, but positive (for example, -50, 50).
To shrink the view back down, specify a positive contentOffset and a negative
viewOffset (for example, 50, -50).

Here is an example of this method:

aView := {...
slideUp: func()
begin
| ocal anount := 100;

vi ewl: Sl i deEf f ect (-anount, anount, ROMflip,
"nyEffect, ['up, amount]);

end,
sl i deDown: func()
begin
| ocal anpunt := 100;

vi ewl: Sl i deEf f ect (anpbunt, -anount, ROMflip,
"nyEffect, ['down, -ampunt]);
end,

-}

Functions and Methods 2-41

2-42

CHAPTER 2

Views Reference

viewl ;= {...
myEf fect: func(direction, amount)
begi n
| ocal bounds := self.viewbounds; //copy viewbounds
If direction = "up then
begin // only top needs changi ng
bounds. top : = bounds. t op- anount;
Set Val ue(vi ewl, 'vi ewbounds, bounds);
end

Else // direction is down
begin // only top needs changing

bounds. top : = bounds.top-anount;
Set Val ue(vi ewl, 'vi ewbounds, bounds);
end

end,

-}

RevealEffect

view: Reveal Ef f ect (distance, bounds, sound, methodName,
methodParameters)

Posts a message to the specified view to perform a revealing animation on it.
However, the system does not actually do the animation until after it calls
the method that you specify, in which you must perform any operations
required before the animation is done.

distance The number of pixels to animate a portion of the view
moving up or down on the screen. Specify a positive
number to make the view portion appear to move
upward on the screen this number of pixels. To make
the view portion appear to move downward, specify a
negative number. The distance parameter should be the
height of the view content you want to reveal (or hide).

bounds The partial area of the view that you want to animate
moving up or down. You should specify a vi ewBounds

Functions and Methods

CHAPTER 2

Views Reference

frame using coordinates local to the view to which you
are sending this message. The portion of the view that
you specify is copied above or below its present
position, depending on the setting of distance.

sound A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify ni | .)

methodName The method that you want called before the animation
occurs. You must specify a symbol (for example,
' myScri pt). This method must be accessible from the
view to which the Reveal Ef f ect message is sent; that
is, this method must reside in that view or be accessible
from that view through inheritance.

methodParameters ~ An array of parameters that are passed to your method.

A revealing effect is like a slide effect, except that it slides just a portion of
the view either up or down, while leaving the rest of the view in place. This
can be used to create an effect that reveals new information where the
portion of the view moved from. The method you specify as a parameter
should set up the new information to be revealed so that when the view is
redrawn, the new information is visible.

The Reveal Ef f ect method always returns ni | .

Here is an example of this method:

aView := {...
reveal More: func() // nove view portion downwards
begi n
|l ocal vb := viewl: Local Box();
vb.top := 60; vb.bottom:= 80;
vi ewl: Reveal Ef fect (40, vb, ROM flip, ' nyEffect,['dn]);
end,
cl oseUp: func() // nove view portion upwards
begi n
|l ocal vb := viewl: Local Box();
vb.top := 60; vb.bottom:= 120;

Functions and Methods 2-43

2-44

CHAPTER 2

Views Reference

vi ewl: Reveal Ef fect (-40, vb, ROM flip, ' nyEffect,[' up]);

end,
-}
viewl ;= {...
nyEffect: func(direction)
begi n
If direction = "up then // revealing |ess
begi n

/1 Here you woul d change the view contents so it
/1 renoves that portion being hidden ...
end
Else // revealing nore
begi n
/1 Here you woul d change the view contents so it
/1 includes the "reveal ed" information ...
end
end,

-}

Delete

view: Del et e(methodName, methodParameters)

Posts a message to the specified view to perform an animation on it that
crumples the view and tosses it into a trash can that appears on the screen.
The view is not actually deleted—only the animation is done.

methodName The method that actually removes the view or changes
it to make it appear deleted. You must specify a symbol
(for example, ' myScr i pt). This method must be
accessible from the view to which the Del et e message
is sent; that is, this method must reside in that view or
be accessible from that view through inheritance.

methodParameters ~ An array of parameters that are passed to your method.
The Del et e method always returns ni | .

If you want to delete the view or remove the data shown in it, you must do
these things yourself in the method you supply. For example, the view may

Functions and Methods

CHAPTER 2

Views Reference

be showing an item from a soup. When the Del et e animation is performed,
you would typically want to clear the data from the view and possibly delete
the data from the soup also. Alternatively, you might want to close the view.

Here is an example of this method:

aView := {...
/1 call Delete method
doDel et eEf fect: func(what Dat a)
text View Del ete(' myDel ete, [whatData]);

-}

parent _of textView := {...

myDel et e: func(what)
begin
/Iremove data from soup
Ent r yRemoveFr onSoupXmi t (what, kAppSynbol) ;
textview Cose(); // close the view being del eted
end,

-}

Dragging a View

Dragging a view means allowing the user to move the view by tapping it,
holding the pen down, and dragging it to a new location on the screen. To
drag a view, send the view a Dr ag message.

Drag

view: Dr ag(unit, dragBounds)

This method is typically called from within a Vi ewdl i ckScri pt method. It
tracks the pen on the display, and drags the view to follow it.

unit The current stroke unit passed by the
Vi ewd i ckScri pt message.

Functions and Methods 2-45

2-46

CHAPTER 2

Views Reference

dragBounds A bounds frame describing the area, relative to the root
view, within which the view can be dragged. If
dragBounds is ni | , the bounds of the entire screen limit
the dragging area.

The return values is unspecified.

The display of electronic ink is turned off during the dragging operation.
Here is an example of this view method:

draggabl eView : ={. ..

vi ewFl ags: vVisible + vdickabl e,
viewCd ickScript: func(unit)

begi n

local limts;

limts := SetBounds(5,50, 230, 305);
:Drag(unit, limts);

true; // return true because we’ve handled the tap
end,

-}

Dragging and Dropping a ltem

The following method is used to drag and drop an item.

DragAndDrop

view: Dr agAndDr op(unit, bounds, limitBounds, copy, draglnfo)

This method is typically sent from the Vi ewCl i ckScri pt . It starts the drag
and drop process and returns when the dragged item(s) is dropped into a
view or into the clipboard.

unit The stroke unit received by the Vi ewd i ckScri pt
method.
bounds The bounds of the item to be dragged, in global

coordinates. The bitmap enclosed by the bounds is the
bitmap used by the clipboard.

Functions and Methods

CHAPTER 2

Views Reference

limitBounds Lets you pass in a bounds frame, in global coordinates,
whose boundaries limit the dragging, so the object
cannot be dragged outside of the specified bounds.
limitBounds has a value of ni | or a bounds frame. A
value of ni | means don’t limit the bounds. A bounds
frame specifies the bounds limits.

copy A Boolean value indicating whether to drag a copy or
the original items. Specify non-ni | to drag a copy or
ni | to move the original items.

dragInfo An array of frames (one frame per dragged item). Each
frame has the following slots:

types An array of symbols of the types to which
an item can be converted.

vi ew A view object type if the dragged item is a
view with a symbol type of ' par agr aph,
' pol ygon, ' pi ct ur e, and so on).

dr agRef Any value that will be passed to other
methods.

| abel An optional string used when the drop is
to the Clipboard; it is used as the
Clipboard label. If this slot is missing and
theitem has a' t ext type, the text data is
used as the label; otherwise a default label
is used.

Dr agAndDr op’s return value can be one of the following:
m kDragNot = O indicates whether the item was actually dragged at all.

m kDragged = 1 indicates that the item was dragged, but was rejected by
the destination.

m kDr agNDr opped = 2 indicates that the view was dropped into another
container (view).

If you want other views to be able to accept data, these views must
implement all of the destination methods. If you have more than one view

Functions and Methods 2-47

2-48

CHAPTER 2

Views Reference

that can receive a drop, it is easier if you make one drop-aware proto and use
it for your other views.

The Dr agAndDr op method sends several messages to both the source view
(the view to which Dr agAndDr op was sent) and the destination view (the
view that will receive the items). These messages are documented in
“Application-Defined Methods” (page 2-65).

Scrolling View Contents

The following methods are used to scroll a view’s contents.

SetOrigin

view: Set Ori gi n(originX, originY)

Changes the view bounds offset to reflect the new origin point, if it is
different from the current origin, and “dirties” the view (so you don’t have to
send it the Di rt y message). Set Ori gi n works only on view children.

originX The x coordinate of the new view origin.
originY The y coordinate of the new view origin.
This method always returns ni | .

This method scrolls the child views of the view to which you send the
Set Ori gi n message. The following table shows what parameters to pass to
Set Ori gi n to scroll the child views in different directions:

originX originY Visual direction Scroll direction
Zero positive Up Down

zero negative Down Up

positive zero Left Right
negative zero Right Left

This method sets the vi ewOr i gi nXand vi ewOr i gi nY slots in the view to
the new values you specify.

Functions and Methods

CHAPTER 2

Views Reference

The view origin determines where, within the view bounds, the actual view
contents (child views) are displayed. Initially, the view origin is set to (0, 0).
This means that the top-left corner of the view contents (point (0, 0)) is
positioned at the top-left corner of the view bounds. If you change the view
origin, the view contents are positioned so that the point you specify as the
origin is placed at the top-left corner of the view bounds. Thus, the contents
are offset within the view. The current view origin coordinates are stored in
the slots vi ewr i gi nXand vi ewOr i gi nY within the view.

When using Set Ori gi n to scroll a view, you typically want the contents of
the view to be clipped to some particular area. For example, you might want
to scroll a large map around within a view so that the user can see different
parts of the map within the same view. To get this effect, make the parent
view smaller than the child (the map, for example) that you want to scroll.
The parent view should be as big as the part of the child you want to show at
one time.

Set the vQ i ppi ng flag in the vi ewF| ags slot of the parent view. When you
send the Set Or i gi n message to the parent view, the child view will scroll
and be clipped to the bounds of its parent view.

Figure 2-1 shows an example of a world map before and after it has been
scrolled. The map is enclosed in a parent view, which is the rectangle around
the map. The map was scrolled to the right with this code:

par ent Vi ew. Set Ori gi n(40, 0)

Figure 2-1 Set Ori gi n example

Eefore Scralling After scrolling Right

Functions and Methods 2-49

2-50

CHAPTER 2

Views Reference

Here is an example of using this view method:

ParentView := {...

vi ewFl ags: vVisi bl e+vd i ppi ng,

viewOrigi nX: 0,

viewOriginY: O,

-

Scrol Il RightButton := {...

butt onPressedScri pt: func()
begi n
par ent Vi ew. Set Ori gi n(par ent Vi ew. vi enOr i gi nX+20, 0);
Ref reshVi ews() ;
end,

-}

SyncScroll

view: SyncScr ol | (what, index, upDown)

Scrolls the child views of a view vertically the increment of one child view in
the direction indicated.

what You can specify either an array of view templates or a
soup cursor, depending on what kind of data is
contained in the view you want to scroll. If all view
children are contained in an array, specify the array. If
your view data consists of child views created from
soup entries, specify the soup cursor.

index Only used if you specify an array of view templates for
what. This is the index of the child view template that is
currently displayed at the top of the parent view.

upDown Set to -1 to scroll up (visually, the views move
downward on the screen), or set to 1 to scroll down
(visually, the views move upward on the screen).

This method has different return values, depending on what you specify for
what. If you specify an array, this method returns a new array of the child

Functions and Methods

CHAPTER 2

Views Reference

views that are visible within the parent view after scrolling; or, if there is
nothing to scroll, ni | is returned. If you specify a cursor, this method always
returns ni | .

This method plays a “scroll up” or a “scroll down” sound effect, depending
on which way the views are scrolling. The sound effect should be stored in
the scrol | UpSound or scr ol | DownSound slot of the view, respectively.

A slot named hei ght is required in each of the child views (or soup entries,
if you are working with a cursor). This slot should contain the height of the
view in its normal (expanded) state.

A slot named i ndex is required in the view that receives the SyncScr ol |
message (the parent view). Initialize the i ndex slot to the index of the child
template that is at the top of the parent view when the view is first
displayed. Pass the i ndex slot for the index parameter to SyncScr ol | . The
SyncScr ol | method modifies this slot when it scrolls the views, so you
don’t need to keep track of the index. On each subsequent call to
SyncScrol |, pass the i ndex slot for the index parameter.

The following information applies only if you specify an array for what.

m This method uses two optional slots in the parent view: al | Col | apsed
and col | apsedHei ght . These slots control scrolling when the child
views have both expanded and collapsed modes. The al | Col | apsed slot
should hold a t r ue value if all child views are in the collapsed mode, or a
ni | value if all child views are not collapsed. The col | apsedHei ght
slot holds the standard, height, in pixels of a collapsed view.

m This method also uses one specific slot in each of the child views:
col | apsed. If there is a col | apsed slot in a child view, and it holds a
t r ue value, the individual child view is assumed to be in the collapsed
state.

The following information applies only if you specify a soup cursor for what.

m This method may or may not move the cursor forward or backward in the
soup. Scrolling does not always require advancing to the next or previous
view, in which case the cursor would not be changed. For example, a
single data item may be longer than the screen space allocated for it in a
view, and so tapping the scroll arrow should scroll the view rather than

Functions and Methods 2-51

2-52

CHAPTER 2

Views Reference

advance to the next data item. In this case, the soup cursor would not be
advanced since a new item need not be retrieved from the soup as a result
of scrolling.

m Before the scrolling animation is done and the views are redrawn, the
Vi ewSet upChi | drenScri pt message is sent to the view that is being
scrolled. The view being scrolled must use the
Vi ewSet upChi | drenScri pt method to recalculate its st epChi | dr en
array so that the correct views are displayed when they are redrawn by
the SyncScr ol | method.

Working With View Highlighting

These methods and functions are used to highlight a view.

Hilite

view: Hi | i t e(on)
Highlights or unhighlights a view.

on If non-ni | , the view is highlighted if it is not already
highlighted; if ni | , the view is unhighlighted.

This method always returns t r ue.

HiliteUnique

view: Hi | i t eUni que(on)
Highlights or unhighlights a single view in a group of views.

on If non-ni | , highlights the view; if ni |, the view is
unhighlighted.

This method always returns t r ue.

The view you specify will be the only view highlighted in its sibling group.
That is, any other child views of the same parent that happen to be
highlighted are unhighlighted, so that only a single view is highlighted at a

time.

Functions and Methods

CHAPTER 2

Views Reference

TrackHilite

view: TrackHi | i t e(unit)

This method is typically called from within a Vi ewCl i ckScri pt method. It
tracks the pen on the display, highlighting the view when the pen is within
its bounds, and unhighlighting the view when the pen is outside it.

unit The current stroke unit passed to the
Vi ewd i ckScri pt method.

This method returns t r ue if the pen is lifted within the view bounds or ni |
if the pen is lifted outside the view bounds.

This method repeatedly sends the But t onPr essedScri pt message to the
view while the pen is down and within the view bounds.

The display of electronic ink is turned off while the pen is tracked.

TrackButton

view: Tr ackBut t on(unit)

Performs the same operations as Tr ackHi | i t e, but protects against leaving
the button highlighted if an error occurs. (The button is unhighlighted if an
error occurs during the tracking.)

unit The current stroke unit passed to the
Vi ewd i ckScri pt method.

This function internally calls Tr ackHi | i t e. It returns non-ni | if the pen is
lifted within the view bounds or ni | if the pen is lifted outside the view
bounds.

Unlike Tr ackHi | i t e, however, this function sends the
Butt onC i ckScri pt message to the view if the pen is lifted within the
view bounds of the button.

Functions and Methods 2-53

2-54

CHAPTER 2

Views Reference

HiliteOwner

HiliteOaner ()

Returns the view containing highlighted data. If there is more than one view
containing highlighted data, the common parent of those views is returned.
However, only one application at a time can have highlighted data. This
function returns ni | if no views contain highlighted data. See “Determining
Which View Item Is Selected” (page 3-37) in Newton Programmer’s Guide for
information on using this function.

This function works only returns views of the class cl Edi t Vi ewor
cl Par agr aphVi ew

GetHiliteOffsets

GetHiliteOifsets()

Returns an array of arrays, containing information about views that have
highlighted data, even if only text from a single paragraph is selected. If you
have a mixed selection; that is, some shapes or sketches and some
paragraphs, this function returns nil.

The format is as follows:

[[viewl, startposl, endposl], [view2, startpos2, endpos2], ...]

In the above example, text from the first two paragraphs viewl and view?2
have been selected. The views in this array are always cl Par agr aphVi ews.
In addition, you don’t need to use Hi | i t eOaner in conjunction with

GetH liteOfsets.

A view can have only one range of highlighted characters. Discontiguous
highlighting within a view is not supported. Only one application at a time
can have views with highlighted data; so all views returned by this function
belong to the same application.

This function works only with views of the class cl Par agr aphVi ew Other
kinds of views containing highlighted data (views of the class
cl Pol ygonVi ew for example) are not returned.

Functions and Methods

CHAPTER 2

Views Reference

SetHilite

view: Set H | i t e(start, end, unique)
Highlights some or all of the text in a view of the class cl Par agr aphVi ew

start The starting character position of the highlighting. A
character position of zero indicates the beginning of the
view, a position of 1 is after the first character, and so on.

end The ending character position of the highlighting.

unique A Boolean value. Specify non-ni | to make the specified
text the only highlighted text in the view; any other
highlighted text is unhighlighted. Specify ni | to allow
previously highlighted text to stay highlighted. In the
later case, the highlighting is extended to include the
newly specified highlighted text. Discontiguous
highlighting is not allowed.

This function returns t r ue, unless view is invalid, in which case ni | is
returned.

Creating View Dependencies

The following functions are used to make one view dependent on another.

TieViews

Ti eVi ews(mainView, dependentView, methodName)

Makes one view dependent on another so that when the main view changes,
it notifies the dependent view by sending a message to the dependent view.

mainView The main view.

dependentView The view that you want to be notified when mainView
changes.

methodName A symbol that is the name of the method to call in

dependentView when mainView changes. This method is
passed two parameters when it is called. The first

Functions and Methods 2-55

2-56

CHAPTER 2

Views Reference

parameter is a reference to the view that changed and
the second parameter is a symbol that is the name of the
slot that changed.

This function returns non-ni | if it successfully registers the dependent view
with the main view; otherwise, it returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for either the mainView or dependentView parameters:

m ' Vi ewFr ont Most, indicates the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewFl ags slot.

m ' Vi ewFr ont Mbst App, indicates the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewF| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

m ' vi ewFr ont Key, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

Here is an example of two views of the ¢l Par agr aphVi ewclass. Any text
entered in the first view is duplicated in the second:

mai nView : = {...
vi ewd ass: cl ParagraphVi ew,
vi ewFl ags: vVisi bl e+tvd i ckabl e+vSt r okesAl | owed+
vGest ur esAl | owed+vChar sAl | owed,
Vi ewSet upFor nScri pt: func()
begi n
Ti eViews(mai nView, tieView, 'ltChanged);
end,
.
tieview:= {...
vi ewd ass: cl ParagraphVi ew,
vi ewFl ags: vVisibl e,
I t Changed: func(view, slot)

begi n
| ocal newtext := viewtext;
setval ue(sel f, '"text, newtext);
end,

-}

Functions and Methods

CHAPTER 2

Views Reference

Synchronizing Views

The following two methods are used to synchronize views.

RedoChildren
view: RedoChi | dren()

Closes, then reopens and redraws, all of a view’s child views. This method
always returns t r ue.

As a result of the RedoChi | dr en message, the following system actions
occur:

1. The child views are sent Vi ewQui t Scri pt messages, and then they are
closed.

2. The parent view (the view to which you sent the RedoChi | dr en
message) is sent the Vi ewSet upChi | dr enScri pt message, and the
child templates are reread from the vi ewChi | dr en and st epChi | dr en
slots of the parent view.

3. The child views are reopened, and in this process are sent the following
messages: Vi ewSet upFor nfScri pt, Vi ewSet upChi | drenScri pt,
Vi ewSet upDoneScri pt.

4. The parent view, and then the child views, are drawn and sent the
Vi ewDr awScr i pt message.

For more information about system messages, refer to “Application-Defined
Methods” (page 2-65).

Note that because the RedoChi | dr en method closes child views, any new
data that you have stored in those views during run time will be lost. For
example, if you have created a slot in a child view and stored a value in it,
that slot and value will be lost when the view is closed and reopened. The
view is reopened directly from its template, so of course, any data that was in
the view memory object in RAM is lost.

However, if a child view is declared in a view that is still open (typically the
parent view), then, even though the child view is closed, its view memory
object is not destroyed and any data stored in the view is preserved. This is
the same as when you send the Cl 0ose message to a declared view. For more

Functions and Methods 2-57

2-58

CHAPTER 2

Views Reference

information about declared views, see “View Instantiation” (page 3-26) in
Newton Programmer’s Guide.

Because the RedoChi | dr en method closes and reopens all child views, it is
relatively slow. If you know that some of the child views are still visible
within the parent, you can use SyncChi | dr en instead, which gives better
performance since it doesn’t close views that are still visible.

SyncChildren

view: SyncChi | dren()

Redraws all of a view’s child views, with their new bounds, if the bounds
have changed. This method always returns t r ue.

As a result of the SyncChi | dr en message, the following system actions
occur:

1. The Vi ewSet upChi | drenScri pt message is sent to the view to which
the SyncChi | dr en message was sent.

2. The child views are synchronized with the st epChi | dr en and
vi ewChi | dr en arrays of the parent view to which this message was sent.
If a view is no longer listed in the st epChi | dr en or vi ewChi | dr en
array, then the Vi ewQui t Scri pt message is sent to it and it is closed. If a
new view template is listed in one of these arrays, the new child view is
created and opened. As a result of its opening, the new view is sent the
usual messages: Vi ewSet upFor mScri pt,
Vi ewSet upChi | drenScri pt, and Vi ewSet upDoneScri pt .

3. Internally, the system does a SyncVi ewfor each of the child views. As a
result, the Vi ewSet upFor nBScr i pt message is sent to each child view,
and each view whose bounds has changed is redrawn.

Note that if a new child view is created, it receives the
Vi ewSet upFor nScr i pt message twice, once in step 2 and once in step 3.

The view to which you send the SyncChi | dr en message is not dirtied.
Usually this is not a problem, except in one case, in which you must send the
view the Di r t y message to cause it to be redrawn. If a child view is closed in
step 2 and another child view is not drawn completely over it, the old child
view will still be visible.

Functions and Methods

CHAPTER 2

Views Reference

Here is an example of using the SyncChi | dr en method:

{...
addOneChi | d: func(chil dTenpl at e)
begin
/1l ensure that stepChildren array is in RAM
if not HasSlot(self, 'stepChildren) then
self.stepChildren := O one(self.stepChildren);
/] add new tenplate into the array
AddArraySl ot (sel f.stepChildren, childTenplate);
/1 sync up the views
sel f: SyncChi |l dren();
end

-}

Laying Out Multiple Child Views

The following methods are used to layout multiple child views.

LayoutTable

view: Layout Tabl e(tableDefinition, columnStart, rowStart)

Generates a table where each cell is a child of the parent view to which this
message is sent. This method essentially calculates the bounds for each child
view so that the children are laid out in a table-like format in the parent.

tableDefinition A frame describing the table. The slots are described
later in this method description.

columnStart The column number of the cell that should be placed in
the upper-left corner of the parent view. Specify an
integer from zero (for the first column) to one less than
the total number of columns.

rowStart The row number of the cell that should be placed in the
upper-left corner of the parent view. Specify an integer
from zero (for the first row) to one less than the total
number of rows.

Functions and Methods 2-59

CHAPTER 2

Views Reference

This method returns an array of child templates that can be used as the value
of the st epChi | dr en slot in the parent template.

The vi ewBounds slots of the children are calculated so that the first child is
placed in the upper-left corner of the parent view. You can use the
columnStart and rowStart parameters to change which child is the first child.
By using these parameters to specify a different upper-left cell, you can
display just a portion of the entire table.

For example, to generate templates for all cells in a table, specify 0, 0 for
columnStart and rowStart. This places the top-left cell in the table in the
top-left corner of the parent view. This is illustrated in the first view shown
in Figure 2-2.

To offset the table upward and to the left, specify 1, 1. This places the second
cell in the second row in the top-left corner of the parent view. This is
illustrated in the second view shown in Figure 2-2. Note, however, that cells
are laid out sequentially beginning with the indicated cell. That is, cells 5
through 10 are all shown. The table isn’t simply shifted up and to the right.

Templates are not generated for cells that precede the starting cell. The first
template in the array returned by Layout Tabl e is the template for the first
cell indicated by columnStart and rowStart.

Figure 2-2 Layout Tabl e results

1 2 3 5 &

il o) £ 7]

K] 3 9 10

10 11 12
The oofrzadrsrrand The oofuwzbadand
amiz parameters are xmidiarTparameters are
setto00 sefto 1.1

2-60

Functions and Methods

CHAPTER 2

Views Reference

TableDefinition slots
t abAcr oss

t abDown

t abW dt hs

t abHei ght s

t abPr ot os

t abVal ues

t abVal ueSl ot

t abSet up

The number of columns in the table.
The number of rows in the table.

An integer giving the fixed width of the columns, in
pixels, or an array of column widths.

An integer giving the fixed height of the rows, in pixels,
or an array of row heights.

A reference to a template used in creating the child
views, or an array of references to templates. The array
elements are mapped to the table of views beginning at
the top-left cell of the table and continuing down the
first column, and then down the second column, and so
on. If there are fewer array elements than table cells,
after the last array element is mapped, the mapping
continues with the first element.

A value that is used as the value of each of the child
views. Alternately, an array of values that are mapped
to table cells as above.

A symbol naming the slot in each of the child views
where its view value (specified in t abVal ues) is
stored. (Remember to quote the symbol; as with

" t ext .) For example, if the table consists of child views
based on the cl Par agr aphVi ewclass, you would
specify ' t ext for this slot, since the value of a

cl Par agr aphVi ewis stored in the t ext slot.

A method that is called before each of the child views is
instantiated. It is passed three parameters: a reference to
the child template, its column number in the table, and
its row number in the table. This allows you to do
special initialization operations to each child view
before it is instantiated. This method must be passed the
context with the call.

Functions and Methods 2-61

2-62

CHAPTER 2

Views Reference

The following example of Layout Tabl e method shows the code used to
generate the first table in Figure 2-2:

(..

viewcl ass: cl Vi ew,
vi ewBounds: {left: 42, top: 26, right: 193, bottom 129},

t abAcross: 3,

t abDown: 4,

tabW dt hs: nil

t abHei ghts: nil

t abPr ot os: {vi ewcl ass: cl ParagraphVi ew,
vi ewBounds: nil,
viewdustify: vjLeftH+vj CenterV+onelLi neOnly,
vi ewFl ags: vVisi bl e+tvC i ckabl e,
vi ewFormat : vfFil |l White+vfFraneBl ack+vfPen(1),
text:nil,
vi ewFont : si npl eFont 10},

tabval ues: nil,

tabVval ueSlot: nil,

Vi ewSet upChi | drenScri pt: func()

begi n
| ocal box, cells;
box := self:local Box();

viewN dth := box.right - box.left;

tabWdths := viewNdth DIV tabAcross;

t abHei ghts : = Font Hei ght (t abPr ot 0s. vi ewFont) ;

tabval ves : = ["1", "2", "3", "4",6 "5" "6", "7", "8",
9", 6 "i0", "11", "12"];

tabVval ueSl ot := 'text;

sel f.stepChildren : = sel f:Layout Tabl e(self, 0, 0);
end,

H

Functions and Methods

CHAPTER 2

Views Reference

LayoutColumn

view: Layout Col um(childViews, index)

In the view to which this message is sent (the main view), Layout Col um
displays a subset of views from a larger array of views.

childViews The array of views from which you want to display a
subset.
index The index of the view in the childViews array that you

want to display at the top of the view to which you send
this message.

This method returns a reference to an array of child views that fill the
bounds of the main view, beginning with the view at index and containing as
many subsequent views as it takes to fill the main view to the bottom. Each
child view must have a height slot that is set to the height of the view in
pixels.

Miscellaneous View Operations

This section describes other miscellaneous view methods and functions.

SetPopup

view: Set Popup()

After a view is shown, call this method to make the view a pop-up view (a
picker); that is, a view that gets closed on the next pen tap (whether inside or
outside of it). An example of using this feature is in the pr ot oPi cker view
proto (page 5-13).

This method always returns ni | .

Here’s how you would typically call this method in your view template:

vi ewSet upDoneScri pt: func()
sel f: Set Popup();

Functions and Methods 2-63

2-64

CHAPTER 2

Views Reference

GetViewFlags

Get Vi ewFl ags(template)

Returns the value of the vi ewFl ags slot in the view corresponding to the
specified template, or in the template itself, if its view has not yet been
instantiated.

template The template or view whose vi ewF| ags slot you want
to get.

You can pass in the following special symbols for the template parameter:

m ' Vi ewFr ont Most, indicates the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewF| ags slot.

m ' Vi ewFr ont Mbst App, indicates the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewf| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

m ' vi ewFr ont Key, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

These symbols are evaluated at run time.

Visible

Vi si bl e(view)

This function tests a view to see if it is visible or not. This function returns
non-ni | if the view is visible or ni | if the view is not visible. Note that a
view can be open but not visible, so this function is not a valid test of
whether a view is open.

view The view that should be tested to see if it is visible.
You can pass in the following special symbols for the view parameter:

m ' Vi ewFr ont Most, indicates the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewF| ags slot.

m ' Vi ewFr ont Mbst App, indicates the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewf| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

Functions and Methods

CHAPTER 2

Views Reference

m ' vi ewFr ont Key, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

These symbols are evaluated at run time.

ViewlsOpen

Vi eM sOQpen(view) //platformfile function
Returns t r ue if the view is open and ni | if it is not.

IMPORTANT
This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kVi e sCpenFunc with (view) ;
A
view The view you wish to check.
Note that a view can be open but not visible (if it is hidden).

This function is a better way to check if a view is open, rather than checking
if the vi ewChj ect slotisnon-ni | .

Application—Defined Methods

The following subsections describe application-defined methods. When
using any of these methods, always calli nheri t ed: ?Vi ewXXXScri pt
when using protos or in case the present or future system software provides
such a method.

ButtonToggleScript

view: But t onToggl eScri pt (frontmostApp)

Lets the application perform special handling when its icon is tapped in the
Extras Drawer.

frontmost App The base view of the application that is frontmost on the
screen.

Functions and Methods 2-65

2-66

CHAPTER 2

Views Reference

The value that the application returns from the But t onToggl eScri pt
method is important. It can return either ni | or non-ni | . A return value of
ni | means that the system should proceed with the normal operations that it
does when an icon is tapped. A value of non-ni | means that the system
should do nothing — the assumption being that the application handled the
icon tap in whatever way it wanted to itself.

ViewSetupFormScript

view: Vi ewSet upFor nScri pt ()

During view creation, this message is sent before any slots in the view
template are read. In this method, you can do any special initialization that
your view needs, including setting the value of any slots other than the

vi ewCl ass slot. For example, you can dynamically change the

vi ewBounds slot, the vi ewFl ags slot, the vi ewFont slot, and so on. Note
that you cannot perform any operations involving child views of your view
since they haven’t yet been instantiated at this point. (However, you can
manipulate the st epChi | dr en array at this point.) The return values is
unspecified.

This message is also sent during execution of the system view method
SyncVi ew before it begins its operations. It is sent during execution of the
global function Set Val ue (it calls SyncVi ewinternally), if you set the value
of one of these slots: vi ewBounds, vi ewFor mat, vi ewdusti fy, or

vi ewFont .

Here is an example of using this method:

Vi ewSet upFor nScri pt: func()
begi n
sel f.viewBounds := SetBounds(0, 15, 200, 180);
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method.

Functions and Methods

CHAPTER 2

Views Reference

ViewSetupChildrenScript
view: Vi ewSet upChi | drenScri pt ()

This message is sent after a view is created but before its children are
instantiated. In this method, you can do any special initialization that you
need to do before the child views are instantiated. For example, you might
want to dynamically set up the st epChi | dr en array, which controls what
child views are to be created. The return values is unspecified.

This message is also sent during execution of the following system view
methods before the child views are redrawn: SyncChi | dr en,

RedoChi | dren, and SyncScrol | (only if you pass a soup cursor for the
first parameter in SyncScrol |).

Here is an example of using this method:

Vi ewSet upChi |l drenScript: func()
begin
sel f.stepChildren := [pg4, pg5]; // child tenpl ates
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. &

ViewSetupDoneScript
view: Vi ewSet upDoneScri pt ()

This message is sent after all of the child views of the view are instantiated,
just before the view is displayed. Vi ewSet upDoneScr i pt is sent for
children before it is sent for the parents of the children. The return values is
unspecified.

Here is an example of using this method:
Vi ewSet upDoneScri pt: func()
begin

sel f: Set Popup();
end

Functions and Methods 2-67

2-68

CHAPTER 2

Views Reference

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method.

ViewQuitScript

view: Vi ewQui t Scri pt ()

This message is sent just before the view is closed. It gives you a chance to do
any processing or clean-up that you need to just before the view is closed.

Note that an undeclared view is destroyed when it is closed. A declared view
still exists, if the view in which it is declared is still open. A view can get
control after all of its children have been destroyed.

When a view is closing, this message is sent to the topmost view that is
closing as well as to all of the children of that view, since they too are closing
with it. That is, the first child view receives this message, then all of its
children, in order, and then the second child view receives this message, and
so on. For each child view, the message is sent recursively to all of its
children before the next top-level child is notified.

The child views are closed in reverse order. That is, the views at the bottom
of the hierarchy are closed first, then those above them, and so on, until the
original view receiving the Vi ewQui t Scri pt message is closed last.

If you return the symbol ' post Qui t from the Vi ewQui t Scri pt method of
a view, that same view will then be sent the Vi ewPost Qui t Scri pt
message after all of its child views have been destroyed. This allows you an
opportunity to do extra clean-up, if necessary. See Vi ewPost Qui t Scri pt
(page 2-69) for additional details.

Note that you can’t send any view messages to a view whose
Vi ewQui t Scri pt has already executed. If you do, the system throws an
exception.

Functions and Methods

CHAPTER 2

Views Reference

IMPORTANT

If you override the Vi ewQui t Scri pt of any proto, you
must return the value of the expression

i nherited: ?Vi ewQui t Scri pt. Otherwise, if there is a
Vi ewPost Qui t Scri pt method in the proto, it may not be
executed. Even if current protos don’t use the

Vi ewPost Qui t Scri pt feature, they may in the future. A

Here is an example of this method:

Vi ewQui t Script: func()
begin
RenoveS| ot (Get Root (), ' busi nessFormat);
RenoveS| ot (Get Root (), ' myAuxFor mat);
i nherited: ?viewQuitScript();
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method.

ViewPostQuitScript
view: Vi ewPost Qui t Scri pt ()

This message is sent to a view following the Vi ewQui t Scri pt message and
after all of the view’s child views have been destroyed. This message is not
automatically sent to all views, but is sent only if the Vi ewQui t Scri pt
method returns the symbol ' post Qui t . See Vi ewQui t Scri pt (page 2-68)
for more information.

Note that when a view receives the Vi ewPost Qui t Scri pt message, it is
not actually a full-fledged view anymore, but only the remnants of its view
frame. This means that from within the Vi ewPost Qui t Scri pt method,
you can’t send any view messages to sel f ; however, the parent view is still
valid, so the children can still send messages to the parent view.

Functions and Methods 2-69

2-70

CHAPTER 2

Views Reference

ViewShowsScript

view: Vi ewShowScri pt ()

This message is sent when the view is instructed to show itself; it is not sent
to any child views. This can occur as a result of the Show Open, or Toggl e

messages. When showing a view, the view system first shows the view and

then sends this message to allow you to perform any additional operations.
The return value is ignored.

Here is an example of using this method:

Vi ewShowScri pt: func()
begi n
/1 idle nmethod will close view after 5 seconds
: Set upl dl e(5000) ;
end

ViewHideScript

view: Vi ewHi deScri pt ()

This message is sent when the view is instructed to hide itself. This can occur
as a result of the Hi de, Cl ose, or Toggl e view methods. When hiding a
view, the view system first sends this message, then hides the view and all of
its child views. However, this message is not sent to any of the child views.
The return value is ignored.

This message is not always sent when a view is closed. Do not use this
method to do clean-up when a view is closing—use the Vi ewQui t Scri pt
method instead. The Vi ewQui t Scri pt message is sent immediately after
the Vi ewHi deScr i pt message when a view is being closed.

Here is an example of this method:

Vi ewHi deScri pt: func()
begi n
/1 open anot herVi ew when this one is hidden
anot her Vi ew. Open() ;
end

Functions and Methods

CHAPTER 2

Views Reference

ViewDrawScript
view: Vi ewDr awScri pt ()

This message is sent when the view is drawn. First the view system draws
the view, this message is sent, and the view frame and view highlighting (if
any) are drawn. This message is sent before any child views are drawn. If
you wish to augment the drawing done by the view system or to perform
other operations whenever the view is drawn, do it in this method.

If you want to draw in a view other than when the Vi ewDr awScr i pt
message is sent, use the DoDr awi ng view method, documented in “Drawing
and Graphics Reference” (page 10-1)

A WARNING

All coordinates in the vi ewBounds slot and the global
coordinates of the bounds, such as returned by G obal Box,
of a view must be within the range -32768 to 32767. If this is
not the case, the behavior of the views and view scripts are
undefined. A

Here is an example of using this method:

Vi ewSet upFor nScri pt: func()
/1 set up line objects and save themin the lines slot

begin
| ocal box;
box := sel f:Local Box();

sel f.lines[MakeLi ne(0, 0, box.right, box.botton),
MakelLi ne(0, box.bottom box.right, 0)];
end

Vi ewDr awScri pt: func()
/[l draw an X in the view
begin
: DrawShape(sel f.lines, nil);
end

Functions and Methods 2-71

2-72

CHAPTER 2

Views Reference

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method.

ViewHiliteScript

view: Vi ewHi | i t eScri pt (on)

This message is sent just before the system is about to highlight or
unhighlight the view.

on A Boolean value that is non-ni | if the view is to be
highlighted or ni | if the view is to be unhighlighted.

The return values is unspecified, it is assumed that you have handled the
highlighting or unhighlighting operation, and the system won’t do it. If this
method returns ni | , the system performs the operation.

Note that you don’t have to use the DoDr awi ng method to draw in your
ViewHi | i t eScri pt method.

Here is an example of this method:

ViewH liteScript: func(on)

begi n
| ocal box;
box := self:Local Box();

r := MakeRoundRect (box. | eft+3, 0, box.right-3,
box. bottom 4);
: DrawShape(r, {transferMde: nodeXor,
fillPattern: vfBlack});
true;
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. o

Functions and Methods

CHAPTER 2

Views Reference

ReorientToScreen

view: Reori ent ToScr een()

This message is sent to each child of the root view when the screen
orientation changes. It is sent to validate a view as supporting landscape or
rotation or it is sent to a view during rotation so that the view can adjust
itself appropriately. The return values is unspecified.

A WARNING

An application must have a Reor i ent ToScr een method in
order to be opened on a landscape screen. If a user tries to
open an application that doesn’t have this method, a slip is
displayed to give the user the option of not opening the
application at all or rotating the screen back to portrait
before it is opened. A

When the screen orientation changes, the system checks each child of the
root view to see if the Reor i ent ToScr een method exists. If this slot exists,
Reori ent ToScr een is sent to each child view and the rotation occurs. If it
doesn’t exist, a slip appears warning the user that some functions will not
show after rotation because they can’t operate while rotated. The slip
contains a “Cancel” and “OK” button. If the user taps “Cancel” the rotation
is cancelled and nothing happens. If the user taps “OK,” any view that
doesn’t implement the Reor i ent ToScr een method is closed and the
rotation occurs.

To support rotation, your application should implement this method in its
base view or any other view that will be a child of the root view.

Reor i ent ToScr een should resize, move, or close your application. The
easiest way to implement this behavior is take advantage of the default
function provided by the ROM by placing the function

ROM _Def Rot at eFunc in your Reor i ent ToScr een slot as in this example:

Reori ent ToScreen: ROM Def Rot at eFunc

If the view is offscreen, any vi ewbounds slot in the view frame is also
removed. This behavior restores the view to its default position if the user
has dragged it.

Functions and Methods 2-73

2-74

CHAPTER 2

Views Reference

A more sophisticated way of handling rotation in the Reor i ent ToScr een
method is to use the Get AppPar ans function to check the new screen
dimensions, and then resize and redisplay the base application view and all
child views, if necessary.

ViewScrollDownScript

view: Vi ewScr ol | DownScri pt ()

This message is sent when the view system receives a scroll down event,
which occurs when the user taps the downward-pointing scroll arrow. There
is no default view-system operation that occurs as a result of this event—
only this message is sent. Note that “scrolling down” means that visually the
items on the screen move upward, showing you new items that were
previously hidden “below” the bottom of the view.

Only a view with the vAppl i cat i on flag set in its vi ewFl ags slot can
receive this message.

Here is an example of this method:

Vi ewScr ol | DownScript: func()

begi n
if index < length(notes)-1 then
begi n
roll:SyncScroll(notes, index, 1); // 1 = down
i ndex := index + 1;
end
end

ViewScrollUpScript

view: Vi ewScr ol | UpScri pt ()

This message is sent when the view system receives a scroll up event, which
occurs when the user taps the upward-pointing scroll arrow. There is no
default view-system operation that occurs as a result of this event—only this
message is sent. Note that “scrolling up” means that visually the items on the

Functions and Methods

CHAPTER 2

Views Reference

screen move downward, showing you new items that were previously
hidden “above” the top of the view. The return values is unspecified.

Only a view with the vAppl i cat i on flag set in its vi ewF| ags slot can
receive this message.

Here is an example of this method:

Vi ewScrol | UpScript: func()

begin
if index > 0 then
begin
roll:SyncScroll (notes, index, -1); [/ -1 = up
index := index - 1;
end
end

ViewOverviewScript
view: Vi ewOver vi ewScri pt ()

This message is sent when the view system receives an overview event,
which occurs when the user taps the overview dot between the scroll arrows.
There is no default view-system operation that occurs as a result of this
event—only this message is sent. The return values is unspecified.

Usually the overview button is used to toggle between two views of the data
in an application: a close-up (normal) view, and an overview view.

Only a view with the vAppl i cat i on flag set in its vi ewFl ags slot will be
sent this message.

Here is an example of this method:

Vi ewOvervi ewScript: func()

begin
if (cardPrefs.nmode = noded oseUp) then
cardPrefs. node : = nodeOvervi ew

Functions and Methods 2-75

2-76

CHAPTER 2

Views Reference

el se
cardPrefs. mode : = nodeCd oseUp;
cl oseUp: Toggl e();
over Vi ew. Toggl e();
stat us: RedoChi I dren();
end

ViewAddChildScript

view: Vi ewAddChi | dScri pt (child)

This message is sent when a child is about to be added to a view of the
cl Edi t Vi ewclass.

child The child template to use to create the child view.

This method gives you a chance to create and add the child view, or to do
some other processing before the view is created and added automatically.

If this method returns non-ni | , it is assumed that you have added the child
view entry to your view’s st epChi | dr en array and have created the child
view. If this method returns ni |, these things are done for you.

In any case, a view must be instantiated from the template passed to this
method—either by you or by the system. If you return non-ni | , and fail to
instantiate the view, the system displays an error message, because it expects
the view to exist.

Here is an example of using this method:

Vi ewAddChi | dScript: func(child)
begi n
AddToDef aul t St or e(mySoup, child);
AddUndoAction(Ki Il Addition, [child]);
AddVi em nyVi ew, child);
end

Functions and Methods

CHAPTER 2

Views Reference

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method.

Use this method if you have a cl Edi t Vi ewthat is creating paragraph and
polygon child views with the vNoScr i pt s flag set, and you want to
override the vi ewFl ags slot to remove the vNoScr i pt s flag.

ViewChangedScript

view: Vi ewChangedScr i pt (slot, view)

This message is sent when the value of a slot in the view is changed as a
result of the Set Val ue function, or as a result of other view operations such
as changing the bounds, changing the contents or the text style, and so on.
The return values is unspecified.

slot A symbol that is the name of the slot whose value
changed.
view The view that slot resides in.

Here is an example of this method:

Vi ewChangedScri pt: func(slot, view)

begin
if slot = "text then

textChanged := true; //set flag if text was changed
end

ViewDropChildScript
view: Vi ewDr opChi | dScri pt (child)

This message is sent when a view of the cl Edi t Vi ewclass is about to
remove a child view.

child The child view to remove.

Functions and Methods 2-77

2-78

CHAPTER 2

Views Reference

This method gives you a chance to remove the child view entry from your
view’s vi ewChi | dr en array, or to do some other processing before the view
is removed.

The return values is unspecified, it is assumed that you have removed the
child view entry from your vi ewChi | dr en array. If this method returns

ni |, this is not assumed and it is done for you. In either case, the child view
itself is deleted for you by the system. (Note that you can use the

RenoveVi ew function to delete the view yourself.)

Here is an example of this method:

Vi ewDr opChi I dScri pt: func(child)
begi n
Ent r yRenmoveFr onmSoupXmi t (chil d, kAppSynbol) ;
base: RedoChi I dren();
nil;
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method.

ViewldleScript

view: Vi e dl eScri pt ()

When an idler is installed for a view, this message is sent repeatedly and at
regular intervals when the view is open, to allow you to do periodic tasks
such as polling a network for information or updating a clock on the display.

You install an idler for a view by sending it the Set upl dl e message, which
specifies an initial delay after which the Vi ewl dl eScri pt message is sent.
The Vi ew dl eScri pt method returns an integer which specifies the delay,
in milliseconds, until it is called again. For example, to have the system call

this method every second, you should return 1000.

Functions and Methods

CHAPTER 2

Views Reference

To stop idling, you can return the value ni |, or you can send the view the
Set upl dl e message with a value of zero.

There is no default view-system operation that occurs during idling—only
the Vi ewl dl eScri pt message is sent.

Note

When you install an idler for a view, the time that the

Vi ew dl eScri pt message will next be sent is not
guaranteed to be the exact interval you specify. This is
because the idler may be delayed if a method is executing
when the interval expires. The Vi ewl dl eScri pt message
cannot be sent until an executing method returns.

Do not install idlers that use repeated intervals of less than
100 milliseconds. &

Here is an example of this method:

Vi ewShowScript: func() // initialize blinking sequence
begin
i con := onBitnmap;
sel f.numBlinks := 0;
self: Setupldle (750); // start in 3/4 second
end

View dl eScript: func()

begin
if icon = onBitmap then
i con := of fBitmap;
el se begin
i con := onBitnap;
numBl i nks : = nunBlinks + 1;
end;
self:Dirty();

if nunBlinks < 4 then // blink 4 tines
return 750; // return tine until next blink

Functions and Methods 2-79

2-80

CHAPTER 2

Views Reference

nunBlinks := 0; // else return O to stop blinking
end

This example blinks an icon in a view of the cl Pi ct ur eVi ewclass when the
view is shown.

Be careful not to send this message too frequently for long periods of time
(for example, many times each second for a few minutes). This causes the
Newton hardware to consume significantly more power than usual and
reduces battery life.

Note

The system searches for this method only in the current view and its protos.
The parent chain is not searched for the method. &

ViewDrawDragDataScript

sourceView: Vi ewDr awDr agDat aScr i pt (bounds)
bounds The bounds that were passed to Dr agAndDr op.

If supplied, this method draws the image that will be dragged. The default
(if this method is missing) is to use the area of the screen inside the rectangle
defined by bounds parameter to Dr agAndDr op.

This method returns a Boolean value. Returning non-ni | means that this
method handled the drawing. Returning ni | means that the default
behavior should take place.

ViewDrawDragBackgroundScript

sourceView: Vi ewDr awDr agBackgr oundScr i pt (bounds, copy)
bounds The bounds parameter as passed to Dr agAndDr op.
copy The copy parameter as passed to Dr agAndDr op.

If supplied, this method draws the image that appears behind the dragged
data. The default (if this method is missing or if it returns ni |) is to use the
bitmap of the area inside the rectangle defined by bounds XORed with the

Functions and Methods

CHAPTER 2

Views Reference

bitmap from Vi ewDr awDr agDat aScr i pt . Note that the XOR happens only
if copy is nil.

This method returns a Boolean value. Returning non-ni | means that this
method handled the drawing. Returning ni | means that the default
behavior should take place.

ViewGetDropTypesScript
destView: Vi ewGet Dr opTypesScri pt (currentPoint)

Returns an array of symbols; that is, the data types accepted by the view at
the location currentPoint. For example, ' t ext or' pi ct ur e. The array is
sorted by priority (preferred type first). This method can return ni |,
meaning no drop is allowed at the current point.

currentPoint The current pen position in global coordinates (a frame
containing x and y slots).

ViewFindTargetScript
destView:Vi ewFi ndTar get Scr i pt (draglnfo)

Lets the destination view redirect the drop to a different view.
Vi ewFi ndTar get Scri pt returns a view frame of the view that gets the
drop messages. It is called right after the Vi ewGet Dr opTypesScri pt .

draglnfo An array of frames (one frame per dragged item). See
Dr agAndDr op (page 2-46) for a list of approved slots.

ViewDropApproveScript

sourceView:Vi ewDr opAppr oveScr i pt (destView)

Provides a way for the sourceview to disallow dropping onto a particular
view. Vi ewDr opAppr oveScr i pt returns ni | if the drop shouldn’t happen,
and non-ni | if the drop should happen. It is called only if the drop types
match up with the dragged data and the destView, and is called right before
the Vi ewDr opScri pt, Vi ewDr opMoveScri pt and/or

Vi ewDr opRenpveScri pt methods are called.

destView Destination view in which the dropping will occur.

Functions and Methods 2-81

2-82

CHAPTER 2

Views Reference

ViewDragFeedbackScript

destView: Vi ewDr agFeedbackScr i pt (draglnfo, currentPoint, show)

Allows a view to give visual feedback while items are dragged over it.

draglnfo The same parameter passed to Dr agAndDr op
(page 2-46).
currentPoint The current pen position in global coordinates (a frame

containing x and y slots).

show A Boolean value indicating whether to show or hide the
feedback. Specify non-ni | to show the feedback or ni |
to hide it. Hiding the feedback means erasing any
highlighting drawn when show is non-ni | , so the view
appears normally.

This method returns a Boolean value. Returning non-ni | means that the
method did draw. Returning ni | means that no feedback was drawn, so this
method does not need to be called again with show ni | at the point
dragPoint. The return value is ignored if show is ni | .

This method is always called with show set to ni | after it’s called with show
set to non-ni | . This action ensures that your function is called twice for
every “point” being dragged. An example use is drawing your drag
feedback with the XOR drawing mode. By calling

Vi ewDr agFeedbackScr i pt a second time, the view can ensure that it was
using the dragPoint when drawing and can XOR the exact image onto the
screen again. The screen will then show the original pixels.

Alternately, if no “drawing” occurred during Vi ewDr agFeedbackScri pt,
return ni | and the script won’t be called again.

Note that XORing is not required as a draw mechanism. The view might be
saving part of the screen to an offscreen bitmap and drawing feedback. Then
when asked to hide the feedback (show is set to ni |), it could restore the
original image from the offscreen bitmap.

Functions and Methods

CHAPTER 2

Views Reference

ViewGetDropDataScript
src: Vi ewGet Dr opDat aScri pt (dragType, dragRef)

Called when a destination view that accepts all the dragged items is found.
Vi ewGet Dr opDat aScri pt is called for each item being dragged.

dragType The type accepted by the destination view for this
particular item as passed to Dr agAndDr op in the
draglnfo array.

dragRef The drag reference for this item as passed to

Dr agAndDr op in the dragInfo array.

Vi ewGet Dr opDat aScri pt returns a frame containing the actual data to be
dropped into the destination view. This data could be any frame (not
necessarily a view). The frame should contain a t ext slot if the required
typeis' t ext, a poi nt s slot if the required type is ' pol ygon, an ink slot if
the required type is' i nk, or ani con slot if the required type is ' pi ct ure.
For pol ygon, i nk, or pi ct ur e types, the frame should also contain a

vi ewBounds slot in the src view coordinates.

If the dragged item is a view—that is, the view slot was set in the dr agType
array element passed to Dr agAndDr op—the default behavior occurs by
returning a frame with the necessary slots unless the

Vi ewGet Dr opDat aScri pt returns a non-ni | value.

If you want to drag system data types to or from a plain view, use these
formats for the built in types:

dragType RequiredSlots Optional slots

‘text text any other cl Par agr aphVi ewslots
vi ewBounds

' pol ygon poi nt s any other cl Pol ygonVi ewslots
vi ewBounds

"ink i nk any other cl Pol ygonVi ew slots
vi ewBounds

"picture icon any other cl Pi ct ur eVi ew slots
vi ewBounds

Functions and Methods 2-83

2-84

CHAPTER 2

Views Reference

Note

The vi ewBounds slot is no longer necessary for text type.
However, if the vi ewBounds slot exists, it will be used. ¢

ViewDropScript

destView: Vi ewDr opScri pt (dropType, dropData, dropPt)
This message is sent to the destination view for each dragged item.

dropType One of the types that the destination view returns from
the Vi ewGet Dr opTypesScri pt method.

dropData The frame that the source view returns from the
Vi ewGet Dr opDat aScri pt method. If this frame has a
vi ewBounds slot, this slot is converted to be in
destination view coordinates before calling
Vi ewDr opScri pt.

dropPt The last stroke point in global coordinates (a frame
containing X and y slots).

This method returns a Boolean value. Returning non-ni | means that this
method handled the drop. Returning ni | means that the drop is not
accepted.

Note that this method posts an undo action, if necessary.

ViewDropMoveScript

sourceView: Vi ewDr opMoveScri pt (dragRef, offset, lastDragPt, copy)

This message is sent for each dragged item when dragging and dropping in
the same view. (In this case, Vi ewGet Dr opDat aScri pt and
Vi ewDr opScr i pt messages are not sent.)

dragRef The drag reference for this item (as passed to
Dr agAndDr op in the dragInfo array).

offset A frame with x and y slots indicating the horizontal and
vertical offsets of the item.

Functions and Methods

CHAPTER 2

Views Reference

lastDragPt The last stroke point in global coordinates (a frame
containing x and y slots).

copy The copy parameter as passed to Dr agAndDr op.

This method returns a Boolean value. Returning non-ni | means that this
method handled the move. Returning ni | means that the move was not
done.

Note that this method posts an undo action if necessary.

ViewDropRemoveScript

sourceView: Vi ewDr opRenoveScr i pt (dragRef)

This message is sent for each dragged item when the copy parameter to
DragAndDropisni | .

This method removes the item from the source view.

dragRef The drag reference for this item (as passed to
Dr agAndDr op in the draglnfo array).

This method returns a Boolean value. Returning non-ni | means that this
method handled removing the item. Returning ni | means that the remove
operation was not done.

Note that if you are using your own drop types and your own scripts, an
undo action must be added to this method for this part of the operation.

ViewDropDoneScript
destView:Vi ewDr opDoneScri pt ()

Sent at the very end of each drag and drop to let the destination view know
that all specified items have been dropped or moved.

Functions and Methods 2-85

CHAPTER 2

Views Reference

View Warning Messages

The warnings in Table 2-7 are printed to the inspector when a NewtonScript
application calls a view method in situations where the requested operation
is unwise, unnecessary, ambiguous, invalid, or just a bad idea. The function
or method typically does nothing other than print this warning message, but
such messages point out situations where code needs to be changed since
these calls may very well not be supported in the future.

In the future, you might get an exception thrown instead of just this error
message, or something more serious could occur since the problem might not
be detected.

If the global variable noEvi | Li veOn is set to t r ue, a breakloop is entered,
which helps to find out exactly which view is causing the problem. Setting
noEvi | Li veOn also causes other “incompatibility” errors to enter a
breakloop.

Table 2-7 View warning messages

Error number

4711

4712

4713

4714

4715

2-86

Message

Renove[St ep] View was called while the parent view
was bei ng opened or cl osed

Renmove[Step] View was called with a tenplate instead
of a view frane

Renove[St ep] Vi ew was called on a view whi ch was
bei ng opened or cl osed

Renove[Step] View was called with a read-only
stepChildren array (i.e., the view wasn't
previously added with AddVi ew)

Close() was sent to a view which was opening or
cl osi ng

View Warning Messages

CHAPTER 2

Views Reference

Table 2-7 View warning messages
Error number Message
4716 Toggl e() was sent to a view which was opening or
cl osi ng
4717 Toggl e() was sent to a view whose parent was being
opened or cl osed
4718 Show() was sent to a view which was openi ng or
cl osing
4719 H de() was sent to a view which was opening or
cl osi ng
4720 RedoChi I dren() was sent to a view which was opening

or closing

4721 SyncChildren() was sent to a view which was openi ng
or closing

4722 Set KeyView() was sent to a view that wasn't a
cl Par agraphVi ew

View Warning Messages 2-87

CHAPTER 3

NewtApp Reference

This chapter describes the NewtApp framework data types and prototypes
(protos). The protos are divided into the following categories:

m general application protos
m slot view protos

m labelled input-line protos

Required Code

This section describes the required | nst al | Scri pt and RenoveScr i pt
functions.

Required InstallScript and RemoveScript Functions

A NewtApp application has required | nst al | Scri pt and RenpveScri pt
functions that you must include in your application build so it can register

Required Code 3-1

CHAPTER 3

NewtApp Reference

properly for various system services. You may copy these functions directly
from the following code:

Install Script := func(partFrane)
begi n
part Frane. renoveFranme : = (partFrane.theForm:
Newt | nstal | Scri pt (part Frane. t heFornj;
end;
RemoveScri pt : = func(partFrane)
begi n

(part Frame. renoveFr ane) : Newt RenoveScri pt (r enmoveFr ane) ;
end;

General Application Protos

3-2

Included in this section are

data storage proto newt Soup
m base view proto newt Appl i cati on

m base view control protos

layout protos

entry view protos

newtSoup

This is the abstract proto (in other words, it has no visible component) that
contains soup-handling routines. Soup definitions in a NewtApp application

General Application Protos

CHAPTER 3

NewtApp Reference

must be based on the newt Soup proto, and are set up in the
newt Appl i cati on.al | Soups slot (page 3-10).

Slot descriptions

soupNane Required. This should be a string that is unique to your
application. If the application has only one soup, you
can use a string version of your application symbol, for

example, " MyApp: SI G'.

For an application that uses more than one soup, you
can add a prefix to a string version of the application
symbol, so the soup name becomes something like
"00: MyApp: SIG'.

soupl ndi ces An array of frames in which you define the indices for
your soup. An index can be based on a single slot in the
entry, or multiple slots in the entry. See the “Data
Structures” (page 9-1) for more information about how
to define a valid index. Here is an example:

soupl ndi ces:

[

{structure: 'slot,
path: "title,
type: 'string},

{structure: 'slot,
pat h: 'tinmeStanp,
type: 'int},

{ structure: 'multislot,
path: ['label 1, 'l abel2],
type: ['string, "int] }
]

soupQuery Required. A soup query. Currently you cannot define a
t ags slotor aval i dt est method in the soup query.
The soup query can include everything else; that is,

General Application Protos 3-3

CHAPTER 3

NewtApp Reference

Begi nKey, EndKey, i ndexVal i dTest, words, and
text. Here are a few examples:

soupQuery: {type: 'index,
i ndexPath:'title}

soupQuery: {type: 'index,
i ndexPat h: ' ti neSt anp,
Begi nKey: tinmel, EndKey: tine2}

soupQuery: {words: ["Newon", "Newt App"]}

soupDescr Optional. A string describing the soup.

def aul t Dat aType
Optional. (This slot pertains to applications that use
stationery.) A unique symbol naming a data type for
your soup entries. You may reuse your application
signature as a value for this slot. An example is
' | Basi cCar d: si g| . If an entry adopted from
stationery does not already have a type defined (in its
cl ass slot) it is assigned this value.

AddEntry

myNewtSoup: AAdENt r y (entry, store)

Adds the entry to the specified store. If no store is given the entry is added to
the default store. The return value is unspecified.

entry The entry to add. The only valid entries are those
returned by the various cursor and entry methods.

store The result of a call to Get Def aul t St or e or
Get St or es—naming the device on which to store data.
Avalue of ni | causes the entry to be added to the
default store.

General Application Protos

CHAPTER 3

NewtApp Reference

AdoptEntry

myNewtSoup: Adopt Ent r y(entry, type)

Returns a soup entry frame with the values in the entry frame. This new
entry consists of the frame specified in the Cr eat eBl ankEnt r y method,
which you define in the newt Appl i cati on. al | Soups slot, and—if your
application has a dataDef—an entry defined in either a Fi | | NewEnt ry or
MakeNewEnt r y method. Note that if Fi | | NewEnt r y exists,

MakeNewEnt r y is not called.

entry Required. If ni |, a blank entry is created. The new entry
is based on this entry.

type Optional. Defaults to ni | . If the value is t r ue, the
method looks for the value of the cl ass slot of this
entry. See Chapter 5, “Stationery,” in Newton
Programmer’s Guide, for more information on the class
slot.

The cl ass slot and other slots of the dataDef entry are preserved as the
entry is added to the application soup. If an entry is provided with a cl ass
slot, the type is automatically set to the same value as the cl ass slot. If the
value of the type parameter is ni | and there is no cl ass slot, the value of the
def aul t Dat aType slot, which is set in the newt Soup definition, is used to
set the t ype and cl ass slots for the entry.

CreateBlankEntry

myNewtSoup: Cr eat eBl ankEnt ry()

Returns a blank entry. Override this method to create the necessary structure
of your soup. You may or may not want to put a cl ass slot in your soup
entry. However, note that any routable item must have one. (For more
information about how the cl ass slot is used, see Chapter 21, “Routing
Interface,” in Newton Programmer’s Guide.)

General Application Protos 3-5

3-6

CHAPTER 3

NewtApp Reference

DeleteEntry

myNewtSoup: Del et eEnt r y(entry)

Removes an entry from its soup. The entry frame is converted to a plain
frame (which is unmarked as belonging to a soup).

entry The entry to remove from the soup.

DuplicateEntry

myNewtSoup: Dupl i cat eEnt r y(entry, store)

Clones and returns the specified entry. The duplicate entry is stored on the
specified storage device.

entry The entry to be duplicated.

store The result of a call to Get Def aul t St or e or
Cet St or es—naming the device on which to store data.
Avalue of ni | causes the entry to be added to the
default store.

DoneWithSoup

myNewtSoup: DoneW t hSoup(appSymbol)

Unregisters both the soup changes and the union soup to which the
newt Soup you sent this message belongs.

appSymbol A constant value specifying a unique alphanumeric
symbol by which the application identifies itself to the
system. An example of a suitable value is' | Sanpl e
newt App: DTS]| .

FillNewSoup

myNewtSoup: Fi | | NewSoup()

Called by MakeSoup to add soup values to a new soup. The return value is
unspecified. You should define this method with soup values appropriate to
your application. A typical use of this method is to create “starter” entries for

General Application Protos

CHAPTER 3

NewtApp Reference

a new soup. If this is the desired behavior, you must create the entries and
add them to the soup.

GetAlias

myNewtSoup: Get Al i as(entry)

Returns an entry alias. This alias represents the specified soup entry—for fast
access later—without holding on to the actual entry. The entry alias can be
used later as input to the Got 0Al i as function to retrieve the soup entry. See
“Entries” beginning on page 11-17 in Newton Programmer’s Guide for more
information.

entry The soup entry to which this method creates a an alias.

GetCursor
myNewtSoup: Get Cur sor ()

Returns the cursor set up for the soup named within the al | Soups slot of
the newt Appl i cat i on proto.

GetCursorPosition

myNewtSoup: Get Cur sor Posi ti on()

Returns an alias to the cursor entry.

GotoAlias

myNewtSoup: Cot oAl i as(alias)

Returns the soup entry referenced by the specified alias. Returns ni | if the
entry cannot be retrieved. When this error occurs, typically it is because the
original store, the original soup, or the original entry cannot be found.

alias The entry alias for which this method retrieves the
corresponding soup entry.

General Application Protos 3-7

3-8

CHAPTER 3

NewtApp Reference

MakeSoup

myNewtSoup: MakeSoup(appSymbol)

Used by the newt Appl i cat i on proto to return and register a new soup. It
assumes the soup is a standard union soup. If the soup is a new soup, it’s
filled with values by a call to Fi | | NewSoup. Override this method to
implement different behavior.

appSymbol A constant value specifying a unique alphanumeric
symbol by which the application identifies itself to the
system. An example of a suitable value is' | Sanpl e
newt App: Pl EDTS]| .

Query

myNewtSoup: Quer y(querySpec)

Message you send to a newt Soup to perform a query on the soup. It returns
a cursor that references a set of soup entries.

The querySpec frame may include the slots st r uct ur e, pat h, t ype, and
t agSpec. For more information on queries, see “Queries” (page 11-10) in
Newton Programmer’s Guide.

SetupCursor

myNewtSoup: Set upCur sor ()

Creates or resets the cursor as specified by the quer yspec in the
soupQuery slot.

newtApplication

The application base view template for all NewtApp applications. In an
application, this proto contains the application-wide elements like the folder
tab bar and status bar. It also contains references to all the layout protos and
sets up the application soup.

General Application Protos

CHAPTER 3

NewtApp Reference

Handlers for application-wide events like scrolling and filing are defined in
this proto. It also dispatches the information to the appropriate parts of the
application.

You must define the slots marked as required. Many of these contain strings
that describe objects for menus or are used in alerts and notification slips.

Slot descriptions

appSynbol Required. A constant value that specifies a unique
alphanumeric symbol by which the application
identifies itself to the system. An example of a suitable
valueis' | | OU: Pl EDTS]| .

If you use NTK as your development environment, the
application symbol is constructed for you from values
you set in the Output Settings dialog box for that
application.

title Required. A string that names your application. It is
used by the system. An exampleis"Rol | Starter".

appoj ect Required. An array of two strings, in both the singular
and plural, describing the data objects in the application
soup. These strings are used by the system in the filing
and action menus and for setting up soups. An example
is["Ox"," Oxen"].

appAl | Required. A string used in the folder tab picker (pop-up
menu) to provide the Al | items option. For example, the
value of the appAl | slot in the built-in Notes
applicationis " Al | Not es".

aboutInfo Optional. Defines information about your application
that appears when the user chooses About from the
newt | nf oBut t on (page 3-23). To use, create a slot in
your application’s base a called about | nf o and place a
frame in this slot with the following slots:

{

tagLine: “*, // A tagline for your application
version: ““, [/ The version nunber for the application
copyright: “*, //Copyright information

General Application Protos 3-9

3-10

CHAPTER 3

NewtApp Reference

t radenmar ks:

}

about Vi ew

al | Soups

al | Layout s

, I/ Trademark information

Optional. Defines information about your application
that appears when the user chooses About from the
newt | nf oBut t on (page 3-23). To use, create a slot in
your application’s base view called about Vi ew Use the
Get Layout function to place a template of your view in
this slot. A view is then created from the specified
template when the user taps About in the

newt | nf oBut t on.

Required. Define the soup(s) for your application in this
frame. Your soup definition should consist of a frame
based on the newt Soup proto (page 3-2) containing the
slots soupNane, soupl ndi ces, and soupQuery. An
optional soupFi | t er slot supports filing.

Following is a sample al | Soups frame:

al | Soups: {
mySoup: {

_proto: new Soup,
soupNanme: " M/Soup: SI G',
soupl ndi ces: [],
soupQuery: {type: 'index},
Creat eBl ankEntry: func()

{ slotl: 123,

slot2: 456, }

}

Note that each layout is tied to one of these soups by
using the soup name(s) in its mast er SoupSl| ot .

Required. A frame that contains references to the
application’s layouts. Two slots are required: def aul t

General Application Protos

CHAPTER 3

NewtApp Reference

and over vi ew These slots must contain paths to
existing layout files.

A suitable definition for the al | Layout s frame follows:

al | Layout s:
{def aul t: Get Layout (" Def aul t Layout Fi | "),
overvi ew. Get Layout (" Overvi ewLayout Fil e"),

}

scrol | i ngEndBehavi or

Optional. Defaults to ' beepAndW ap. You may also set
it to the values ' wr ap, ' st op,' beepNW ap, or
' beepAndsSt op.

The values select how scrolling is handled at the end of
a view. ' wr ap causes scrolling to display from the last
entry around to the first (or vice versa). ' st op means
that scrolling stops when the display reaches either end.
' beepAndSt op means the application will stop at the
last entry and play a beep. ' beepNW ap means to
continue scrolling past the last entry, and play a
scrolling sound and "wrap" to the first entry.

Each scrolling choice comes in a quiet and noisy form. If
you choose the noisy version, it makes an extra scrolling
sound.

scrol | i ngUpBehavi or

st at usBar S| ot

Optional. Defaults to ' bot t om You can set it to either
"topor' bottom

These settings select how roll-style entries are displayed
when scrolling up. For instance, say you scroll
backwards to a note that is two screens high; you’ll see
either the bottom or top screenful of the note. A
roll-style application would use ' bot t om but an
application that uses information slips would use ' t op.

Optional. A symbol that is the declared name of the
status bar. It is used by the layout to govern the
appearance/ disappearance of buttons on the status bar.
For this to work, the layouts must also have

General Application Protos 3-11

3-12

CHAPTER 3

NewtApp Reference

menuLef t But t ons and menuRi ght But t ons slots.
See newt St at usBar NoCl ose (page 3-29) and
newt Layout (page 3-32), for more information.

The following slots are used to create and save preferences.

Slot descriptions

prefsVi ew Optional. Contains a template of your preferences slip
and is opened when the user selects Prefs in the
newtApp.

t heApp Optional. Adds a reference to the application’s base

view, the default newtAboutBox.

The following slots are important if you are incorporating stationery into
your application:

Slot descriptions

al | Dat aDef s Required if your application supports stationery. A
frame that contains the symbol(s) identifying the
dataDef(s) and a reference to the file(s) containing the
data definition(s) for this application. Following is the
al | Dat aDef s slot of the Basic Card example:

{| basicCard: SIG: CetlLayout("iouDataDef")}

The system automatically registers all dataDefs in this
frame when the application installs. For more
information about dataDefs, see Chapter 5, “Stationery,”
in Newton Programmer’s Guide.

al | Vi ewDef s Required if your application supports stationery. This
frame contains the unique dat aDef symbol(s), which
are registered in the base view al | Dat aDef s slot, and
the references to the layout files for the viewDef(s),
which can display their data. The following example

General Application Protos

CHAPTER 3

NewtApp Reference

super Synbol

contains two viewDef template references for the
default and notes layout files:

{|I1Taou sl g:
{defaul t:
Get Layout ("i ouDef aul t Vi ewDef "),
not es:
Get Layout ("i ouNot esVi ewDef "), }}

The system uses this slot to register the view formats for
each given dat aDef .

Required for stationary. A unique symbol that identifies
the superset of data defs used for this application. It is
recommended that you set it to the value of the
application symbol if the application has only one
dataDefs. For instance, assuming one data type for the
application, both your application symbol and

super Synbol couldbesetto'| 1 QU: SI § .

Note that any would-be stationery extensions to this
application must also have a super Synbol that
matches this value.

Following are the routing, filing, and find slots:

Slot descriptions
doCar dRout i ng

dat eFi ndSl| ot

routeScripts

Optional. Defaults to t r ue. This enables the filing
interface to allow moves to and from cards. Set to
" onl yCar dRout i ng for filing to cards without folders.

Optional. Enables your application to be used in a
dat eFi nd query. Set it to a path expression that
evaluates to a slot in your soup entry that contains a
date. This slot must be indexed in the

newt Appl i cati on. al | Soups slot. An appropriate
valueis' ti meSt anp.

Optional. Contains default route scripts for Delete and
Duplicate. If you do not want these options to show in

General Application Protos 3-13

3-14

CHAPTER 3

NewtApp Reference

the Action menu, you must override the default
rout eScri pts array.

The following slots are included for your information only and should not be
set by you. They are maintained automatically by the NewtApp framework

code.

Slot descriptions
| abel sFilter

newt AppBase

ret arget Chai n

target Vi ew

Created dynamically as needed by the system, it is used
to store filing settings by the newt Appl i cat i on proto.

This identifies the base view of your application. The
system uses the value of newt AppBase to identify, for
instance, which view should be closed when a close box
is tapped.

This contains a dynamically built array of views
contained by (or chain out from) a particular view.
When the base container view is changed and redrawn,
these views are also updated.

This is the view in which data from the target entry is
displayed.

tar get This usually points to the entry being displayed and is
used by system services such as filing.

| ayout This is set to the current layout.

GetAppPreferences

myNewtApplication: Get AppPr ef er ences()

Returns a frame of preferences for the application. Use this method to add a
preference slip to your application.

General Application Protos

CHAPTER 3

NewtApp Reference

NewtApplication Stationary Methods

The following methods support adding stationary to your application.

ShowLayout

myNewtApplication: ShowLayout (layout)

Used to display a particular layout, at the appropriate time, in your
application. This method sets the current layout to the layout you specify. A
parameter value of ni | sets the value of the current layout to the value of the
previous layout. You can use it to switch the display from one layout to the
other layout (for example, from the main view to the overview.)

layout A symbol referring to a specific layout, as listed in the
al | Layout s slot.

AddEntryFromStationery

myNewtApplication: AddEnt r yFr onSt at i oner y(stationerySymbol)

Called by the stationery button (newt NewSt at i oner yBut t on proto) to
create a blank entry and initialize its cl ass slot with the value passed in as
stationerySymbol.

stationerySymbol A symbol referring to the value of the stationery’s
synbol slot. It is used to set a cl ass slot for the new
blank entry. An example of an appropriate value from
the built-in Notes soup is ' paperrol | .

AdoptEntryFromStationery

myNewtApplication: Adopt Ent r yFr onSt at i onery (adoptee,
stationerySymbol, store)

Like AddEnt r yFr ont at i onery, but also copies all slots from the existing
entry into the new entry. There is no protection here, so be careful it does not
overwrite existing slots.

adoptee The data being adopted. This is usually a soup entry.

General Application Protos 3-15

3-16

CHAPTER 3

NewtApp Reference

stationerySymbol

store

A symbol that is the same as the stationery’s dat aDef
symbol. It creates a new entry from an existing entry.
The existing entry is created on the appropriate store,
and then is used to set a cl ass slot according to the
stationery symbol. The new entry is built using the
MakeNewEnt ry and Fi | | NewEnt r y methods in the
stationery dataDef. After the entry is built, all slots from
the existing entry are copied to the new entry and the
new entry is added to the soup.

The store on which to keep the information. If ni | is
specified, data is stored on the internal storage device.

AdoptSoupEntryFromStationery

myNewtApplication: Adopt SoupEnt r yFr onSt at i oner y(adoptee,
stationerySymbol, store, soup)

Copies all slots from the entry to be adopted into the new entry and sets the
cl ass slot of that entry to the value of the stationerySymbol. You may specify
to which soup and store the entry should be added.

adoptee
stationerySymbol

store

soup

The entry being adopted.

A symbol referring to the value of the stationery’s
synbol slot. Itis used to set a cl ass slot for the new
blank entry. An example of an appropriate value from
the built-in Notes soup is ' paperrol | .

The store on which to keep the information. If ni | is
specified, data is stored on the internal storage device.

The symbol for one of the soups in the al | Soups slot.
Use ni | to indicate the current soup.

NewtApplication Filing Methods

The following methods, defined in the newt Appl i cat i on proto, are used
to support filing in your application.

General Application Protos

CHAPTER 3

NewtApp Reference

FolderChanged

myNewtApplication: Fol der Changed(soupName, oldFolder, newFolder)

Changes the folder tab label to the new folder name if it is different from the
old folder name, and saves the new folder information for the soup.

soupName Required. The name of the soup.

oldFolder Required. The folder where the document was
previously found.

newkFolder Optional. A missing newFolder parameter means the
folder was deleted.

FilterChanged

myNewtApplication: Fi | t er Changed()

Saves the old folder name for each soup in the al | Soups slot, updates it to
the new folder name, and sets the soup cursor to refer to the new folder.
Finally, it sends the Fi | t er Changed message to the newt Layout proto so
it targets the appropriate view for the new folder.

Chainlin

myNewtApplication: Chai nl n(chainSymbol)

Adds a view to an array of views to be notified when the data in a layout is
changed by sending the Ret ar get message. This is automatically done for
you in the newt Fi | i ngBut t on proto and the newt AZTabs proto.

Any time the contents of a view are changed, this method updates the
affected view(s) and change the data target entry.

chainSymbol A symbol naming a slot that holds an array of views
that need to be notified when a Ret ar get message is
sent. The symbol should be ' r et ar get Chai n for the
ret ar get Chai n slot provided in the
newt Appl i cat i on proto.

General Application Protos 3-17

3-18

CHAPTER 3

NewtApp Reference

ChainOut

myNewtApplication: Chai nQut (chainSymbol)

Removes a view from an array of views which are to be notified when the
data in a layout is changed by sending the Ret ar get message. This is done
automatically for you in the newt Fi | i ngBut t on proto and the

newt AZTabs proto.

Any time the contents of a view are changed, this method updates the
affected view(s) and change the data target entry.

chainSymbol A symbol naming a slot that holds an array of views
that need to be notified when a Ret ar get message is
sent. The symbol should be ' r et ar get Chai n for the
r et ar get Chai n slot provided in the
newt Appl i cat i on proto.

GetTarget

myNewtApplication: Get Tar get ()

Returns the current soup entry, which is also known as the target soup entry.
The target in the application level is undefined.

GetTargetView

myNewtApplication: Get Tar get Vi ew()

Returns the view in which the target soup entry is displayed. The target view
in the base application level is undefined.

newtApplication Find Methods

The following methods, defined in the newt Appl i cat i on proto, are used
to add Find support to your application. You do not call any of these
methods. For more about the Find system services, see Chapter 13, “Find
Reference,” in the Newton Programmer’s Guide.

General Application Protos

CHAPTER 3

NewtApp Reference

DateFind

myNewtApplication: Dat eFi nd(date, findType, results, scope, findContext)

The default Dat eFi nd method as provided in the Newt Appl i cati on
proto. You must supply a dat eFi ndS| ot to your newt Appl i cat i on proto
for your application to utilize this Dat eFi nd method.

This method searches for all items that occur on, before, or after a date,
depending on which choice the user makes from the Find dialog box.

This Dat eFi nd method displays a status view that reports where it is
currently searching for the date value. It looks for the specified date in all the
soups specified in the al | Soups slot of your application and builds an array
that contains the results. You should use the ShowFound! t ens method to
report the results.

date Specifies the date selected by the user. The date is
represented as an integer that is the number of minutes
passed since midnight, January 1, 1904.

findType Either the symbol ' dat eBef ore or' dat eAf ter.
Specifies whether the user chose to find items before or
after the date specified by the value of the date
parameter.

results This Dat eFi nd method appends the slot nyResul t to
the results array passed to the Dat eFi nd method by the
system. The exact content of the myResul t slot
depends on the kind of finder proto used to create the
frame returned by your search method. If you used the
soupFi nder proto, the frame contains a cursor that
iterates over a list of entries returned by your search
method’s query on the application data soup. If you
used the ROM _Conpat i bl eFi nder proto, the frame
contains an array of found items. If a global find is in
progress, the results array may contain slots created by
other applications’ search methods.

scope Either' | ocal Fi nd or' gl obal Fi nd. Indicates
whether the search is local or global, allowing you to
handle these two cases differently if you prefer.

General Application Protos 3-19

3-20

CHAPTER 3

NewtApp Reference

findContext

Find

A frame to which the message Set St at us is sent. The
Set St at us function accepts as its sole argument a
string to display to the user while the search is in
progress.

myNewtApplication: Fi nd(text, results, scope, findContext)

Searches all the soups in the al | Soups frame for the text specified by the
user. The return value of this method is ignored; the results of the search are
returned in the results parameter.

text

results

scope

findContext

Contains the user-specified string for which Find is to
search.

This Fi nd method appends the slot nyResul t to the
results array passed to the Fi nd method by the system.
The exact content of the myResul t slot depends on the
kind of finder proto used to create the frame returned
by your search method. If you used the soupFi nder
proto, the frame contains a cursor that iterates over a list
of entries returned by your search method’s query on
the application data soup. If you used the

ROM _Conpat i bl eFi nder proto, the frame contains an
array of found items. If a global find is in progress, the
results array may contain slots created by other
applications’ search methods.

Either' | ocal Fi nd or ' gl obal Fi nd. Indicates
whether the search is local or global, allowing you to
handle these two cases differently if you prefer.

A frame to which the message Set St at us is sent. The
Set St at us function accepts as its sole argument a
string to display to the user while the search is in
progress.

General Application Protos

CHAPTER 3

NewtApp Reference

ShowFoundltem

myNewtApplication: ShowFoundl| t en(entry, finder)

Switches folders as necessary to show the found items as they are chosen by
the user from the dialog box.

entry The entry in which the item is found.

inder A NewtApp-compatible finder constructed by the
PP p y
newt Appl i cat i on proto.

newtApplication Delete and Duplicate Methods

The following methods, defined in the newt Appl i cat i on proto, can be
used to delete and duplicate data items.

NewtDeleteScript

myNewtApplication: Newt Del et eScri pt (what, view)

Deletes the specified item(s) and removes it from the specified view. This
method displays alerts, in case someone tries to use delete when nothing is
selected or tries to delete items in the Overview. This method also saves the
item and the view for a possible undo action.

what A cursor or other reference to the item(s) to delete.
view A symbol referring to the view in which the item
appears.

NewtDuplicateScript

myNewtApplication: Newt Dupl i cat eScri pt (what, view)

Duplicates the specified item(s) and adds the duplicate to the specified view.
This method also displays an alert which appears if someone tries to
duplicate when nothing is selected. This method saves the item and the view
for a possible undo action.

what A cursor or other reference to the item(s) to be
duplicated.

General Application Protos 3-21

3-22

CHAPTER 3

NewtApp Reference

view A symbol referring to the view in which the item
appears.

NewtApplication Status Methods

The following methods, defined in the newt Appl i cat i on proto, can be
used to obtain information about and save the state of your application.

GetAppState

myNewtApplication: Get AppSt at e()

Gets the application preferences and uses them to set the values of the labels
filter, the current and previous layouts, and the recognition settings. It then
returns a copy of the application preferences.

Your application may override Get AppSt at e, SaveAppSt at e, and
Get Def aul t St at e to add your own application preferences.

GetDefaultState

myNewtApplication: Get Def aul t St at e()

This method sets the default values for the application preferences, including
values for the labels filter, the position of the current layout, the current and
previous layouts, and the recognition settings.

Your application may override Get AppSt at e, SaveAppSt at e, and
Cet Def aul t St at e to add your own application preferences.

SaveAppState

myNewtApplication: SaveAppSt at e()

Saves application status. The following is saved:

m folder positions for each entry in each soup in the al | Soups slot
m filters used to determine filing location

m view positions, including the current and previous layouts

General Application Protos

CHAPTER 3

NewtApp Reference

Your application may override Get AppSt at e, SaveAppSt at e, and
Cet Def aul t St at e to add your own application preferences.

newtinfoButton

"
1

This proto provides the standard “i” information button, which always
appears to the far left of the status bar. It is based on pr ot ol nf oBut t on,
discussed in Chapter 6, “Controls Reference.”

Unlike the pr ot ol nf oBut t on, the newt | nf oBut t on proto provides the
default methods Dol nf oAbout , Dol nf oHel p, and Dol nf oPr ef s, which
are invoked when the user taps About, Help, or Prefs in the picker, as shown
in Figure 3-1.

Figure 3-1 The Information button and picker

About
Help
Prefs

The following methods provide default handling for items in the picker
menu of the newt | nf oBut t on.

DolinfoAbout
mylnfoButton: Dol nf oAbout ()

Closed and set to ni | if an About view has been created. If no About view is
open, one is created.

DolnfoHelp
mylInfoButton: Dol nf oHel p()

Closed and set to ni | if an on-line Help book has been created. If no Help
book is open, this method looks for an index to one in a vi ewHel pTopi ¢

General Application Protos 3-23

3-24

CHAPTER 3

NewtApp Reference

slot in the base view. If one exists, the Help manual is opened to the index
location; otherwise, it is just opened.

DolnfoPrefs

mylnfoButton: Dol nf oPr ef s()

Closed and set to ni | if a Preferences view has been created. If no
Preferences view is open, one is created.

newtAboutView

This proto is the view in which information about the application is stored.
The About view is displayed when the user chooses About from the Info
(“i”) button picker, which sends the Dol nf oAbout message. It appears as
shown in Figure 3-2.

General Application Protos

CHAPTER 3

NewtApp Reference

Figure 3-2 The NewtApp About view

Page Starter

Mewtdapp 1.0w1

@ 1993-1994 Apple
Computer. &ll rights
reserved.

1k storage used for 5 [tems

newtPrefsView

This proto is the view in which information about the application is stored.
The Preferences view is displayed when the user chooses Prefs from the Info
(“1”) button picker and the method Dol nf oPr ef s is sent. It appears as
shown in Figure 3-3.

General Application Protos 3-25

CHAPTER 3

NewtApp Reference

Figure 3-3 A NewtApp Preferences view

Page 5tarter Preferences

Lo Always store newitemns internally

newtActionButton

This proto provides the standard action button. If you have a card-style
application and want routing, place this in the menuRi ght But t ons slot of
newt St at usBar (page 3-30) and the framework will place it correctly on
the status bar. The action button belongs next to the close box (to the left). It
appears as shown in Figure 3-4.

Figure 3-4 The Action button

newtFilingButton

This proto provides the standard filing button, with added functionality of
working with the NewtApp framework. If you have a card-style application
and want filing, place this in the menuRi ght But t ons slot of

newt St at usBar (page 3-30) and the framework will place it correctly on
the status bar. The filing button belongs to the left of the action box. It
appears as shown in Figure 3-5.

3-26 General Application Protos

CHAPTER 3

NewtApp Reference

Figure 3-5 The Filing button

newtAZTabs

This proto is used to include alphabetical tabs, arranged horizontally, in a
view; it is based on the pr ot 0AZTabs but adds useful functionality to that
base. (See pr ot 0AZTabs in Chapter 6, “Controls Reference.”) The

newt AZTabs view appears as shown in Figure 3-6.

Figure 3-6 NewtApp A-Z tabs

mcd ef|gh]ij kﬂmﬂup qr] st uﬂ.lm yz]

When a view is changed and a new view is set up, as happens when
someone taps an alphabet tab, each view is automatically added to a

ret ar get Chai n array. When a view needs to update and redraw itself, the
rest of the views in the chain of views contained by it are notified, and a

Ret ar get message is sent to the entire chain.

Note that newt AZTabs works by using the index you have set up in an
i ndexPat h slot of the soupQuer y for your soup. (These are defined in the
newt Appl i cati on. al | Soups base view slot.)

This proto defines its own versions of Ret ar get Not i fy and

Pi ckLet t er Scri pt, which you can override to add functionality
appropriate to your application data. If you do, however, remember to call
the inherited method.

General Application Protos 3-27

CHAPTER 3

NewtApp Reference

PickLetterScript

myTabs: Pi ckLett er Scri pt (letter)

Called when the user taps a tab. The letter on the tab is matched to the value
set up in the i ndexPat h slot of the soupQuer y frame (in the
newt Appl i cati on. al | Soups slot), and the entry and view are retargeted.

letter The letter that was tapped.

newtFolderTab

This is the plain folder tab. If you want filing to operate correctly in your
application, it must use either this proto or the newt G ockFol der Tab
proto. The newt Fol der Tab view is shown in Figure 3-7.

Figure 3-7 The plain folder tab

_ & All Items :

newtClockFolderTab

This folder tab incorporates a date and time indicator. It is automatically
updated if the current folder is deleted. When the user taps the folder tab, a
picker containing the list of folders available to your application displays. If
you want filing to operate correctly in your application, it must use either the
newt Fol der Tab proto or the newt O ockFol der Tab proto, shown in
Figure 3-8.

Figure 3-8 The digital clock and folder tab

3-28

. + Unfiled Items :

General Application Protos

CHAPTER 3

NewtApp Reference

newtStatusBarNoClose

This proto is the basic component of the newt St at usBar : the bar alone,
with no buttons or close box.

This proto implements the menulLef t But t ons and nenuRi ght But t ons
slots, which are placeholders for buttons you add. The slots

menulef t But t ons and menuRi ght But t ons are arrays of buttons to be
displayed on the status bar. They are arranged at display time as
stepchildren of the menu bar.

When there is no st at usBar Sl ot (page 3-11) set in the newt Appl i cat i on
base view, the status bar figures the correct size of the buttons in the
menuLef t But t ons and menuRi ght But t ons arrays and places them
correctly. It is recommended that you use these slots to ensure the correct
justification of your status bar buttons with future enhancements.

If the st at usBar Sl ot in the base view has been set, the appearance and
disappearance of the buttons on the status bar is governed by the values set
for the menuLef t But t ons and menuRi ght But t ons slots, at the layout
level of the application. See “newtLayout,” beginning on page 3-32.

The buttons in the menuLef t But t ons array are laid out from left to right,
starting with the Info button. The buttons in the menuRi ght But t ons array
are laid out from right to left, starting with the close box.

Slot descriptions

menulLef t Butt ons
An array of standard text buttons. The elements in the
array are laid out from left to right, with the first
element at the far left. An appropriate value is shown in
the following code:

menulLeft Butt ons:
[newt | nf oBut t on,
newt NewSt at i oner yBut t on,
newt ShowSt at i oner yBut t on]

General Application Protos 3-29

CHAPTER 3

NewtApp Reference

nmenuRi ght But t ons
An array of standard text buttons. The elements in the
array are laid out from right to left, with the first
element at the far right. An appropriate value is shown
in the following code:

nmenuRi ght But t ons:
[newt Acti onBut t on,
newt Fi | i ngButton,]

newtStatusBar

This proto is based on the newt St at usBar NoCl ose. The only difference
between the two is that this status bar includes a large close box at its far
right side, as shown in Figure 3-9. As with the newt St at usBar NoCl ose
proto, you may use the menuLef t But t ons and nenuRi ght But t ons
arrays.

Figure 3-9 A status bar view

3-30

)

Slot descriptions

menulLef t But t ons
An array of standard text buttons. The elements in the
array are laid out from left to right, with the first
element at the far left. An appropriate value is shown in
the following code:

nmenulLeft Butt ons:
[newt | nf oButt on,
newt NewSt at i oner yButt on,
newt ShowSt at i oner yBut t on]

General Application Protos

CHAPTER 3

NewtApp Reference

menuRi ght But t ons
An array of standard text buttons. The elements in the
array are laid out from right to left, with the first
element at the far right. An appropriate value is shown
in the following code:

menuRi ght But t ons:
[newt Acti onBut t on,
newt Fi | i ngButton,]

newtFloatingBar

This proto is like a standard newt St at usBar, but it floats at the bottom of a
view. It was originally designed for the Notes application where individual
view types such as the Outline view have their own menu buttons that are
not necessary for the main application view. Like the newt St at usBar
proto, it implements a menuBut t ons slot, in which you may enumerate the
buttons to appear on the floating bar. A floating bar view is shown in

Figure 3-10.

Figure 3-10 A floating bar view

newtFloatingBar H= i =i P

Slot description

menuBut t ons An array of button protos. Buttons are laid out, an equal
distance apart, left to right in array order on the status
bar.

General Application Protos 3-31

3-32

CHAPTER 3

NewtApp Reference

newtlLayout

This proto must have at least one newt Ent r yVi ew proto as a child view. (It
may also contain other protos.) For layouts to work correctly, you must set
the mast er SoupSl ot to the soup from the newt Appl i cati on. al | Soups
slot to be used for this layout. In addition, you can direct your application to
force a new entry to be created (or not) when a user opens an empty folder,
by setting a layout’s f or ceNewEnt r y slot.

The nenuLef t But t ons and menuRi ght But t ons slots allow you to control
which buttons appear on the status bar from the layout layer of the
application. (The st at usBar Sl ot of the newt Appl i cat i on base view
must also be set.)

The following slots originate in the newlLayout proto and are inherited by
the other layout protos:

Slot descriptions
name Optional. An exampleis" Al | | nfo".

mast er SoupS| ot Required. A symbol that refers to the soup in the
newt Appl i cati on.al | Soups frame that is the main
soup of your application. It sets up the cursor and soup
query for your application. An appropriate value would
be ' nySoup.

forceNeweEntry Optional. Defaults to t r ue. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.

If f or ceNewEnt ry is set to ni | , no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAl | slot set in the
newt Appl i cati on base view.

menuRi ght But t ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuRi ght But t ons on the
status bar in the main layout.

General Application Protos

CHAPTER 3

NewtApp Reference

menulLef t Butt ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuLef t But t ons on the
status bar in the main layout.

The following slots are included for your information. They are maintained
automatically, so you need not worry about setting them. The dat aCur sor
slot is the main cursor to your application soup.

Slot descriptions

dat aSoup Set to the soup that contains the data this layout
displays.
dat aCur sor The main cursor to the data soup; it points to the

topmost visible entry.

The following methods are defined in the newt Layout proto.

FlushData
myLayout: Fl ushDat a()

Flushes all entries in the child views held by the layout view.

NewTarget

myLayout: NewTar get ()

Resets the view origin and redoes the screen.

Retarget

myLayout: Ret ar get (setViews)

Sets the cursor (dat aCur sor) to the new or changed entry and redraws the
screen after the cursor is changed, if the setViews parameter is t r ue. Note
that you should not use this method with a newt Over Layout or

newt Rol | Over Layout proto.

setViews If set to t r ue, the child views are redrawn.

General Application Protos 3-33

3-34

CHAPTER 3

NewtApp Reference

DoRetarget

myLayout:. DoRet ar get

If received by the entry layer, it performs a ReTar get on itself. If received by
the layout layer, it performs a ReTar get , with a non-nil value, on itself.

ScrollCursor

myLayout: Scr ol | Cur sor (delta)
Moves the cursor delta entries and resets it.

delta An integer which can be greater than 0 or less than or
equal to 0, depending on the direction for the scroll and
the amount to scroll.

If delta is not equal to 0 (and the cursor is valid), the
cursor is moved that number of places.

A value less than or equal to 0 causes the cursor to reset
to the end of the entries (for a scrolling end behavior of
"wrap or ' beepAndW ap) or to move to the next entry
(for a scrolling end behavior of ' st op or

' beepAndSt op). A value greater than 0 causes the
cursor to reset (for a scrolling end behavior of ' wr ap or
' beepAndW ap) or to move to the previous entry (for a
scrolling end behavior of ' st op or ' beepAndSt op).

SetUpCursor

myLayout: Set UpCur sor ()

Sets the cursor to an entry in the master soup and returns the entry to which
the cursor is set. If there are no entries in the master soup and

f orceNewEnt ry is t r ue, this method creates a blank entry (by calling
AddBI ankEnt r y) and sets the cursor to it.

General Application Protos

CHAPTER 3

NewtApp Reference

Scroller

myLayout: Scr ol | er (numAndDirection)

Traverses the number of entries specified by the parameter. In addition,
depending on whether the parameter is less than or greater than 0, the
scroller scrolls either up or down.

numAndDirection Either +n or —n, where 7 is the number of entries to

traverse. A value less than 0 is a scroll up and a value
greater than 0 is a scroll down.

IMPORTANT

This cannot be used in a newt Over Layout or
new Rol | Over Layout. A

ShowFoundltem

myLayout. ShowFoundl t en(entry, finder)

Uses the cursor already set up in the dat aCur sor slot to go to the slot in the
specified entry and conditionally sends the ShowFoundl t emmessage to any
child views. You may choose to override the method to customize it to the
specific data.

entry A valid soup entry.

finder A NewtApp-compatible finder.

ViewScrollDownScript

myLayout: Vi ewScr ol | DownScr i pt ()

Produces a visual effect and calls the scr ol | er method with a value of 1.

ViewScrollUpScript

myLayout: Vi ewScr ol | UpScri pt ()

Produces a visual effect and calls the scr ol | er method with a value of -1.

General Application Protos 3-35

3-36

CHAPTER 3

NewtApp Reference

newtRollLayout

An example of this prototype can be seen in the built-in Notes application,
which it was designed to support. This proto is meant to work with
stationery-based children and does not work with other protos without a lot
of effort on your part.

Anew Rol | Layout calculates at run time how many children it has,
depending on the number and size of the entries in the soup. It uses the
layout file—which must contain a newt Rol | Ent r yVi ewproto you
provided as the value of the pr ot oChi | d slot—as the default child view to
use when it dynamically builds itself.

IMPORTANT

Do not place the entry view of a roll-style application inside
a layout view; instead, it must be in a layout file (in NTK)
which is declared in an expression in the pr ot oChi | d slot,
as shown in the following example:

MyRol | Layout . protoChild : =
Cet Layout (" Def aul t Ent ryVi ew'") A

Slot description

protoChild Required. Reference to the layout file containing the
view to use to lay out the child views. The child view
must be a newt Rol | Ent r yVi ew This is the most
important newt Rol | Layout slot. Do not create the
entry view within a layout view in a page-style
application. Instead, create it in a separate layout file.
An appropriate value for the pr ot oChi | d slot of a
newt Rol | Layout is
Cet Layout ("Defaul tEntryVi ew').

There are no new methods specifically for the roll layout proto. However, it
does have its own version of the Scr ol | er method, modified so it works
with the long pages of the newt Rol | Layout . See the newt Layout

Scrol | er method (page 3-35) for more information.

General Application Protos

CHAPTER 3

NewtApp Reference

newtPagelLayout

This layout allows one entry to be visible at a time; otherwise, it acts the
same as the roll layout. The entry shown can be longer than one screenful.

A newt PageLayout, like the newt Rol | Layout proto, calculates at run
time how large it is, depending on the size of its child views. It uses the
layout file—which must contain a newt PageEnt r yVi ew proto you
provided as the value of the pr ot oChi | d slot—as the default child view to
use when it dynamically builds itself.

IMPORTANT

Do not place the entry view of a page-style application
inside a layout view; instead, it must be in a layout file (in
NTK) which is declared in an expression in the pr ot oChi | d
slot, as shown in the following example:

MyPagelLayout . protoChild : =
Get Layout (" Defaul t EntryVi ew') A

Slot description

protoChild Required. Reference to the layout file containing the
view to use to lay out the child views. The child view
must be a newt Rol | Ent r yVi ew This is the most
important newt Rol | Layout slot. Do not create the
entry view within a layout view in a roll-style
application. Instead, create it in a separate layout file.

An appropriate value for the pr ot oChi | d slot of a
newt PagelLayout is
CGet Layout (" Defaul t EntryVi ew').

newtOverLayout

This is the default overview. It is based on pr ot oOver vi ew (See
pr ot oOver vi ew(page 5-85) for more information.) It is singled out by the
newt Appl i cati on proto so that overview events invoke it.

General Application Protos 3-37

3-38

CHAPTER 3

NewtApp Reference

As with the pr ot oOver vi ew the newt Over Layout proto doesn’t have
view children; instead, it builds up shapes containing the overview
information and handles taps. These shapes are returned by the Abst r act
method.

Because of the way the newt Over Layout proto is implemented, you should
make sure that if you override an inherited method, you include a call to that
method by using the conditional message send (:?) operator.

Slot descriptions

mast er SoupSl ot Required. A symbol that matches a value in the
al | Soups slot in the newt Appl i cat i on base view.

dat aCur sor Required. Do not set this; value is inherited from the
parent layout proto.

name Required. Set it to something meaningful, like
“Overview.”

cent er Tar get Optional. Defaults to ni | . When set to t r ue, the
current entry is centered in the overview list.

forceNeweEntry Optional. Defaults to t r ue. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.

If f or ceNewENt ry is set to ni | , no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAl | slot set in the
newt Appl i cati on base view.

menuRi ght But t ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuRi ght But t ons in the
newt St at usBar in the main layout.

menulLef t Butt ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuLef t But t ons in the
newt St at usBar in the main layout.

General Application Protos

CHAPTER 3

NewtApp Reference

not hi ngCheckabl e
Optional. When t r ue, the check boxes and vertical
dotted line are suppressed.

Several methods are defined in this proto.

Abstract

myQverLayout: Abst r act (targetEntry, bbox)

Returns a shape or shape list representing an item in the overview. It is
passed two parameters; the first is the target soup entry and the second a
bounds frame within which the returned shape should be placed. You should
override this method to extract text from your soup format.

It extracts an icon for the entry (if one is provided) from the i con slot of a
dataDef.

targetEntry Required. The soup entry frame to be displayed.

bbox Required. The bounding box defining the shape for the
overview information. This includes a value for the left,
right, top, and bottom.

An Abst r act method example follows:

Abstract:
func(item bbox)
begin
/1 returns a shape for one line in the overview
MakeText (i tem name, bbox.left, bbox.top,
bbox. right, bbox. botton;
end;

GetTargetinfo

myQOverLayout: Get Tar get | nf o(targetType)

Used by several system services (such as Filing, Find, and Routing) to get
information about the currently selected item. You can override this method
if necessary.

General Application Protos 3-39

3-40

CHAPTER 3

NewtApp Reference

targetType

Slot descriptions

A symbol identifying what special kind of information
the view should return, besides the default frame.
Currently, the only symbol defined is' fi | i ng. Any
other value is ignored.

This method returns a frame that has the following slots:

t ar get

target Vi ew

target Store

Hitltem

The value of the t ar get slot in the view to which this
message is sent.

The value of the t ar get Vi ewslot in the view to which
this message is sent. If targetType is ' fi | i ng, this slot
contains the value of the t ar get App slot in the current
view instead.

If the t ar get slot is a soup entry, the store on which the
entry resides is returned in this slot.

myQOverLayout: Hi t | t en(index, x, y)

A method called when an item is tapped. The default method returns t r ue if
it handled the tap; that is, if it determined the tap was within the
sel ect | ndent margin and selected the item.

If you choose to override this method, you should check the x, y values; if
you don’t want to handle them, call i nheri t ed: Hi t | t em Also, be sure to
exclude the indent margin from your test.

index

X

The index to the item in the list (the first one being 0).

The x coordinate of the tap, relative to the left edge of
the item that was tapped.

The y coordinate of the tap, relative to the top edge of
the item that was tapped.

General Application Protos

CHAPTER 3

NewtApp Reference

newtRollOverLayout

Same as the newt Over Layout proto, except that it must be used in a
roll-style application. It is based on newt Over Layout . It is singled out by
the newt Appl i cat i on proto so overview events invoke it.

The newt Over Layout proto doesn’t have view children; instead, it builds
up a shape containing the overview information and handles taps. These
shapes are returned by the Abst r act method.

Because of the way the newt Rol | Over Layout proto is implemented, you
should make sure that if you override an inherited method, you include a
call to that method by using the conditional message send (:?) operator.

Slot descriptions

mast er SoupSl ot Required. A symbol that matches a value in the
al | Soups slot in the newt Appl i cat i on base view.

dat aCur sor Required. You do not set this, it is inherited from the
parent layout proto.

name Required. Set it to something easy to remember, like
“Overview.”

forceNewEntry Optional. Defaults to t r ue. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.

If f or ceNewENnt ry is set to ni | , no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAl | slot set in the
newt Appl i cati on base view.

cent er Tar get Optional. Defaults to ni | . When set to t r ue, the
current entry is centered in the overview list.

menuRi ght But t ons
Optional. If the st at usBar Sl ot in the base view is set,
this replaces the menuRi ght But t ons in the
newt St at usBar in the main layout.

menulLeft Butt ons
Optional. If the st at usBar Sl ot in the base view is set,

General Application Protos 3-41

CHAPTER 3

NewtApp Reference

this replaces the menuLef t But t ons in the
newt St at usBar in the main layout.

not hi ngCheckabl e
Optional. When t r ue, the check boxes and vertical
dotted line are suppressed.

newtEntryView

The newt Ent r yVi ewproto is the invisible container view for the protos that
allow you to view and edit data. See “Slot View Protos” (page 3-49) for
details. This proto is essential because it sets the t ar get slot to refer to the
soup entry that contains the data for the slot views to display.

There are no unusual slots to set, just the usual bounds and justify slots, and
then only if you want to override the default settings.

The following slots are set automatically. Note that dataDefs and viewDefs
are identified and used as target entries and target views in several
newt Ent r yVi ewslots.

IMPORTANT

Do not change the values of any of the following slots, or
your application will not work correctly. A

Slot descriptions

ent ryChanged When an entry is changed in a viewDef, this is set to
t r ue for flushing.

entryDirtied If the targeted viewDef was changed once and a flush
occurred, this is set to t r ue. When the view is closed
down, it checks this. If set, it does a broadcast soup
change to other applications.

t ar get Set to the entry that is ready to display.

vi ewJustify Optional. Defaults to parent full justify for horizontal
and vertical vj Parent Ful | H + vj Parent Ful | V

current Dat aDef Set by the enclosed stationery view to the current
dataDef. (See Chapter 5, “Stationery,” in Newton
Programmer’s Guide for more information.) This is a

3-42 General Application Protos

CHAPTER 3

NewtApp Reference

convenient access point for items like the
newt Ent r yRol | Header, so it can pull out the
appropriate icon from the newt | nf oBox.

current Vi enDef Set by the enclosed stationery view to the current
viewDef.

current St at Vi ewSet by the enclosed stationery view to the current
context of the viewDef. If the target entry has a dataDef
displayed, this points to it.
Internal methods need to know the context for the view
that contains the dataDef so messages may be sent to it.

The following methods are defined for the newt Ent r yVi ewproto and are
inherited by all entry views that are based on it.

StartFlush
myEntryView: St art Fl ush()

Starts the timer that flushes out the entry after a few seconds of inactivity.
Normally this is called automatically by a dataDef, but if you have some
other reason for causing an entry to be flushed, call this directly. Calling this
sets the ent r yChanged slot and begins the flush timer.

EndFlush
myEntryView: EndFl ush()

Called when the flush timer fires. If you want an immediate flush, set
ent r yChanged to t r ue and call this method.

EntryCool

myEntryView: Ent r yCool (report)
Checks to see if the target entry is on read-only media.

report If report is a non-ni | value, the notice “This is on a
write-protected card and cannot be changed” is
displayed, if the target entry in on read-only media.

General Application Protos 3-43

CHAPTER 3

NewtApp Reference

JamFromEntry

myEntryView: Janfr onEnt r y(otherEntry)

Looks for a JanFr onEnt r y method in each child of the entry view and
sends the same message to its childviews if appropriate. It then retargets the
view to display the changes. For more information, see the slot view’s
redefinition of JanFr omEnt ry (page 3-50).

otherEntry A soup entry. This is intended to be an entry other than
the one to which the ent r yVi ewis already targeted.

Retarget

myEntryView: Ret ar get ()

Changes the display for the viewDef(s) and dataDef(s) before conditionally
sending the Ret ar get message to each child view. For more information,
see the slot view’s redefinition of Ret ar get (page 3-59).

DoRetarget

myEntryView: DoRet ar get ()

If received by the entry layer, it performs a ReTar get on itself. If received by
the layout layer, it performs a ReTar get , with a non-nil value, on itself.

newtFalseEntryView

This proto, which is based on newt Ent r yVi ew allows the use of the
NewtApp framework’s slot view protos and stationary without the rest of
the NewtApp structure for updating entries. It is ideal for converting an
existing non-NewtApp application to use the NewtApp slot view protos.

When you use slot views or stationary outside a NewtApp application, you
must put them in a newt Fal seEnt r yVi ewproto and make sure the

t arget and t ar get Vi ewslots are set. This is accomplished by sending a
Ret ar get message to the newt Fal seEnt r yVi ewwhenever entries are
changed.

3-44 General Application Protos

CHAPTER 3

NewtApp Reference

Writing a changed entry back to the soup is the responsibility of the
application. You may want to set up a flush timer, or at least write back
changes when scrolling and closing.

Slot descriptions

target Sl ot Optional. Defaults to ' t ar get . There’s no need to reset
it if the slot in the parent context of this view, which
holds the current entry (or target), is named t ar get . If
not, set it to the symbol that refers to the slot in the
parent context that holds the data from the target entry.

dat aCur sor Sl ot Optional. Defaults to' dat aCur sor. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the main soup cursor, is named
dat aCur sor. If not, set it to the symbol that refers to
the slot in the parent context that refers to the main
soup cursor.

dat aSoupSl| ot Optional. Defaults to * dat aSoup. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the main soup, is named dat aSoup. If
not, set it to the symbol that refers to the slot in the
parent context that refers to the main soup.

soupQuerySl ot Optional. Defaults to ' soupQuer y. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the soup query, is named soupQuer y. If
not, set it to the symbol that refers to the slot in the
parent context that refers to the soup query.

The newt Fal seEnt r yVi ewinherits all the methods documented in the
newt Ent r yVi ewproto, although they have been altered slightly to provide
a simulated NewtApp application environment.

newtRollEntryView

This proto is based on the newt Ent r yVi ewproto and is equivalent to it,
except that it supports the roll style application (as implemented by the

newt Rol | Ent r yVi ewproto). It dynamically sizes the entries, depending on
the size of the viewDef. You must use stationery with this proto.

General Application Protos 3-45

CHAPTER 3

NewtApp Reference

Slot descriptions

tar get Set by the system to point to the current entry.

target Vi ew Refers to the newt Rol | Ent r yVi ew proto itself, so that
routing and other system services can use it.

bott om essHei ght
Optional. Sets the height of the entry view when it is the
last item in a roll style application. Set to the constant
KEnt r yVi ewHei ght .

newtEntryPageHeader

This proto implements the standard header/divider bar for a page entry
view. If this header is displayed in association with some stationery (a
dataDef is the current target entry) and it has an icon assigned to its i con
slot (page 3-48) that icon is used at the far left of the header. Otherwise a
default icon provided by the system is used.

When you press the header icon on the left of the bar, the newt | nf oBox
proto page 3-47 is automatically opened. If your entry has ati t | e slot, the
title is displayed in the area where the date is shown; otherwise, the date is
displayed. You can see all these features in the built-in Notes application.

Figure 3-11 A page header

3-46

[E]Mon 7724

newtEntryRollHeader

This proto implements the standard header/divider bar in a roll entry view.
If this header is displayed in association with some stationery (a dataDef is
the current target entry) and if the dataDef has an icon assigned to itsi con
slot (page 3-48), it is used at the far left of the header. Otherwise, a default
icon provided by the system is used.

General Application Protos

CHAPTER 3

NewtApp Reference

When you tap the header icon, a newt | nf oBox proto (page 3-47) is
automatically displayed. If your entry has ati t | e slot, the title is displayed;
otherwise, the date is displayed. You can see all of these features in the
built-in Notes application. A roll header is shown in Figure 3-12.

Figure 3-12 A roll header

[E]Mon 7724 & E

Slot descriptions
hasFi | i ng Optional. Defaults to t r ue. Set to ni | for no Filing or
Action buttons.

resi zabl e Optional. Defaults tot r ue. Set to ni | for no drag
resizing.

newtEntryViewActionButton

This is the standard Action button. It must be a child of the entry view. It
handles the usual routing actions, but in the entry view rather than the
application base view context.

newtEntryViewFilingButton

This is the standard Filing button, but it must be a child of the entry view. It
handles the usual filing actions, but in the entry view rather than the
application base view context.

newtlnfoBox

This is a floating view based on pr ot oFl oat NGo. It displays informational
text including the date, the size of the target entry, and the storage location of
the entry. It also contains an input line with the label “Title.” If the text on

General Application Protos 3-47

CHAPTER 3

NewtApp Reference

that line is changed, the new text is saved automatically and displayed next
to the icon on the title bar after the proto is closed.

If your application uses stationery, the icon you declared in the i con slot is
used next to its description, which is also taken from the dataDef. You need
to add nothing to get a view that looks very similar to the one from the
built-in Notes application shown in Figure 3-13.

Figure 3-13 A NewtApp Information slip

3-48

E)Mon 7731] =)

Tivle Moh 7/ 31

Date: 3:07 pm Vion 7731595
5ize: 129 bytes
Where: Card

Slot descriptions
i con Optional. An icon representing the object about which
the information is provided.

descri ption Optional. A string describing the entry being displayed.

General Application Protos

CHAPTER 3

NewtApp Reference

Slot View Protos

The slot view protos include all the protos you use to view and edit the data
held in the slots of a soup entry. The slot view protos usually have a
one-to-one correspondence with soup slots.

There are two categories of slot views:
m Simple read-only (RO) and edit views

m Labelled input-line protos

All slot views assume a soup entry has been set by the parent proto as the
value of the t ar get slot. The t ar get slot is a reference to the soup entry
containing the data to be displayed in a slot view. This soup entry will also
stores the user-entered data.

This is set at run time by the NewtApp framework, where t ar get is a slot
defined in the newt Appl i cat i on base view. The t ar get Vi ewis the

newt Ent r yVi ewproto that contains the slot view in which the target data is
to be displayed.

When slot views are used outside a NewtApp application, the t ar get and

t ar get Vi ewslots must be set by you. In this case, the slot view protos must
be contained by a newt Fal seEnt r yVi ew proto (page 3-44), which must be
the view referred to by the t ar get Vi ewslot.

Slot views also require a pat h slot. Depending on the proto, this slot must be
a path expression leading to a slot that holds a certain kind of data. For
instance, the pat h slot of a newt ROText Dat eVi ew proto must refer to a slot
in an entry that contains dates.

Also included in this view category are two protos:newt Ent r yLockedl con,
(page 3-59) which you can use to indicate locked media or read-only views
and newt St at i oner yVi ew(page 3-59) which provides a bounding box for
your dataDef stationery component.

Slot View Protos 3-49

3-50

CHAPTER 3

NewtApp Reference

Slot description

pat h Required for all slot views. A symbol that is a path
expression to the slot in the target frame where the
initial value for the input line resides, and in which the
final value is to be stored.
The slot identified by the path expression should
contain the specified data for the specific slot view.

Also defined for the slot view protos is a Text Scri pt method that displays
the text for the target entry and a JanFr onEnt r y method that puts the path
of a new entry into the pat h slot. These work for all simple slot views.

TextScript

mySlotView: Text Scri pt ()

Returns a text representation of the data at the specified path in the target
soup entry for any slot view in your application.

JamFromEntry

mySlotView: Janfr onEnt r y(otherEntry)

Replaces the path expression in the pat h slot with a new path expression.
The new path is formed by appending the value of the otherEntry parameter
to the path expression that leads to the soup entry in which the slot resides,
which it obtains from the j anSl ot slot (if it's not ni |).

This essentially resets the target entry to a different entry and causes the
display to change so the user is looking at the new value.

otherEntry A soup entry. This is intended to be an entry other than
the one to which the ent r yVi ewis already targeted.

For an example of when you might want to use this method, imagine you are
developing an order-entry system. You want the customer address stored in
the order, but it’s in the Names soup. To extract the data, you set the

j anSl ot to a path expression that leads to the address in the Names soup
and send the Janfr onEnt r y message with the Names soup entry as the
value of the otherEntry parameter.

Slot View Protos

CHAPTER 3

NewtApp Reference

newtROTextView

This proto displays read-only text. It is the base proto for the rest of the

simple slot views.

Slot descriptions
pat h

styl es
t abs
j antl ot

Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

Optional. Defaults to ni | .

Optional. Defaults to ni | .

Optional. Defaults to ni | . If this view has a j anSl ot
that is not ni | , the slots from an entry passed to the
Janfr onEnt r y method are placed (“jammed”) into the
soup slot referred to by pat h.

The j anB| ot may be set to a path expression that
defines the path to use to extract data from a slot in an

entry, when the entry is not the one already targeted by
the entry view (which encloses the slot view).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View

Protos” (page 3-49).

newtTextView

This is the other base proto for the slot views; it is based on the read-only text
view (newt ROText Vi ew). Use it to display editable text that does not need a

label.

Slot descriptions
pat h

styles
t abs

Slot View Protos

Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

Optional. Defaults to ni | .
Optional. Defaults to ni | .

3-51

3-52

CHAPTER 3

NewtApp Reference

j ansl ot Optional. Defaults to ni | . If this view has a j an| ot
that is not ni | , the slots from an entry passed to the
JanFr onEnt r y method are placed (“jammed”) into the
soup slot referred to by pat h.
The j anB| ot may be set to a path expression that
defines the path to use to extract data from a slot in an
entry, when the entry is not the one already targeted by
the entry view (which encloses the slot view).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtRONumView

A read-only view for numbers, which is based on the NewtApp read-only
text view (newt ROText Vi ew). It has functionality added for number
formatting.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

f or mat Optional. The format string for displaying the data
defaults to %10g and a 10-place decimal. See
For mat t edNunber St r (page 23-17) for complete
details.

i ntegerOnly Optional. Defaults to t r ue, signaling that conversion
from text to number should result in an integer.

See also the methods Text Scri pt and Janfr onEnt r y in “Slot View
Protos” (page 3-49).

newtNumView

An editable number view that is based on the read-only number view
(newt RONunVi ew) and inherits its slots. Specify number formatting by
assigning values to the f or mat and i nt eger Onl y slots.

Slot View Protos

CHAPTER 3

NewtApp Reference

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

f or mat Optional. The format string for displaying the data
defaults to %10g and a 10-place decimal.

i ntegerOnly Optional. Defaults to t r ue, signaling that conversion
from text to number should result in an integer. A value
of nil allows real (decimal) numbers.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtROTextDateView

This proto is set to contain text and dates. Depending on which of the two
slots, | ongFor mat or shor t For mat , is non-ni | , this proto displays either
long or short dates, such as February 29, 1984, or 2/29/84.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text or date to
display in this view, and in which to store the final
value.

| ongFor mat Optional. Defaults to year Mont hDay St r Spec, which
is a format for use by the LongDat eSt r function
(page 17-23). The | ongdat e specification is defined by
the system. Either this slot or the shor t For mat slot
should not be ni |, so the view can choose the format.

shor t For mat Optional. Defaults to ni | . This is a format defined by
the system for use by the Short Dat eSt r function
(page 17-24).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos 3-53

3-54

CHAPTER 3

NewtApp Reference

newtTextDateView

This editable view is based on its read-only version
(newt ROText Dat eVi ew) and inherits its slots.

Slot descriptions
pat h

| ongFor nat

shor t For mat

Required. The slot identified by this path expression is
the slot from which to get the initial text or date to
display in this view, and in which to store the final
value.

Optional. Defaults to year Mont hDay St r Spec, which
is a format for use by the LongDat eSt r function
(page 17-23). The | ongdat e specification is defined by
the system. Either this slot or the shor t For mat slot
should not be ni | , so the view can choose the format.

Optional. Defaults to ni | . This is a format defined by

the system for use by the Short Dat eSt r function
(page 17-24).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View

Protos” (page 3-49).

newtROTextTimeView

This proto is based on the newt ROText Vi ew proto, but has functionality
added to display and format a time string. The slot to be displayed must
contain a time or text.

Slot descriptions
pat h

f or mat

Slot View Protos

Required. The slot identified by this path expression is
the slot from which to get the initial text and/or time to
display in this view, and in which to store the final
value.

Optional. Defaults to Short Ti meSt r Spec which is a
format for use by the Ti meSt r function (page 17-27).

CHAPTER 3

NewtApp Reference

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtTextTimeView

This editable view protos from its read-only version (newt ROText Ti neVi ew)
and inherits its slots.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text and/or time to
display in this view, and in which to store the final
value.

f or mat Optional. A format for use by the Ti meSt r function
(page 17-27). Defaults to Shor t Ti neSt r Spec.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtROTextPhoneView

This view, which is based on the newt ROText Vi ew proto, displays a
telephone number from the application soup.

Slot description

pat h Required. The slot identified by this path expression is
the slot from which to get the initial phone number to
display in this view, and in which to store the final
value.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos 3-55

3-56

CHAPTER 3

NewtApp Reference

newtTextPhoneView

This view, based on the newt ROText Vi ew proto, formats a number entered
into it by a user as a telephone number.

Slot description

pat h Required. The slot identified by this path expression is
the slot from which to get the initial numbers to display
in this view, and in which to store the final value.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtROEditView

This is a fixed-size edit view that displays the application soup. It may also
be set up to have its own scrollers by setting the opt i onFl ags slot.

Slot descriptions

doCar et Optional. Defaults to t r ue, which autosets the caret.

opti onFl ags Optional. Defaults to kNoOpt i ons (which has a
numeric value of 0) and sets the scrollers not to show.
The constant kHasScr ol | er sQpt i on (which has a
numeric value of 1) sets them to show.

Vi ewLi neSpaci ng
Optional. Defaults to 28.

pat h Required. The slot identified by this path expression is
the slot from which to get the initial numbers to display
in this view, and in which to store the final value.

This proto also defines the method Scr ol | ToWr d for your convenience.
See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos

CHAPTER 3

NewtApp Reference

ScrollToword
myeditView: Scr ol | ToWbr d(words, hilite)

This method finds the specified word, scrolls the edit view to the found
word, and highlights it—if the hilite parameter is t r ue. If no match is found
for the specified word in any view child of the edit view, Scr ol | ToWr d
does nothing. This method does not work in roll layouts.

words May be a string or an array of single words to find.

hilite If t r ue, the matching text of the paragraph view is
highlighted.

newtEditView

This view protos is based on its read-only version (newt ROEdi t Vi ew) and
behaves simply, somewhat like a cl Edi t Vi ew (See “General Input Views”
beginning on page 8-6 in Newton Programmer’s Guide.) Unlike the read-only
version, this proto accepts user-entered text. A newt Edi t Vi ew with scroll

bars showing, is shown in Figure 3-14. This proto can use any of the

Newt ROEdi t Vi ewslots (page 3-56).

Figure 3-14 A newtEditView proto

Here's some text in a

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos 3-57

3-58

CHAPTER 3

NewtApp Reference

newtCheckBox

This view is based on the pr ot oCheckBox page 6-24. Basically, it works so
the check mark is on when the value of the t ar get . (pat h) slot is equal to
the value of the assert slot. If you want more complex behavior, override
the Vi ewSet upFor nScr i pt and the Val ueChanged method.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which the initial text to display in this
view is gotten, and in which the final value is to be

stored.
assert Optional. Defaults to t r ue. Holds the “checked” value
negat e Optional. Defaults to ni | . Holds the “unchecked” value.

The values of assert and negat e are written back to and read from target.

See also the methods Text Scri pt and Janfr onEnt r y in “Slot View
Protos” (page 3-49).

This proto also implements the following two methods.

ViewSetupFormScript

myCheckbox: Vi ewSet upFor nScri pt ()

Checks the value of t ar get .(pat h) for equality against the value of the
assert slot. Override this method for more complex behavior.

ValueChanged

myCheckbox: Val ueChanged()

If the equality check in the Vi ewSet upFor nScri pt is non-ni |, the slot
t ar get . (pat h) is set to the assert value; otherwise, it is set to the
negat e value. Override this method for more complex behavior.

Slot View Protos

CHAPTER 3

NewtApp Reference

newtStationeryView

This view holds nothing; its function is to give a viewDef its bounding box. It
contains the instantiated view of a ViewDef template. This proto is different
from the newt St at i onery proto, page 4-3 which you use to create a
dataDef.

newtEntryLockedlcon

You use this proto to show a lock icon if the slot is on locked media, on a
ROM card, or contained in a read-only view. The newt Ent r yLockedI con
proto is set either to show or not show when your view is opened.

Slot description

icon Optional. Defaults to ni | ; it may also have the value
| ockedl con.

The following methods are defined internally to newt Ent r yLockedI con.
They should not be changed, or the proto does not work as documented.

Retarget

myLockedIcon: Ret ar get ()

Calls Set | con to show either the locked or unlocked icon (according to
whether the store is locked or in ROM) and redraws the icon.

Setlcon

myEntryLockedIcon: Set | con()

Checks the target soup entry to find out if it is or locked or in ROM. If it is,
the locked icon is displayed.

Slot View Protos 3-59

CHAPTER 3

NewtApp Reference

Labelled Input-Line Slot View Protos

The NewtApp labelled input-line protos function similarly to the
prot oLabel | nput Li ne family of protos. (If you are not familiar with those
protos, you may read about them in Chapter 8, “Text and Ink Input and

Display.”)

In addition to their label and pop-up menu capabilities, these protos include
the f | avor and access slots. The access slot limits the type of access each
label input-line slot view allows. The f | avor slots contain references to the
NewtApp filter protos. These protos assign appropriate pickers and correct
formatting for the intended data type. They are enumerated in Table 3-1.

Table 3-1 The NewtApp filters used to set thef | avor slot
Filter* Description Slots
newt Text Fil ter This is the filter the other filter This proto contains no slots for

protos are based on. It allows
the label input-line proto,
which uses it as the value of its
fl avor slot, to accept text

input.
newt | nt eger This filter is based on the
Filter newt Text Fi | t er proto. It is set

to accept only integers as input
and contains a f or mat slot,
which you may set.

newt Nurber This filter is based on the

Filter newt | nt eger Fi | ter proto. It
is set to accept all numbers as
input and contains a f or mat
slot, which you may set.

3-60 Labelled Input-Line Slot View Protos

you to set.

f or mat : Optional. Defaults to
% 10g. You should change this
as needed.

f or mat : Optional. Defaults to
% 10g. You should change this
as needed.

CHAPTER 3

NewtApp Reference

Table 3-1

The NewtApp filters used to set the f | avor slot (continued)

Filter*
newt Dat eFi | t er

newt Si npl e
DateFil ter

newt Ti neFil ter

Description

This filter is based on the

newt Text Fi | t er proto. Itis set
to accept dates as input and
contains two format slots,
which you may set; one must
be set to a non-ni | value. This
proto specifies that the

pr ot oDat ePopup picker is to
be used.

This filter is based on the

newt Dat eFi | t er proto and, is
similarly set to accept and
format dates. This filter allows
dates that look like 5/15/55 or
5/15 and is useful for birthday
input lines. It also contains two
format slots, one of which must
be set to a non-ni | value.

This filter is based on the

newt Text Fi | t er proto. It
contains a f or mat and

i ncrement slot, which you
may set. If an input line of a
newt Ti meFi | t er flavor uses a
pop-up menu, a

prot oTi mePopup picker is
specified by this proto.

Labelled Input-Line Slot View Protos

Slots

shor t For mat : Optional.
Defaults to ni | . May be set
to a format used by the
Shor t Dat eSt r function.

| ongFor mat : Optional. Defaults
to year Mont hDay St r Spec, a
format used by the LongDat eSt r
function.

shor t For mat : Optional.
Defaults to ni | . May be set
to a format used by the
Short Dat eSt r function.

| ongFor mat : Optional. Defaults
to nmont hDaySt r Spec, which is
the format used by the

LongDat eSt r function to
withhold the year.

f or mat : Optional. Defaults to
short Ti meSt r Spec. You should
change this as needed.

i ncr enent : Optional. Defaults
to 10.

3-61

CHAPTER 3

NewtApp Reference

Table 3-1 The NewtApp filters used to set the f | avor slot (continued)
Filter* Description Slots
newt Dat eN This filter is based on the shor t For mat : Optional.

TinmeFilter

newt PhoneFi |l ter

newt CityFilter

new StateFilter

newt Text Fi | t er proto. It
contains the slots f or nat,

| ongFor mat , and

shor t For mat , which you may
set. Note that of the two slots,
| ongFor mat and

short For mat, one must be set
toanon-ni | value.

If an input line of a

newt Dat eNTi meFi | t er flavor
uses a pop-up menu, a

pr ot oDat eNTi nePopup
picker is specified by this proto.

This filter is on the

newt Text Fi | t er proto and is
used to format numbers as
phone numbers.

This filter is based on the
newt Text Fi | t er proto and is
used to format text as cities.

This filter is based on the
newt Text Fi | t er proto and is
used to format text as state
names or abbreviations.

If an input line of a

newt St at eFil ter flavor

uses a pop-up menu, a

pr ot oLocat i onPopup picker
is specified by this proto.

3-62 Labelled Input-Line Slot View Protos

Defaults to ni|.May be settoa
format used by the
Shor t Dat eSt r function.

| ongFor mat : Optional. Defaults
to year Mont hDay St r Spec, the
format used by the LongDat eSt r
function to withhold the year.

f or mat : Optional. Defaults to
short Ti meSt r Spec. You should
change this as needed.

ki nd: Optional. Defaults to ni .
The built-in types include f ax,
hone, and wor k, and are used
to change the label for the

input line.

This proto contains no slots for
you to set.

This proto contains no slots for
you to set.

CHAPTER 3

NewtApp Reference

Table 3-1 The NewtApp filters used to set the f | avor slot (continued)
Filter* Description Slots
newt Country This filter is based on the This proto contains no slots for
Filter newt Text Fi | t er proto and is you to set.

used to format text as country
names or abbreviations.

If an input line of a

newt CountryFi |l ter flavor
uses a pop-up menu, a

pr ot oLocat i onPopup picker
is specified by this proto.

newt Smar t Nane This filter is based on the This proto contains no slots for
Filter newt Text Fi | t er proto and is you to set.

used to present the Names

soup to the user, who may

choose a name that appears on

the input line.

If an input line of a

newt Snart NaneFi | t er flavor
uses a pop-up menu, a

pr ot oPeopl ePopup picker is
specified by this proto.

* Filter names in the first column are all one word. They have been broken here due to space
limitations.

newtProtoLine

The newt Pr ot oLi ne is the base view for the input line protos. This proto
inherits behavior from both the view class cl Vi ewand the proto

newt ROText Vi ew In addition, it contains built-in code that creates the label
picker and interprets menu item commands.

Most of the following slots are included for your information only. The only
slot you should change for the built-in protos is the | abel slot. Do not
change the access or flavor of the other slots; they will not work as planned.

Labelled Input-Line Slot View Protos 3-63

3-64

CHAPTER 3

NewtApp Reference

Slot descriptions
| abel

| abel Commands

cur Label Command

usePopup

access

flavor

menory

Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
value is

["picker option one", "picker option two"]

Optional. If the | abel Commands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the | abel Commands array. If you
omit this slot, no item is initially marked with a check
mark. Note that you must update this value when a
different value is chosen.

Optional. Defaults to t r ue. When set to t r ue and you
provide a | abel Commands array, the input-line label
displays a diamond, indicating a picker (pop-up menu).
Optional. Defaults to ' readW i t e. Valid values
include' readWite,' readOnly, and' pi ckOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

Optional. Defaults to newt Fi | t er. See Table 3-1 for a
list of filters. Do not change this value for the built-in
protos or they will not work as expected.

Optional. Defaults to ni | . Used to reference a list of the
last n items chosen. The value of this slot is a symbol
that names the list. The symbol must incorporate your
developer signature.

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

This proto also contains the following methods:

ChangePopup

myProtoLine:ChangePopup(item, entry)

Allows you to change a menu item before it is displayed (assuming there is a
picker menu). For example, if you do a name query, but want to display “Bob
Johnson, Apple” instead of just “Bob,” use this method. If ChangePopup
isn’t defined, the menu just shows the original data.

item An item to be displayed in the picker menu.

entry The entry corresponding to the item selected from the
picker menu.

UpdateText

myProtoLine:Updat eText (newText)

Updates text for an Undo action. It changes the old text to the text passed in
as a parameter and posts that change to the Undo system service.

newText A string to which the entry is changed, which is passed
in as the parameter to this method.

newtLabellnputLine

This proto is used for a one-line input field that includes a text label and can
optionally feature a pop-up menu. It is similar to pr ot oLabel | nput Li ne,
and can use all of the slots available to that proto. It also shares some
behavior (j anSl ot etc.) with the text view, and is based on the

newt Pr ot oLi ne proto.

The newt Label | nput Li ne proto is a one-line input field that includes a
text label at its left. When a | abel Commands array is provided, a diamond
appears to the left of the label and the contents of the array appear in a
picker menu. Without | abel Conmands, the newt Label | nput Li ne proto
appears as shown in Figure 3-15.

Labelled Input-Line Slot View Protos 3-65

CHAPTER 3

NewtApp Reference

Figure 3-15 A NewtApp label input line

3-66

S5ome Text:

Slot descriptions
access

| abel

| abel Font

| abel Commands

cur Label Command

usePopup

pat h

Optional. Defaults to ' r eadW i t e. Valid values
include' readWite,' readOnly, and"' pi ckOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

Optional. Defaults to the empty string. Set to a string
such as “ Some Text ", which is the label text you wish
to display.

Optional. Sets the font used for the label. The default is
ROM f ont Syst enBBol d.

Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that itis a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
value is:

["picker option one","picker option two"]

Optional. If the | abel Commands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the | abel Commands array. If you
omit this slot, no item is initially marked with a check
mark.

Optional. Defaults to t r ue. When set to t r ue and you
provide a | abel Commands array, the input line label
displays a diamond, indicating a picker (pop-up menu).
Required. The path expression should identify the soup
slot where the text is saved. An example is

[pat hExpr: kAppSoupSynbol , 'someText]

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

flavor Set to newt Text Fi | t er ; do not change this, or the
proto will not work as expected.

newtROLabellnputLine

This is the same as newt Label | nput Li ne, except that there is no dotted
line and the text displayed is read-only.

Slot descriptions

| abel Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input-line
label. An example is

"Some Text:"

pat h Required. The path expression should identify the soup
slot where the text is saved. An example is

[pat hExpr: kAppSoupSynbol, 'soneText]

flavor Set to newt Nurber Fi | t er ; do not change this, or the
proto will not work as expected.

newtROLabelNuminputLine

This proto (the read-only version and its editable counterpart) is the numeric
equivalent of the newt Label | nput Li ne protos. It is based on the

newt Pr ot oLi ne proto, but has a newt Nunber Fi | t er as the value of its

f1l avor slot, which imparts number formatting features to it.

The read-only display consists of the label designated in the | abel slot and
the data stored in the location specified by the pat h slot, but without a
dotted line for the input line. Note that it is not possible to create a picker for
anewt ROLabel | nput Li ne. An example is shown in Figure 3-16.

Labelled Input-Line Slot View Protos 3-67

CHAPTER 3

NewtApp Reference

Figure 3-16 A NewtApp label display line for text

AMNumber: 120.00

Slot descriptions

| abel Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label. An example of a valid value is

"A Nunber:"
pat h Required. A path expression of the form:

[pat hExpr: your SoupSynbol , 'aNunber]

newtLabelNuminputLine

This is the same as the newt ROLabel Num nput Li ne, except that data may

be entered on the dotted input line and is saved to the data location specified
in the pat h slot. The proto, with a | abel Commands array with the specified
value["1","2","3","4","5"] and at r ue value for the usePopup slot,

is shown in Figure 3-17.

Figure 3-17 A NewtApp label number input line

3-68

& A Mumber:

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

Slot descriptions

access Optional. Defaults to' readW i t e. Valid values
include' readWite,' readOnly, and ' pi ckOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

| abel Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input line
label. An example of a valid value is

"A Nunber:™"

| abel Commands Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
valueis: ["1","2","3","4", "5"]

usePopup Optional. Defaults to t r ue. When set to t r ue and you
provide a | abel Commands array, the input-line label
displays a diamond, indicating a picker (pop-up menu).

pat h Required. A path expression of the form

[pat hExpr: your SoupSynbol, 'aNunber]

flavor Set to newt Nurtber Fi | t er ; do not change this, or the
proto will not work as expected.

newtLabelDatelnputLine

This proto allows inputs of dates through a system-provided picker or by
directly entering them on the input line. A label date input-line view is
shown in Figure 3-18.

Labelled Input-Line Slot View Protos 3-69

CHAPTER 3

NewtApp Reference

Figure 3-18 A NewtApp label date input line

#Date Due: P9

3-70

March 1096 g} #Datepue: March 28, 1996

= m t w t

When a date is entered on the input line, the calendar changes to match. If
the date is written in any other format than the one shown in Figure 3-18, it
is accepted and recognized but is changed automatically to the date format
shown in the figure.

Note that neither the | abel Commands nor the usePopup slot is necessary
with this proto. The pop-up menu is specified in the newt Dat eFi | t er.

Slot descriptions
access

| abel

pat h

Optional. Defaults to ' r eadOnl y. Valid values include
'readWiteand' pi ckOnly. Do not change this
value for the built-in protos, or they will not work as
expected.

Optional. Defaults to the empty string. Provides a string

containing the text you wish to display in the input-line
label.

Required. A path expression that leads to a slot with a
date in it, of the form

[pat hExpr: soupSynbol , ' abDat e]

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

flavor Set to newt Dat eFi | t er ; do not change this, or the
proto will not work as expected.

newtROLabelDatelnputLine

This is the same as the newt Label Dat el nput Li ne except that it is used to
display, not edit, a date from a soup slot. As with all the read-only input-line
protos, the dotted line disappears when it is displayed. An example is shown
in Figure 3-19.

Figure 3-19 A newt ROLabel Dat el nput Li ne proto

Date: Hﬂ-}' 12, 199

Slot descriptions

| abel Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

pat h Required. A path expression that leads to a slot with a

date in it, of the form

[pat hExpr: soupSynbol, 'abDate]

flavor Set to newt Dat eFi | t er ; do not change this, or the
proto will not work as expected.

newtLabelSimpleDatelnputLine

This proto accepts simple dates (dates without the year, such as 7/24 and
July 24) in addition to fully specified dates (such as 7/24/88 and July 24,
1988). It is useful for birthday and anniversary fields. The

newt Labl eSi npl eDat el nput Li ne proto is based on the

newt Pr ot oLi ne proto. It is shown in Figure 3-20.

Labelled Input-Line Slot View Protos 3-71

CHAPTER 3

NewtApp Reference

Figure 3-20 The simple date input line

3-72

Slot descriptions
access

| abel

pat h

flavor

. February B

s mm t w t f s

12 3
4 56 7 8 910
111213141516 17
1819 20 21 22 23 24
25 26 g 28 29

................................. #Date | =)

Optional. Defaults to ' r eadW i t e. Valid values
include ' readOnl y, and ' pi ckOnl y. Do not change
this value for the built-in protos, or they will not work
as expected.

Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input-line
label.

Required. A path expression that leads to a slot with a
date in it, of the form:
[pat hExpr: soupSynbol, 'birthday]

Set to newt Si npl eDat eFi | t er ; do not change this, or
the proto will not work as expected.

newtNRLabelDatelnputLine

This proto is based on newt Pr ot oLi ne and allows date input through a
system-provided pr ot oDat ePopup picker. The initial display is simply the
label with a diamond to its left and no input line following it. Once a date

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

has been displayed,

any attempt to edit it causes the date picker to display. It

is shown in Figure 3-21.

Figure 3-21 Date input with picker-only access

4§ MNovermber 1995 o

= m t w t f

1 2 3

5 6 7 8 91011

121314 @16 17
1920 21 22 23 24
2R 27 28 29 30

1995

5

4

13
25

B epate November 15, 1695

Slot descriptions
access

fl avor

| abel

pat h

Optional. Defaults to ' pi ckonl y. Valid values include
‘readWite,' readOnly, and ' pi ckOnl y. Do not
change this value for the built-in protos, or they will not
work as expected.

Set to newt Dat eFi | t er ; do not change this, or the
proto will not work as expected.

Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

Required. A path expression that leads to a slot with a
date in it, of the form:

[pat hExpr: your SoupSynbol , ' date]

Labelled Input-Line Slot View Protos 3-73

CHAPTER 3

NewtApp Reference

newtROLabelTimelnputLine

This proto is based on newt Pr ot oLi ne and is set to display a time. No
input or editing is recognized.

Slot descriptions
| abel Optional. A string which labels the input line.

pat h Required. A path expression, that leads to a slot with a
time in it, of the form

[pat hExpr: soupSynbol, 'tinme]

flavor Set to newt Ti meFi | t er ; do not change this, or the
proto will not work as expected.

newtNRLabelTimelnputLine

This allows date input through a system-provided pr ot oTi nePopup picker
only. The picker is specified by the newt Ti meFi | t er, which is the value of
its f | avor slot. You should not change this or the proto will not work as
expected. It is based on newt Pr ot oLi ne. It appears as shown in Figure 3-22.

Figure 3-22 Time input with picker-only access

Slot descriptions

| abel Optional. A string that labels the input line.

fl avor Set to newt Ti meFi | t er ; do not change this, or the
proto will not work as expected.

access Defaults to' pi ckOnl y, canbe ' readOnl y.

3-74 Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

newtLabelTimelnputLine

This proto provides a labelled input line for a time. When it initially displays,
the line is blank and a diamond appears to the left of the label. When the
label is tapped, a time picker displays. It is shown in Figure 3-23.

Figure 3-23 A newt Label Ti nel nput Li ne proto

Slot descriptions
| abel Optional. A string that labels the input line.

flavor Set to newt Ti meFi | t er ; do not change this, or the
proto will not work as expected.

pat h Required. Must be a path expression identifying a soup
slot that holds a time.

newtNRLabelDateNTimelnputLine

This proto is set up to contain times and dates, and is based on

newt Pr ot oLi ne. Depending on which of the two slots, | ongFor mat or
short For mat, is non-ni |, this proto displays either long or short dates,
such as 10:05 AM, or 10:10 AM. For more information about these formats,
which are used in calls to LongDat eSt r and Shor t Dat eSt r, see “Date and
Time Format Specifications” (page 17-11).

Slot descriptions

flavor Set to newt Dat eNTi meFi | t er ; do not change this, or
the proto will not work as expected.
access Defaults to ' pi ckOnly canbe ' readOnly.

Labelled Input-Line Slot View Protos 3-75

3-76

CHAPTER 3

NewtApp Reference

pat h

| ongFor nmat

short For nat

Required. Must be a path expression identifying a soup
slot that holds a date and time.

Optional. Defaults to year Mont hDay St r Spec. The

| ongdat e specification as defined by the system. Either
this slot or the shor t For mat slot should be non-ni | so
the view can choose the format.

Optional. Defaults to ni | . Thisis a shor t dat e
specification as defined by the system. Either this slot or
the | ongFor mat slot should be non-ni | so the view
can choose the format.

newtLabelPhonelnputLine

This proto formats numbers as phone numbers, just like the
newt Text PhoneVi ew (page 3-56), except that this proto has a label. It is
based on newt Pr ot oLi ne.

Slot descriptions
flavor

access
| abel

usePopup

menory

Set to newt PhoneFi | t er; do not change this, or the
proto will not work as expected.

Defaultsto' readWite.

Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input-line
label.

Optional. Defaults to t r ue. When set to t r ue, the
input-line label displays a diamond, indicating a picker
(pop-up menu).

Optional. Defaults to ni | . This keeps track of the most
recent choices and displays them as items in the picker.
The value of this slot is a symbol that names the list. The
symbol must incorporate your developer signature.

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

newtAreaCodelLine

This proto is for numbers only and specifically for area codes.
Double-tapping the input line displays the phone keyboard. It is based on
newt Pr ot oLi ne.

Slot description

flavor Set to newt PhoneFi | t er ; do not change this, or the
proto will not work as expected.

access Defaultsto' readWi te.

| abel Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the area code
line label.

path Required. Must be a path expression identifying a soup

slot that holds a area code.

newtAreaCodePhoneLine

Allows area code input, as well as phone number input. It contains the basic
functionality for parsing phone numbers, and for updating, targeting,
drawing, and setting up the views in which they occur. It is based on

newt Pr ot oLi ne.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which the initial text to display in this
view is gotten, and in which the final value is to be

stored.

flavor Set to newt PhoneFi | t er ; do not change this, or the
proto will not work as expected.

access Defaults to ' query

| abel Optional. Defaults to the empty string. Provide a string

containing the text to display in the input-line label.

Labelled Input-Line Slot View Protos 3-77

CHAPTER 3

NewtApp Reference

newtSmartNameView

This proto gets names from the Names application soup. It is based on
newt Pr ot oLi ne, so it also implements a label. When you use it, a tap on
the picker menu item Other displays the pr ot oPeopl ePopup picker with
the names from the Names soup. If you wish to control this behavior, you
may implement your own version of the JanfFr onEnt r y method. See the
sample in the section, “Creating a Custom Labelled Input-Line Slot View”
(page 4-24) in Newton Programmer’s Guide.

Slot descriptions

fl avor Set to newt Smar t NarmeFi | t er ; do not change this, or
the proto will not work as expected.

access Defaults to' readWite.

| abel Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input line
label.

usePopup Optional; the defaultis ni | . If t r ue, the proto creates a

pop-up menu under the label. If the user chooses an
item in the pop-up menu that item is displayed on the
input line and the value of the target is changed to refer
to the chosen soup entry. If the user chooses the menu
item, Other, the pr ot oPeopl ePi cker is displayed,
allowing a choice from that soup.

pat h Required. A path expression leading to the slot in the
application soup where data changes should be stored.

3-78 Labelled Input-Line Slot View Protos

CHAPTER 4

Stationery Reference

This chapter documents the data structures, protos, and functions relevant to
using dataDefs and viewDefs.

Data Structure

This section documents the viewDef frame.

viewDef Frame

You create a viewDef by basing it on a general view proto or class, such as a
cl Vi ew and adding the slots specified here. Note that once the viewDef has
been created it must be added to an application by using a

newt St at i oner yVi ewproto, as described in Chapter 4, “NewtApp
Applications,” in Newton Programmer’s Guide.

Slot descriptions

type Required. The view types' edi tor,"' vi ewer, and
' rout eFor mat are used by the system and the built-in
applications to collect specific kinds of viewDefs. For

Data Structure 4-1

4-2

CHAPTER 4

Stationery Reference

instance, the Newton routing code collects viewDefs of
type ' rout eFor mat (and ' pri nt For mat, for
compatibility) and offers them as choices in the Format
picker within the routing slip. You may also define
custom types for your application.

symbol Required. A symbol that identifies this view for the
dataDef. One viewDef for each dataDef must have the
synbol slotsetto' def aul t. This symbol is saved as a
convenient reference by which to retrieve the view.

nane Required. A string that is used to build menus like the
Show menu. An example of a suitable value is " Not e" .

versi on Required. This integer should match the version
number of the dataDef.

vi ewDef Hei ght Required, except in card-style applications. An integer
that specifies a default height for applications that
display data in a roll format. This value is not used by a
card-style NewtApp application.

The following methods are used with viewDefs.

MinimalBounds

myViewDef: M ni mal Bounds(entry)
Returns the minimal enclosing bounding box for the data in a soup entry.
entry A soup entry.

In a viewDef, you must use the M ni mal Bounds method if the height of the
entry is dynamic, as it is in a paper roll-style application. This method is not
necessary for a card-style application, which has a fixed height. If the entry
size is static, use the vi ewDef Hei ght slot instead.

SetupForm

targetViewDef: Set upFor n(entry, entryView)

Allows you to modify the data displayed by a viewDef before it is displayed.
This function is called by the Vi ewSet upFor nScr i pt method of the entry

Data Structure

Protos

CHAPTER 4

Stationery Reference

view containing the viewDef to be displayed. Override this method to
modify the data before it’s instantiated.

entry The target soup entry.
entryView The target view, in which the soup entry is about to be
displayed.

This section describes the newt St at i onery proto, which is used to
construct a dataDef, and the stationery button protos.

newtStationery

You use this proto as the template when constructing a dataDef. Its basic
function is to create the infrastructure for specified kinds of data; it is not a
view proto.

Slot descriptions

description Optional. A string describing this dataDef’s data entry.
An exampleis " Li ned note paper". Thisis used in
the Information slip (newt | nf oBox proto), which is
seen when the icon on the header bar is tapped.

hei ght Required, except in card-style applications. This is the
default height used by viewers that display the data
type in a paper-roll format, like the built-in Notes
application. This value should match the value in the
vi ewDef Hei ght slot of the viewDef. It is not used by a
card-style NewtApp application.

i con Optional; a bitmap frame. If you provide an icon for this
dat aDef, it is used in the New menu (the
newt NewSt at i oner yBut t on proto); the header bar
(newt Ent r yRol | Header); and in the Information slip

Protos 4-3

CHAPTER 4

Stationery Reference

nane

synbol

super Synbol

ver sion

(newt | nf 0Box proto), which is seen when the icon on
the header bar is tapped.

Required. This string appears in the New button’s
picker to identify the dataDef. The New button
(implemented by the newt NewSt at i oner yBut t on
proto) collects all the strings from the nane slots of the
registered dataDefs that have the same super Synbol
slot value and displays them as items in the New picker.
For example, the Notes application uses the string

"Not e" to identify one of its dataDefs.

Required. A unique symbol that identifies the data type
(also known as the class) of the entries that are crea