



Newton Programmer’s
Reference
For Newton 2.0

 Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software and any documentation
provided on CD-ROM. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language
or format. You may use the
software on any computer owned
by you, but extra copies cannot be
made for this purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, Espy,
LaserWriter, the light bulb logo,
Macintosh, MessagePad, Newton,
Newton Connection Kit, and New
York are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Apple Press, the Apple Press
Signature, eWorld, Geneva,
NewtonScript, Newton Toolkit,
and QuickDraw are trademarks of
Apple Computer, Inc.
Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Table of Contents

Figures and Tables xxv

Preface About This Book xxxiii

Audience xxxiii
Related Books xxxiv
Sample Code xxxiv
Conventions Used in This Book xxxv

Special Fonts xxxv
Tap Versus Click xxxvi
Frame Code xxxvi

Developer Products and Support xxxvii
Undocumented System Software Objects xxxviii

Chapter 1 Getting Started Reference 1-1

View Classes and Protos 1-1
clView 1-1
protoApp 1-2

Functions 1-4
Application-Defined Functions 1-4

Chapter 2 Views Reference 2-1

Constants 2-1
View Class Constants 2-2
viewFlags Constants 2-4
viewJustify Constants 2-6
viewFormat Constants 2-11

iv

viewTransferMode Constants 2-13
viewEffect Constants 2-14

Functions and Methods 2-18
Getting References to Views 2-18
Displaying, Hiding, and Redrawing Views 2-20
Dynamically Adding Views 2-27
Making Modal Views 2-31
Setting the Bounds of Views 2-34
Animating Views 2-38
Dragging a View 2-45
Dragging and Dropping a Item 2-46
Scrolling View Contents 2-48
Working With View Highlighting 2-52
Creating View Dependencies 2-55
Synchronizing Views 2-57
Laying Out Multiple Child Views 2-59
Miscellaneous View Operations 2-63

Application–Defined Methods 2-65
View Warning Messages 2-86

Chapter 3 NewtApp Reference 3-1

Required Code 3-1
Required InstallScript and RemoveScript Functions 3-1

General Application Protos 3-2
newtSoup 3-2
newtApplication 3-8

NewtApplication Stationary Methods 3-15
NewtApplication Filing Methods 3-16
newtApplication Find Methods 3-18
newtApplication Delete and Duplicate Methods 3-21
NewtApplication Status Methods 3-22

newtInfoButton 3-23
newtAboutView 3-24

v

newtPrefsView 3-25
newtActionButton 3-26
newtFilingButton 3-26
newtAZTabs 3-27
newtFolderTab 3-28
newtClockFolderTab 3-28
newtStatusBarNoClose 3-29
newtStatusBar 3-30
newtFloatingBar 3-31
newtLayout 3-32
newtRollLayout 3-36
newtPageLayout 3-37
newtOverLayout 3-37
newtRollOverLayout 3-41
newtEntryView 3-42
newtFalseEntryView 3-44
newtRollEntryView 3-45
newtEntryPageHeader 3-46
newtEntryRollHeader 3-46
newtEntryViewActionButton 3-47
newtEntryViewFilingButton 3-47
newtInfoBox 3-47

Slot View Protos 3-49
newtROTextView 3-51
newtTextView 3-51
newtRONumView 3-52
newtNumView 3-52
newtROTextDateView 3-53
newtTextDateView 3-54
newtROTextTimeView 3-54
newtTextTimeView 3-55
newtROTextPhoneView 3-55
newtTextPhoneView 3-56
newtROEditView 3-56
newtEditView 3-57
newtCheckBox 3-58

vi

newtStationeryView 3-59
newtEntryLockedIcon 3-59

Labelled Input-Line Slot View Protos 3-60
newtProtoLine 3-63
newtLabelInputLine 3-65
newtROLabelInputLine 3-67
newtROLabelNumInputLine 3-67
newtLabelNumInputLine 3-68
newtLabelDateInputLine 3-69
newtROLabelDateInputLine 3-71
newtLabelSimpleDateInputLine 3-71
newtNRLabelDateInputLine 3-72
newtROLabelTimeInputLine 3-74
newtNRLabelTimeInputLine 3-74
newtLabelTimeInputLine 3-75
newtNRLabelDateNTimeInputLine 3-75
newtLabelPhoneInputLine 3-76
newtAreaCodeLine 3-77
newtAreaCodePhoneLine 3-77
newtSmartNameView 3-78

Chapter 4 Stationery Reference 4-1

Data Structure 4-1
viewDef Frame 4-1

Protos 4-3
newtStationery 4-3
newtStationeryPopupButton 4-6
newtNewStationeryButton 4-8
newtShowStationeryButton 4-9
newtRollShowStationeryButton 4-11
newtEntryShowStationeryButton 4-11

Functions 4-11

vii

Pickers, Pop-up Views, and
Chapter 5 Overviews Reference 5-1

Data Structures 5-1
Name References 5-1

Column Specifications 5-3
General Pickers 5-4

protoPopupButton 5-4
protoPopInPlace 5-6
protoLabelPicker 5-8
protoPicker 5-13
protoGeneralPopup 5-19
protoTextList 5-20
protoTable 5-24
protoTableDef 5-27
protoTableEntry 5-29

Map Pickers 5-30
protoCountryPicker 5-30
protoProvincePicker 5-31
protoStatePicker 5-32
protoWorldPicker 5-34

Text Pickers 5-35
protoTextPicker 5-35
protoDateTextPicker 5-37
protoDateDurationTextPicker 5-40
protoRepeatDateDurationTextPicker 5-43
protoDateNTimeTextPicker 5-46
protoTimeTextPicker 5-49
protoDurationTextPicker 5-51
protoTimeDeltaTextPicker 5-53
protoMapTextPicker 5-54
protoCountryTextPicker 5-56
protoUSstatesTextPicker 5-56
protoCitiesTextPicker 5-58
protoLongLatTextPicker 5-61

viii

Date, Time, and Location Pop-up Views 5-63
protoDatePopup 5-63
protoDatePicker 5-64
protoDateNTimePopup 5-67
protoDateIntervalPopup 5-69
protoMultiDatePopup 5-72
protoYearPopup 5-73
protoTimePopup 5-74
protoAnalogTimePopup 5-76
protoTimeDeltaPopup 5-78
protoTimeIntervalPopup 5-79

Number Pickers 5-81
protoNumberPicker 5-81

Picture Picker 5-82
protoPictIndexer 5-82

Overview Protos 5-85
protoOverview 5-85
protoSoupOverview 5-90
protoListPicker 5-93
protoNameRefDataDef 5-97
protoPeopleDataDef 5-105
protoPeoplePicker 5-110
protoPeoplePopup 5-111

Roll Protos 5-112
protoRoll 5-112
protoRollBrowser 5-116
protoRollItem 5-119

View Classes 5-121
Outline View (clOutline) 5-121

Monthly Calendar View (clMonthView) 5-123
Pop-up Functions and Methods 5-126

Name Reference Functions 5-129

ix

Chapter 6 Controls Reference 6-1

Scroller Protos 6-2
protoHorizontal2DScroller 6-2
protoLeftRightScroller 6-5
protoUpDownScroller 6-5
protoHorizontalUpDownScroller 6-6

Button and Box Protos 6-6
protoTextButton 6-7
protoPictureButton 6-9
protoInfoButton 6-10
protoOrientation 6-13
protoRadioCluster 6-14
protoRadioButton 6-16
protoPictRadioButton 6-18
protoCloseBox 6-20
protoLargeCloseBox 6-22
protoCheckbox 6-24
protoRCheckbox 6-26

Selection Tab Protos 6-28
protoAZTabs 6-28
protoAZVertTabs 6-29

Gauges and Slider Protos 6-30
clGaugeView 6-30
protoSlider 6-33
protoGauge 6-35
protoLabeledBatteryGauge 6-37

Time Protos 6-38
protoDigitalClock 6-38
protoNewSetClock 6-40
protoSetClock 6-42
protoAMPMCluster 6-44

Special View Protos 6-45
protoDragger 6-45
protoDragNGo 6-47
protoDrawer 6-49

x

protoFloater 6-49
protoFloatNGo 6-51
protoGlance 6-52
protoStaticText 6-54

View Appearance Protos 6-55
protoBorder 6-56
protoDivider 6-56
protoTitle 6-58

Status Bar Protos 6-59
protoStatus 6-59
protoStatusBar 6-60

Chapter 7 Text and Ink Input and Display Reference 7-1

Text Constants and Data Structures 7-1
Text Flags 7-2
Font Constants for Use in Frames 7-3

Font Family Constants 7-3
Font Face Constants 7-3

Font Constants for Packed Font Integer Specifications 7-4
Built-in Fonts 7-4
Font Family Constants 7-7
Font Face Constants for Packed Integer Font

Specifications 7-7
Keyboard Constants 7-8

Keyboard Registration Constants 7-8
Key Descriptor Constants 7-9
Keyboard Modifier Keys 7-11

Line Patterns 7-11
The Rich String Format 7-12

Text Views and Protos 7-12
General Input View (clEditView) 7-12
Functions and Methods for Edit Views 7-14
Paragraph View (clParagraphView) 7-15

xi

Input Line Protos 7-17
protoInputLine 7-17
protoRichInputLine 7-19
protoLabelInputLine 7-19
protoRichLabelInputLine 7-22

Text and Ink Display Functions and Methods 7-22
Functions and Methods for Measuring Text Views 7-23
Functions and Methods for Determining View Ink

Types 7-25
Font Attribute Functions and Methods 7-26
Rich String Functions and Methods 7-31
Functions and Methods for Accessing Ink in Views 7-34

Keyboards 7-35
Keyboard View (clKeyboardView) 7-35
Keyboard Protos 7-37

protoKeyboard 7-37
protoKeypad 7-38
protoKeyboardButton 7-39
protoSmallKeyboardButton 7-40
protoAlphaKeyboard 7-40
protoNumericKeyboard 7-41
protoPhoneKeyboard 7-41
protoDateKeyboard 7-41

Keyboard Functions and Methods 7-42
Keyboard Registry Functions and Methods 7-44
Caret Insertion Writing Mode Functions and Methods 7-47
Insertion Caret Functions and Methods 7-48
Application-Defined Methods for Keyboards 7-50

Input Event Functions and Methods 7-51
Functions and Methods for Hit-Testing 7-51
Functions and Methods for Handling Insertions 7-52

The Insert Specification Frame 7-52
Functions and Methods for Handling Ink Words 7-54
Application-Defined Methods for Handling Ink in a

View 7-56

xii

Chapter 8 Recognition System Reference 8-1

Recognition System Data Structures 8-1
System-Wide Settings 8-2
View Flags for Recognition 8-6
System-Supplied Dictionaries 8-16
Recognition Configuration Frames 8-17

System-Supplied recConfig Frames 8-18
Data Structures Used in recConfig Frames 8-24

Stroke Bundle Data Structures 8-28
The Stroke Bundle Frame 8-28
Format Specification Values for Stroke Bundle

Functions 8-28
Stroke, Word, and Gesture Units 8-29
Point Arrays 8-30

CorrectInfo Frame 8-30
WordInfo Frame 8-30
WordInterp Frame 8-30

Recognition System Prototypes 8-31
protoRecToggle 8-31
protoRecConfig 8-36
protoCharEdit 8-41

Application-Defined protoCharEdit View Methods 8-52
Application-Defined protoCharEdit Template

Methods 8-52
protoCorrectInfo 8-53
protoWordInfo 8-60
protoWordInterp 8-63

Recognition Functions 8-64
Recognition Configuration Functions 8-65
Application-Defined Recognition Methods 8-66
Inker Functions 8-76
Stroke Unit Functions 8-78
Stroke Bundle Functions and Methods 8-83
Deferred Recognition Functions 8-89
Dictionary Functions 8-91

xiii

User Dictionary Functions and Methods 8-94
Auto-Add Dictionary Functions and Methods 8-97
User Configuration Functions 8-98

Chapter 9 Data Storage and Retrieval Reference 9-1

Data Structures 9-1
Soup Definition Frame 9-2
Single-Slot Index Specification Frame 9-5
Multiple-Slot Index Specification Frame 9-6
Tags Index Specification Frame 9-8
Query Specification Frame 9-9
Tags Query Specification Frame 9-13
Callback Functions for Soup Change Notification 9-14
Package Reference Information Frame 9-18

Data Storage Functions and Methods 9-19
Package Functions and Methods 9-19
Store Functions and Methods 9-28
Soup Functions and Methods 9-35
Soup Change Notification Functions 9-54
Store Part Functions 9-56
Methods for Manipulating Tags 9-56
Query and Cursor Methods 9-60
Entry Functions 9-65
Entry Alias Functions 9-72
VBO Functions and Methods 9-74
Mock Entry Functions 9-77
Developer-Defined Entry Handler Methods 9-79

Chapter 10 Drawing and Graphics Reference 10-1

Data Structure 10-1
Style Frame 10-1

xiv

View Classes 10-3
Shape View (clPolygonView) 10-4
Picture View (clPictureView) 10-4
Scaled View (clRemoteView) 10-5

Graphics and Drawing Protos 10-5
protoImageView 10-6
protoThumbnail 10-14
protoThumbnailFloater 10-18

Functions and Methods 10-18
Bitmap Functions 10-19
Hit-Testing Functions 10-24
Shape-Creation Functions 10-26
Shape Operation Functions and Methods 10-33
Utility Functions 10-40

Chapter 11 Sound Reference 11-1

Sound Data Structures 11-1
Sound Frame 11-1
Sound Result Frame 11-3

Protos 11-3
protoSoundChannel 11-3

Functions and Methods 11-6
Sound Resources 11-10

Chapter 12 Filing Reference 12-1

Target Information Frame 12-1
Filing Protos 12-2

protoFilingButton 12-2
protoNewFolderTab 12-4
protoClockFolderTab 12-7

System-Supplied Filing Methods 12-11
Application-Defined Filing Methods 12-16

xv

Chapter 13 Find Reference 13-1

Finder Protos 13-1
ROM_SoupFinder 13-1
ROM_CompatibleFinder 13-7

System Functions and Methods 13-12
Application-Defined Methods 13-14

Chapter 14 System Services Reference 14-1

Undo Reference 14-1
Idler Reference 14-3
Alerts and Alarms Reference 14-4

Alerts and Alarms Proto 14-5
protoPeriodicAlarmEditor 14-5

Alerts and Alarm Functions 14-7
Progress-Reporting Reference 14-12

Progress-Reporting Proto 14-13
protoStatusTemplate 14-13

Progress-Reporting Functions 14-25
Power Registry Reference 14-31

Chapter 15 Intelligent Assistant Reference 15-1

Data Structures 15-1
Task Frame 15-1
Action Template 15-3
Target Template 15-7
Task Template 15-11

Developer-Supplied Task Template 15-12
Help Topic Slot 15-12

Assistant Functions and Methods 15-13
Developer-Supplied Assistant Functions and Methods 15-14

xvi

Built-in Applications and System
Chapter 16 Data Reference 16-1

Names Reference 16-1
Names Constants 16-1
Names Data Structures 16-2

Names Data Definition Frame 16-2
Names View Definition Frame 16-3

Names Protos 16-4
protoPersonaPopup 16-4
protoEmporiumPopup 16-5

Names Functions and Methods 16-5
Names Soup Format 16-15

Person Entries 16-15
Owner Entries 16-18
Group Entries 16-20
Company Entries 16-21
Worksite Entries 16-22

Dates Reference 16-23
Dates Variables and Constants 16-24
Dates Protos 16-26

protoRepeatPicker 16-27
protoRepeatView 16-28

Dates Methods and Functions 16-30
Dates Soup Formats 16-56

Meeting Frames 16-57
Notes Frames 16-62

Dates Error Codes 16-63
To Do List Reference 16-69

To Do List Methods 16-69
To Do List Soup Format 16-77

Time Zones Reference 16-78
Time Zones Functions and Methods 16-79

Notes Reference 16-81
Notes Methods 16-81
Notes Soup Format 16-82

xvii

Icons and the Extras Drawer Reference 16-85
Extras Drawer Data Constants 16-85
Extras Drawer Data Structure 16-85

The Soupervisor Frame 16-86
Extras Drawer Methods 16-88

Fax Soup Entries Reference 16-94
Body Slot of Fax Soup Entries 16-94

Prefs and Formulas Rolls Reference 16-96
Proto 16-96

protoPrefsRollItem 16-96
Prefs and Formulas Functions 16-96

Auxiliary Button Reference 16-99
Auxiliary Buttons Functions and Methods 16-99

System Data Reference 16-101
User Configuration Variables 16-101
System Data and Utility Functions 16-107

Localizing Newton Applications
Chapter 17 Reference 17-1

Constants and Data Structures 17-1
Contents of a Locale Bundle 17-1

String Slots 17-2
Other Slots in Locale Bundles 17-10

Date and Time Format Specifications 17-11
System-Defined Format Specifications 17-11
Constants to Create Your Own Specification 17-13

Localization Function Reference 17-16
Compile-Time Functions 17-16
Locale Functions 17-18
Date and Time Functions 17-20

System Clock Functions 17-20
Formatted Date/Time Functions 17-22
Date Frame Functions 17-27

Utility Functions 17-28

xviii

Chapter 18 Routing Interface Reference 18-1

Data Structures 18-1
Item Frame 18-1
RouteScripts Array 18-6

Protos 18-7
protoActionButton 18-7
protoPrinterChooserButton 18-8
Routing Format Protos 18-9

Functions and Methods 18-19
Send-Related Functions and Methods 18-19
Cursor-Related Functions 18-24
Utility Functions and Methods 18-26

Application-Defined Methods 18-32

Chapter 19 Transport Interface Reference 19-1

Constants 19-1
Icon Constants 19-1

Protos 19-2
protoTransport 19-2
protoTransportHeader 19-37
protoFullRouteSlip 19-38
protoAddressPicker 19-43
protoTransportPrefs 19-44

Functions and Methods 19-48
Utility Functions 19-48

Chapter 20 Endpoint Interface Reference 20-1

Constants and Symbols 20-1
Data Form Symbols 20-1
Data Type Symbols 20-2
Option Opcode Constants 20-3

xix

Endpoint Error Code Constants 20-4
Option Error Code Constants 20-5
Endpoint State Constants 20-6
Other Endpoint Constants 20-6

Data Structures 20-7
Endpoint Option Frame 20-7
Callback Spec Frame 20-9
Output Spec Frame 20-10
Input Spec Frame 20-11
Input Spec Target Frame 20-15
Input Spec Termination Frame 20-16
Input Spec Filter Frame 20-17

Protos 20-18
protoBasicEndpoint 20-18
protoStreamingEndpoint 20-29

Functions and Methods 20-32
Utility Functions 20-32

Chapter 21 Built-in Communications Tools Reference 21-1

Options for the Standard Asynchronous Serial Tool 21-2
Serial Chip Location Option 21-4
Serial Chip Specification Option 21-6
Serial Circuit Control Option 21-10
Serial Buffer Size Option 21-13
Serial Configuration Option 21-14
Serial Data Rate Option 21-17
Serial Flow Control Options 21-18
Serial Send Break Option 21-20
Serial Discard Data Option 21-20
Serial Event Configuration Option 21-21
Serial Bytes Available Option 21-24
Serial Statistics Option 21-24
Serial External Clock Divide Option 21-26

xx

Options for the Serial Tool with MNP Compression 21-27
Serial MNP Data Rate Option 21-28

Options for the Framed Asynchronous Serial Tool 21-29
Serial Framing Configuration Option 21-29
Serial Framing Statistics Option 21-31

Options for the Modem Tool 21-31
Modem Address Option 21-33
Modem Preferences Option 21-34
Modem Profile Option 21-38
Modem Error Control Type Option 21-45
Modem Dialing Option 21-47
Modem Connection Type Option 21-51
Modem Connection Speed Option 21-53
Modem Fax Capabilities Option 21-53
Modem Fax Enabled Capabilities Option 21-56
Modem Voice Support Option 21-58
MNP Speed Negotiation Option 21-59
MNP Compression Option 21-61
MNP Data Statistics Option 21-62

Options for the Infrared Tool 21-65
Infrared Connection Option 21-66
Infrared Protocol Type Option 21-67
Infrared Statistics Option 21-69

Options for the AppleTalk Tool 21-71
AppleTalk Address Option 21-72
AppleTalk Buffer Size Option 21-73
AppleTalk Bytes Available Option 21-74
AppleTalk Tool Type Option 21-75
AppleTalk Endpoint Name Option 21-76

AppleTalk Functions 21-76
AppleTalk Driver Functions 21-77
Functions for Obtaining AppleTalk Zone Information 21-78
NetChooser Methods 21-81

Options for Resource Arbitration 21-82
Passive Claim Option 21-83
Passive State Option 21-84

xxi

Chapter 22 Modem Setup Service Reference 22-1

Modem Setup General Information Constants 22-2
Modem Setup Preference Constants 22-3
Modem Setup Profile Constants 22-4

The No Error Control Configuration String 22-7
The Error Control Configuration String 22-8
The Error Control with Fallback Configuration String 22-9
The Direct Connect Configuration String 22-9

Fax Profile Constants 22-10

Chapter 23 Utility Functions Reference 23-1

Object System Functions 23-2
String Functions 23-13
Bitwise Functions 23-29
Array Functions 23-31
Sorted Array Functions 23-43
Integer Math Functions 23-53
Floating Point Math Functions 23-56

Managing the Floating Point Environment 23-73
Financial Functions 23-77
Exception Functions 23-80
Message-Sending Functions 23-83
Deferred Message Sending Functions 23-87
Data Extraction Functions 23-92
Data Stuffing Functions 23-96
Getting and Setting Global Variables and Functions 23-101
Debugging Functions 23-104
Miscellaneous Functions 23-109

xxii

Appendix Error Codes A-1

System Exceptions A-1
System Errors A-2

Common Errors A-2
Application Errors A-2
I/O Box Errors A-3
View System Errors A-3
State Machine Errors A-4
Operating System Errors A-4
Stack Errors A-7
Package Errors A-8

Newton Hardware Errors A-8
PCMCIA Card Errors A-8
Flash Card Errors A-10
Card Store Errors A-10
DMA Errors A-11
Heap Errors A-12

Communications Errors A-12
Generic AppleTalk Errors A-12
LAP Protocol Errors A-13
DDP Protocol Errors A-13
NBP Protocol Errors A-14
AEP Protocol Errors A-15
RTMP Protocol Errors A-15
ATP Protocol Errors A-15
PAP Protocol Errors A-16
ZIP Protocol Errors A-17
ADSP Protocol Errors A-17
Utility Class Errors A-17
Communications Tool Errors A-18
Serial Tool Errors A-19
MNP Tool Errors A-20
FAX Tool Errors A-20
Modem Tool Errors A-21
Communications Manager Errors A-21

xxiii

Docker Errors A-22
Docker Import and Export Errors A-24
Docker Disk Errors A-24
Docker Desktop DIL Errors A-25

System Services Errors A-25
Sound Errors A-25
Compression Errors A-26
Memory Errors A-27
Communications Transport Errors A-28
Sharp IR Errors A-28
Online Service Errors A-29
Printing Errors A-29
Newton Connection Errors A-30

NewtonScript Environment Errors A-30
Store and Soup Errors A-30
Object System Errors A-32
Bad Type Errors A-33
Compiler Errors A-34
Interpreter Errors A-35
Communications Endpoint Errors A-35

Device Driver Errors A-37
Tablet Driver Errors A-37
Battery Driver Errors A-37

Other Services Errors A-38
Alien Store Errors A-38

Index IN-1

xxv

Figures and Tables

Chapter 2 Views Reference 2-1

Figure 2-1 SetOrigin example 2-49
Figure 2-2 LayoutTable results 2-60

Table 2-1 View class constants 2-2
Table 2-2 viewFlags constants 2-4
Table 2-3 viewJustify constants 2-6
Table 2-4 viewFormat constants 2-11
Table 2-5 viewTransferMode constants 2-13
Table 2-6 viewEffect constants 2-14
Table 2-7 View warning messages 2-86

Chapter 3 NewtApp Reference 3-1

Figure 3-1 The Information button and picker 3-23
Figure 3-2 The NewtApp About view 3-25
Figure 3-3 A NewtApp Preferences view 3-26
Figure 3-4 The Action button 3-26
Figure 3-5 The Filing button 3-27
Figure 3-6 NewtApp A-Z tabs 3-27
Figure 3-7 The plain folder tab 3-28
Figure 3-8 The digital clock and folder tab 3-28
Figure 3-9 A status bar view 3-30
Figure 3-10 A floating bar view 3-31
Figure 3-11 A page header 3-46
Figure 3-12 A roll header 3-47
Figure 3-13 A NewtApp Information slip 3-48
Figure 3-14 A newtEditView proto 3-57
Figure 3-15 A NewtApp label input line 3-66
Figure 3-16 A NewtApp label display line for text 3-68
Figure 3-17 A NewtApp label number input line 3-68
Figure 3-18 A NewtApp label date input line 3-70

xxvi

Figure 3-19 A newtROLabelDateInputLine proto 3-71
Figure 3-20 The simple date input line 3-72
Figure 3-21 Date input with picker-only access 3-73
Figure 3-22 Time input with picker-only access 3-74
Figure 3-23 A newtLabelTimeInputLine proto 3-75

Table 3-1 The NewtApp filters used to set the flavor
slot 3-60

Chapter 4 Stationery Reference 4-1

Figure 4-1 Calls application menu bar 4-9
Figure 4-2 newtNewStationeryButton in Names 4-9
Figure 4-3 newtShowStationeryButton 4-10

Chapter 5 Pickers, Pop-up Views, and Overviews Reference 5-1

Figure 5-1 Pop-up button and picker 5-4
Figure 5-2 A protoPopInPlace text button 5-6
Figure 5-3 A ProtoLabelPicker 5-8
Figure 5-4 Selection of items to choose 5-14
Figure 5-5 Example of a pop-up view with a close box 5-19
Figure 5-6 Scrollable list of items 5-21
Figure 5-7 Scrollable list of shapes and text 5-21
Figure 5-8 One-column table of text 5-24
Figure 5-9 Example of a country picker 5-30
Figure 5-10 Example of a province picker 5-31
Figure 5-11 Example of a state picker 5-33
Figure 5-12 Example of a world picker 5-34
Figure 5-13 Example of a text picker 5-36
Figure 5-14 Example of a date text pop-up view 5-38
Figure 5-15 Example of date picker before and after it is

tapped 5-41
Figure 5-16 Example label picker with text representation 5-44
Figure 5-17 Example of a date and time pop-up view 5-47
Figure 5-18 Example of a label picker with a text representation of

a time 5-49

xxvii

Figure 5-19 Example label picker with a text representation of a
time range 5-51

Figure 5-20 Example of a label picker with a text representation of
a time delta 5-53

Figure 5-21 Example of a map text label picker 5-55
Figure 5-22 Example of a label picker with a text representation of

a U.S. state 5-57
Figure 5-23 Example of a city picker 5-59
Figure 5-24 Example of a text representation of longitude and

latitude values 5-61
Figure 5-25 Example of a single date selection 5-63
Figure 5-26 Example of a date picker 5-65
Figure 5-27 Example of a pop-up menu 5-66
Figure 5-28 Example of a single date and time selection 5-68
Figure 5-29 Example of a date interval pop-up view 5-70
Figure 5-30 Example of a multidate pop-up view 5-72
Figure 5-31 Example of a year pop-up view 5-73
Figure 5-32 Example of a time pop-up view 5-75
Figure 5-33 Example of an analog time pop-up view 5-76
Figure 5-34 Example of a time delta pop-up view 5-78
Figure 5-35 Example of a time interval pop-up view 5-79
Figure 5-36 Example of a number picker 5-81
Figure 5-37 Example of an indexed array of pictures 5-83
Figure 5-38 Example of an overview list 5-86
Figure 5-39 Example of a soup entry proto 5-91
Figure 5-40 A protoListPicker based on

protoPeopleDataDef 5-106
Figure 5-41 Example of a rolled list of items 5-113
Figure 5-42 Example of a collapsed and expanded rolled list

of items 5-117
Figure 5-43 Example of an expandable text outline 5-121
Figure 5-44 Monthly calendar view 5-124

Chapter 7 Text and Ink Input and Display Reference 7-1

Table 7-1 CopyProtection constants 7-17
Table 7-2 Valid items in an insert specification 7-53

xxviii

Chapter 8 Recognition System Reference 8-1

Figure 8-1 Single-character editing box specified by
rcBaseInfo frame 8-25

Figure 8-2 Two-dimensional array of input boxes specified by
rcGridInfo frame 8-27

Figure 8-3 protoRecToggle picker collapsed and
expanded 8-32

Figure 8-4 Typical protoCharEdit comb view and text
to correct 8-41

Table 8-1 View flags for text recognition using enumerated
dictionaries 8-7

Table 8-2 View flags for text recognition using lexical
dictionaries 8-10

Table 8-3 Nontext view flags 8-11
Table 8-4 System-supplied enumerated dictionaries 8-16
Table 8-5 System-supplied lexical dictionaries 8-17
Table 8-6 Stroke bundle data format specifications 8-29

Chapter 9 Data Storage and Retrieval Reference 9-1

Table 9-1 Change messages and associated change
data 9-15

Chapter 10 Drawing and Graphics Reference 10-1

Figure 10-1 protoImageView Structure 10-6
Figure 10-2 Angles for arcs and wedges 10-29
Figure 10-3 Row width of picture bitmap 10-43

Chapter 12 Filing Reference 12-1

Figure 12-1 Two examples of filing button views 12-2
Figure 12-2 The Filing slip 12-3
Figure 12-3 A protoNewFolderTab view with optional

title text 12-5

xxix

Figure 12-4 The picker displayed by a protoNewFolderTab
view 12-6

Figure 12-5 The protoClockFolderTab view 12-8
Figure 12-6 Selecting a filing category and store in a

protoClockFolderTab view 12-9

Chapter 14 System Services Reference 14-1

Figure 14-1 Status view components 14-14
Figure 14-2 Built-in status view configurations 14-20

Table 14-1 Status view components 14-15
Table 14-2 Internally defined viewBounds and viewJustify

slots 14-18
Table 14-3 Values for what parameter to RegPowerOff

function 14-34
Table 14-4 Values for why parameter to RegPowerOff

function 14-35
Table 14-5 Values for why parameter to RegPowerOn

function 14-37

Chapter 16 Built-in Applications and System Data Reference 16-1

Table 16-1 Names card layouts 16-2
Table 16-2 Dates variables 16-24
Table 16-3 Dates constants for the day of the week 16-24
Table 16-4 Dates constants for repeatType 16-25
Table 16-5 Other date constants 16-25
Table 16-6 Dates constants for the weeks in a month 16-26
Table 16-7 Compatible icon and meeting/event types 16-26
Table 16-8 Folder symbols 16-85

Chapter 17 Localizing Newton Applications Reference 17-1

Table 17-1 LongDateFormat slots 17-4
Table 17-2 ShortDateFormat slots 17-6
Table 17-3 TimeFormat Slots 17-7
Table 17-4 NumberFormat Slots 17-9

xxx

Table 17-5 Format specifications in ROM_dateTimeStrSpecs
global 17-12

Table 17-6 Elements of date strings 17-13
Table 17-7 Formats for date and time string elements 17-15
Table 17-8 Date frame slots and values 17-27
Table 17-9 ROM language codes 17-30

Chapter 19 Transport Interface Reference 19-1

Table 19-1 Preferences slots 19-7
Table 19-2 E-mail address translations 19-30
Table 19-3 Causes of a send request 19-33
Table 19-4 Slots in silentPrefs frame 19-46
Table 19-5 Slots in sendPrefs frame 19-46
Table 19-6 Slots in outboxPrefs frame 19-47
Table 19-7 Slots in inboxPrefs frame 19-47

Chapter 20 Endpoint Interface Reference 20-1

Table 20-1 Data form symbols 20-2
Table 20-2 Typelist data type symbols 20-3
Table 20-3 Option opcode constants 20-3
Table 20-4 Endpoint error code constants 20-4
Table 20-5 Option error code constants 20-5
Table 20-6 Endpoint state constants 20-6
Table 20-7 Other endpoint constants 20-7
Table 20-8 Data translators 20-34

Chapter 21 Built-in Communications Tools Reference 21-1

Table 21-1 Built-in communications tool service option
labels 21-2

Table 21-2 Summary of serial options 21-3
Table 21-3 Serial chip location labels 21-5
Table 21-4 Serial chip specification option fields 21-8
Table 21-5 Serial chip specification option constants 21-9
Table 21-6 Serial circuit control option fields 21-11

xxxi

Table 21-7 Serial circuit control option constants 21-12
Table 21-8 Serial flow control option fields 21-19
Table 21-9 Serial event constants 21-23
Table 21-10 Serial statistics option fields 21-25
Table 21-11 Summary of serial tool with MNP options 21-28
Table 21-12 Summary of framed serial options 21-29
Table 21-13 Serial framing configuration option fields 21-30
Table 21-14 Summary of modem options 21-32
Table 21-15 Modem preferences option fields 21-36
Table 21-16 Modem profile option fields 21-41
Table 21-17 Modem profile configuration strings 21-43
Table 21-18 Modem error control type 21-46
Table 21-19 Modem dialing option fields 21-49
Table 21-20 Modem connection type option fields 21-52
Table 21-21 Modem fax capabilities option fields 21-55
Table 21-22 Modem fax modulation return values 21-56
Table 21-23 MNP compression type 21-62
Table 21-24 MNP data statistics option fields 21-64
Table 21-25 Summary of infrared options 21-66
Table 21-26 Infrared statistics option fields 21-70
Table 21-27 Summary of AppleTalk options 21-71
Table 21-28 Summary of resource arbitration options 21-83

Chapter 22 Modem Setup Service Reference 22-1

Table 22-1 Constants for modem setup general
information 22-2

Table 22-2 Constants for modem setup preferences 22-3
Table 22-3 Constants for the modem setup profile 22-5
Table 22-4 Constants for the fax profile 22-10
Table 22-5 Available fax speeds 22-11
Table 22-6 Available fax service classes 22-12

xxxii

Chapter 23 Utility Functions Reference 23-1

Table 23-1 Instruction symbols for StringFilter 23-23

Table 23-2 Floating point exceptions 23-73
Table 23-3 Exception frame data slot name and

contents 23-81

P R E F A C E

xxxiii

About This Book

This book, Newton Programmer�s Reference, is the definitive
reference for Newton programming. It describes all of the protos,
methods, functions, data structures, error codes, and other
constructs that are part of the Newton application programming
interface (API).

This book is a companion to Newton Programmer�s Guide, which
provides conceptual information and instructions for using the
Newton application programming interfaces.

Audience

This reference is for anyone who wants to write NewtonScript
programs for the Newton family of products.

Before using this reference, you should read Newton Toolkit User�s
Guide to learn how to install and use Newton Toolkit, which is the
development environment for writing NewtonScript programs for
Newton. You may also want to read The NewtonScript
Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is
used throughout the Newton Programmer�s Guide.

To make best use of this reference, you should already have a
good understanding of the information presented in the
companion volume to this book, Newton Programmer�s Guide.

P R E F A C E

xxxiv

Related Books

This book is one in a set of books available for Newton
programmers. You’ll also need to refer to these other books in
the set:

■ Newton Programmer�s Guide. This companion volume is the
definitive guide to Newton programming.

■ Newton Toolkit User�s Guide. This book comes with the Newton
Toolkit development environment. It introduces the Newton
development environment and shows how to develop Newton
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

■ The NewtonScript Programming Language. This book comes with
the Newton Toolkit development environment. It describes the
NewtonScript programming language.

■ Newton Book Maker User�s Guide. This book comes with the
Newton Toolkit development environment. It describes how to
use Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.

■ Newton 2.0 User Interface Guidelines. This book contains
guidelines to help you design Newton applications that
optimize the interaction between people and Newton devices.

Sample Code

The Newton Toolkit development environment, from Apple
Computer, includes many sample code projects. You can examine
these samples, learn from them, and experiment with them. These
sample code projects illustrate most of the topics covered in this
book. They are an invaluable resource for understanding the

P R E F A C E

xxxv

topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. The
latest sample code is included each quarter on the Newton
Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly
mailing. Sample code is updated on the Newton Development
side on the World Wide Web (http://dev.info.apple.com/
newton) shortly after it is released on the Newton Developer CD.
For information about how to contact Apple Computer regarding
the Newton Developer Program, see the section “Developer
Products and Support,” on page xxxvii.

The code samples in this book show methods of using various
routines and illustrate techniques for accomplishing particular
tasks. All code samples have been compiled and, in most cases,
tested. However, Apple Computer does not intend that you use
these code samples in your application.

To make the code samples in this book more readable, only
limited error handling is shown. You need to develop your own
techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts
This book uses the following special fonts:

■ Boldface. Key terms and concepts appear in boldface on first
use. These terms are also defined in the Glossary.

P R E F A C E

xxxvi

■ Courier typeface. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,
slot names, function names, method names, symbols, and
constants are shown in the Courier typeface to distinguish
them from regular body text. If you are programming, items
that appear in Courier should be typed exactly as shown.

■ Italic typeface. Italic typeface is used in code to indicate
replaceable items, such as the names of function parameters,
which you must replace with your own names. The names of
other books are also shown in italic type, and rarely, this style is
used for emphasis.

Tap Versus Click
Throughout the Newton software system and in this book, the
word “click” sometimes appears as part of the name of a method
or variable, as in ViewClickScript or ButtonClickScript.
This may lead you to believe that the text refers to mouse clicks. It
does not. Wherever you see the word “click” used this way, it
refers to a tap of the pen on the Newton screen (which is
somewhat similar to the click of a mouse on a desktop computer).

Frame Code
If you are using the Newton Toolkit (NTK) development
environment in conjunction with this book, you may notice that
this book displays the code for a frame (such as a view) differently
than NTK does.

In NTK, you can see the code for only a single frame slot at a time.
In this book, the code for a frame is presented all at once, so you
can see all of the slots in the frame, like this:

{ viewClass: clView,

viewBounds: RelBounds(20, 50, 94, 142),

viewFlags: vNoFlags,

P R E F A C E

xxxvii

viewFormat: vfFillWhite+vfFrameBlack+vfPen(1),

viewJustify: vjCenterH,

ViewSetupDoneScript: func()

:UpdateDisplay(),

UpdateDisplay: func()

SetValue(display, 'text, value);

};

If while working in NTK, you want to create a frame that you see
in the book, follow these steps:

1. On the NTK template palette, find the view class or proto
shown in the book. Draw out a view using that template. If the
frame shown in the book contains a _proto slot, use the
corresponding proto from the NTK template palette. If the
frame shown in the book contains a viewClass slot instead of
a _proto slot, use the corresponding view class from the NTK
template palette.

2. Edit the viewBounds slot to match the values shown in the
book.

3. Add each of the other slots you see listed in the frame, setting
their values to the values shown in the book. Slots that have
values are attribute slots, and those that contain functions are
method slots.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer’s
worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone
interested in developing applications on Apple computer
platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple development tools and the most

P R E F A C E

xxxviii

popular third-party development tools. ADC offers convenient
payment and shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple
Developer Catalog contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call
408-974-4897 for information on the developer support programs
available from Apple.

For Newton-specific information, see the Newton developer
World Wide Web page at:

http://dev.info.apple.com/newton

Undocumented System Software Objects

When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com

World Wide Web http://www.devcatalog.apple.com

View Classes and Protos 1-1

C H A P T E R 1

Getting Started Reference 1

This chapter describes the view classes, protos, and functions useful for
creating any application.

View Classes and Protos 1

clView 1
The clView view class is the base view class. It implements a generic view
that has no special characteristics or specific kind of data associated with it.
This view class does not support recognition, gestures, or user input of any
kind.

When a clView is used as the base view of an application, it typically
includes many application-specific slots containing global data and methods
for use by its child views (which automatically inherit parental slots if they
are not overridden). The minimal slots of interest are listed below.

Figure 1-0
Table 1-0

C H A P T E R 1

Getting Started Reference

1-2 View Classes and Protos

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

viewFlags The default setting is vVisible.
viewFormat Optional. The default setting is nil.

Here is an example of a template defining a view of the clView class:

sampleApp := {...

viewClass: clView,

viewBounds: {left:0, top:0, right:200, bottom:200},

viewFlags: vApplication+vClickable,

viewFormat: vfFrameBlack+vfPen1+vfShadow1,

viewJustify: vjParentCenterH,

viewEffect: fxUp+fxSteps(8),

declareSelf: 'base, // for closebox child

// methods and other view-specific slots

ViewSetupFormScript: func()...

...}

protoApp 1
This proto is used to create a simple application base view. It is a view with a
title at the top and a status bar at the bottom. The user can tap on the clock

C H A P T E R 1

Getting Started Reference

View Classes and Protos 1-3

icon to see the current time, or on the close box to close the application. Here
is an example:

Slot descriptions

title A string that is the title. This title appears in a title bar at
the top of the view.

viewBounds Set to the size and location where you want the view to
appear. By default it is centered horizontally within its
parent view.

viewFlags The default setting is vVisible + vApplication.
Do not change these flags, but you can add others if you
wish.

viewJustify Optional. The default setting is vjParentCenterH.

C H A P T E R 1

Getting Started Reference

1-4 Functions

viewFormat Optional. The default setting is vfFillWhite +
vfFrameBlack + vfPen(1) + vfInset(1) +
vfShadow(1).

declareSelf Do not change. This slot is set by default to 'base. This
identifies the view to be closed when the user taps the
close box.

The protoApp has two child views: a title and a status bar.

Here is an example of a template using protoApp:

myApp := {...
_proto: protoApp,
title: "My Application",
// set bounds relative to screen size
ViewSetupFormScript: func()

begin
local b := GetAppParams();
self.viewBounds.top := b.appAreaTop + 2;
self.viewBounds.left := b.appAreaLeft;
self.viewBounds.bottom := b.appAreaHeight - 7;
self.viewBounds.right := b.appAreaWidth - 21;
end

...}

Functions 1

Application-Defined Functions 1
This section describes functions that are called when applications and other
parts are installed and removed from the Newton device.

C H A P T E R 1

Getting Started Reference

Functions 1-5

InstallScript 1

InstallScript(partFrame) // for application part
InstallScript(partFrame, removeFrame) // for auto part

This function in the application or auto part is executed when the package is
activated on the Newton or when the Newton is reset.

partFrame The part frame. For an application part, this frame
contains a slot named theForm, which contains a
reference to your application’s base template. For an
auto part, there is no theForm slot.

removeFrame This parameter is passed to this function only if an auto
part is being installed, otherwise, only one parameter is
passed. The removeFrame parameter is the frame that
will be passed to the auto part RemoveScript
function. This frame contains a single slot,
RemoveScript, which contains a copy of the
RemoveScript function. Note that you can add
additional slots to this frame.

For application parts, the system executes a deep clone of the
InstallScript function, so you don’t normally need to use
EnsureInternal within it. It’s recommended that you keep the
InstallScript function as small as possible for application parts, because
the function is copied into the NewtonScript heap as a result of the deep
clone. If you need to execute a lot of code, you might want to make a method
in the application base template and send it a message from your
InstallScript. You can access the base template using the expression
partFrame.theForm. The code in the application method won’t be deep
cloned since it’s not part of the InstallScript function.

For auto parts, the InstallScript function is not cloned or copied. You
must use EnsureInternal within this function as appropriate, to prevent
the warning to reinsert the card.

C H A P T E R 1

Getting Started Reference

1-6 Functions

DeletionScript 1

DeletionScript()

This function in the part is executed when the package is deleted by the user
from the Extras drawer. Typically this function is used to do clean-up
operations that you might need to do when the part is deleted.

This function applies to all types of package parts, except for store parts.

After the DeletionScript function is executed, the RemoveScript
function is also executed (for application and auto parts only).

DoNotInstallScript 1

DoNotInstallScript()

This function in the part is executed before the package is first loaded onto a
Newton store from some external source. It gives the parts in the package a
chance to prevent installation of the package. If any part returns a non-nil
value from this function, the package is not installed.

You should provide the user with some kind of feedback if package
installation is prevented, rather than silently failing.

This function applies to all types of package parts, except for store parts.

RemoveScript 1

RemoveScript(frame)

This function in the application or auto part is executed when the package is
deactivated.

frame For an application part, this parameter is equivalent to
the part frame. Note that because the application has
been removed, the theForm slot contains an invalid
reference. For an auto part, this parameter is the same
removeFrame parameter passed to the InstallScript
function. Note that the InstallScript function can
add additional slots to this frame.

C H A P T E R 1

Getting Started Reference

Functions 1-7

Note that the function that is executed is actually a clone of the
RemoveScript function in your part.

If the application or auto part package is deleted by the user from the Extras
drawer, the DeletionScript function is executed before the
RemoveScript function.

Constants 2-1

C H A P T E R 2

Views Reference 2

This chapter describes the constants, functions, and methods used by the
view system interface.

Constants 2

The following sections contain descriptions of the constants used in the view
interface:

■ view class constants

■ viewFlags constants

■ viewJustify constants

■ viewFormat constants

■ viewTransferMode constants

■ viewEffect constants

Figure 2-0
Table 2-0

C H A P T E R 2

Views Reference

2-2 Constants

View Class Constants 2
The view class constants are listed and described in Table 2-1.

Table 2-1 View class constants

Constant Value Description

clView 74 The base view class. This class is used for
a generic view that has no special
characteristics. A view of this class is
generally a container view that encloses
other more specialized views. Such a
high-level view would include global
data and methods shared by its child
views. See Chapter 2, “Getting Started,”
in the Newton Programmer�s Guide for
more information.

clPictureView 76 Used for pictures. See Chapter 13,
“Drawing and Graphics,” in the Newton
Programmer�s Guide for more information.

clEditView 77 Used for editing views that can accept
both text and graphic user input. This
view class typically has child views that
are of class clParagraphView and
clPolygonView. See Chapter 8, “Text
and Ink Input and Display,” in the
Newton Programmer�s Guide for more
information.

clParagraphView 81 A static or editable text view. When text is
recognized, it is displayed in one of these
views. Text is grouped into paragraphs so
that many words can be shown in a single
paragraph view. See Chapter 8, “Text and
Ink Input and Display,” in the Newton
Programmer�s Guide for more information.

C H A P T E R 2

Views Reference

Constants 2-3

clPolygonView 82 A graphic view used in an edit view.
When a shape is recognized, it is
displayed in one of these graphic views.
See Chapter 13, “Drawing and Graphics,”
in the Newton Programmer�s Guide for
more information.

clKeyboardView 79 Used to define keyboard-like arrays of
buttons that can be tapped. No other
forms of input recognition are available.
See Chapter 8, “Text and Ink Input and
Display,” in the Newton Programmer�s
Guide for more information.

clMonthView 80 Used to define a calendar view of a
month that lets the user select a date
range. See Chapter 6, “Pickers, Pop-up
Views, and Overviews,” in the Newton
Programmer�s Guide for more information.

clRemoteView 88 Used for a view that displays another
view as its contents. This can be used to
show a page preview of a full-page view,
for example. This view provides the
scaling necessary to display the entire
remote view. See Chapter 13, “Drawing
and Graphics,” in the Newton
Programmer�s Guide for more information.

clPickView 91 Used to display a list from which you can
pick an item. The list can display both
text and graphic items. This view class is
supported through the protoPicker
view proto. See Chapter 6, “Pickers,
Pop-up Views, and Overviews,” in the
Newton Programmer�s Guide for more
information.

Table 2-1 View class constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

2-4 Constants

viewFlags Constants 2
The viewFlags constants are listed and described in Table 2-2. Several
additional constants can be specified in the viewFlags slot that control
what kinds of pen input (taps, strokes, words, letters, numbers, and so on)
are recognized and handled by the view. These other constants are described
in “Text and Ink Input and Display Reference” (page 7-1).

clGaugeView 92 Used to define a gauge-like view that can
display a visual sliding bar indicator. The
view can be read-only or changeable.
With a changeable view, the user can drag
the indicator to a new position. See
Chapter 7, “Controls and Other Protos,”
in the Newton Programmer�s Guide for
more information.

clOutline 105 Used for a text outline with expandable
headings that have indented subheadings.
The user can tap headings to expand and
collapse them and to choose items. See
Chapter 7, “Controls and Other Protos,”
in the Newton Programmer�s Guide for more
information.

Table 2-2 viewFlags constants

Constant Value Description

vVisible 1 The view is visible. (Don’t set this flag for your
application base view, because you don’t want it
to be shown until the user taps its icon in the
Extras Drawer.) If you Show, Hide, Open, Close,
or Toggle a view, this flag is changed in the view
by the system to reflect the current state of the
view.

Table 2-1 View class constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

Constants 2-5

vApplication 4 Identifies a view that should receive scrolling and
other high-level events. For example, when the
user taps the scroll arrows, the system searches all
views to find the frontmost view that has this bit
set, and then sends the scroll event to that view.
Generally, this flag is set for the application base
view. Views with this flag set can be found with
the special view symbols 'viewFrontMost or
'viewFrontMostApp.

vCalculateBounds 8 The view bounds are not fixed, but are
recalculated and will grow if the user enters more
information than the view can hold. Used by
views of the class clParagraphView and
clPolygonView only, and only when they are
enclosed in a view of the class clEditView.

vClipping 32 The view’s contents, including child views, are
clipped to its bounds when it is drawn. Note that
the base view of all applications is automatically
clipped, whether or not this flag is set.

vFloating 64 The view is a floating view; that is, it floats above
its non-vFloating sibling views. A view without
this flag will never come in front of a floating
sibling view.

vReadOnly 2 The view cannot be changed, but it can be scaled
or distorted. It is read-only.

vWriteProtected 128 The same as vReadOnly, except that this flag
propagates automatically to all of the view’s child
views. Additionally, scaling and distortion of the
view are not allowed.

Table 2-2 viewFlags constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

2-6 Constants

viewJustify Constants 2
The constants used for the viewJustify slot are listed and described in
Table 2-3.

vNoScripts 134217728 Prevents the system from sending in the view any
of the system messages described
“Application–Defined Methods” (page 2-65)
(except for the ViewChangedScript, and
ViewSetupFormScript messages, which are
still sent). Setting this flag speeds up the
processing for a view if it has no application-
defined handling methods, because the system
won’t bother trying to send it messages. This flag
is set internally for views of the classes
clParagraphView, clPicutureView, and
clPolygonView that are created dynamically as
the user writes in a clEditView.

vClickable 512 Allows the view to receive pen input. The system
sends the ViewClickScript message to the
view once for each pen tap (click) that occurs
within the view. See to “Text and Ink Input and
Display” (page 8-1) in the Newton Programmer�s
Guide for more information.

vNoFlags 0 There are no flag attributes for the view.

Table 2-3 viewJustify constants

Constant Value Description

Horizontal alignment of view contents

vjLeftH 0 Left alignment (default).

vjCenterH 2 Center alignment (default for clPictureView
only).

Table 2-2 viewFlags constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

Constants 2-7

vjRightH 1 Right alignment.

vjFullH 3 Stretches the view contents to fill the entire view
width.

Vertical alignment of view contents1

vjTopV 0 Top alignment (default).

vjCenterV 4 Center alignment (default for clPictureView
only).

vjBottomV 8 Bottom alignment.

vjFullV 12 For views of the clPictureView class only;
stretches the picture to fill the entire view height.

Horizontal alignment of the view relative to its parent or sibling view2

vjParentLeftH 0 The left and right view bounds are relative to the
parent’s left side (default).

vjParentCenterH 16 The difference between the left and right view
bounds is used as the width of the view. If you
specify zero for left, the view is centered in the
parent view. If you specify any other number for
left, the view is offset by that much from a centered
position (for example, specifying left = 10 and
right = width+10 offsets the view 10 pixels to the
right from a centered position).

vjParentRightH 32 The left and right view bounds are relative to the
parent’s right side, and will usually be negative.

vjParentFullH 48 The left bounds value is used as an offset from the
left edge of the parent and the right bounds value
as an offset from the right edge of the parent (for
example, specifying left = 10 and right = –10 leaves
a 10-pixel margin on each side).

vjSiblingNoH 0 (Default) Do not use sibling horizontal alignment.

Table 2-3 viewJustify constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

2-8 Constants

vjSiblingLeftH 2048 The left and right view bounds are relative to the
sibling’s left side.

vjSiblingCenterH 512 The difference between the left and right view
bounds is used as the width of the view. If you
specify zero for left, the view is centered in relation
to the sibling view. If you specify any other number
for left, the view is offset by that much from a
centered position (for example, specifying left = 10
and right = width+10 offsets the view 10 pixels to
the right from a centered position).

vjSiblingRightH 1024 The left and right view bounds are relative to the
sibling’s right side.

vjSiblingFullH 1536 The left bounds value is used as an offset from the
left edge of the sibling and the right bounds value
as an offset from the right edge of the sibling (for
example, specifying left = 10 and right = –10
indents the view 10 pixels on each side relative to
its sibling).

Vertical alignment of the view relative to its parent or sibling view3

vjParentTopV 0 The top and bottom view bounds are relative to the
parent’s top side (default).

vjParentCenterV 64 The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in the
parent view. If you specify any other number for
top, the view is offset by that much from a centered
position (for example, specifying top = –10 and
bottom = height–10 offsets the view 10 pixels above
a centered position).

vjParentBottomV 128 The top and bottom view bounds are relative to the
parent’s bottom side.

Table 2-3 viewJustify constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

Constants 2-9

vjParentFullV 192 The top bounds value is used as an offset from the
top edge of the parent and the bottom bounds
value as an offset from the bottom edge of the
parent (for example, specifying top = 10 and
bottom = –10 leaves a 10-pixel margin on both the
top and the bottom).

vjSiblingNoV 0 (Default) Do not use sibling vertical alignment.

vjSiblingTopV 16384 The top and bottom view bounds are relative to the
sibling’s top side.

vjSiblingCenterV 4096 The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in relation
to the sibling view. If you specify any other number
for top, the view is offset by that much from a
centered position (for example, specifying top = –10
and bottom = height–10 offsets the view 10 pixels
above a centered position).

vjSiblingBottomV 8192 The top and bottom view bounds are relative to the
sibling’s bottom side.

vjSiblingFullV 12288 The top bounds value is used as an offset from the
top edge of the sibling and the bottom bounds
value as an offset from the bottom edge of the
sibling (for example, specifying top = 10 and
bottom = –10 indents the view 10 pixels on both the
top and the bottom sides relative to its sibling).

Text limits

noLineLimits 0 (Default) No limits, text wraps to next line.

oneLineOnly 8388608 Allows only a single line of text, with no wrapping.

oneWordOnly 16777216 Allows only a single word. (If the user writes
another word, it replaces the first.)

Indicate that a bounds value is a ratio

vjNoRatio 0 (Default) Do not use proportional alignment.

Table 2-3 viewJustify constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

2-10 Constants

1 For views of the clParagraphView class, the vertical alignment constants vjTopV, vjCenterV,
and vjBottomV apply only to paragraphs that also have the oneLineOnly viewJustify flag set.

2 If you are applying horizontal sibling-relative alignment and the view is the first child, it is positioned
according to the horizontal parent-relative alignment setting.

3 If you are applying vertical sibling-relative alignment and the view is the first child, it is positioned
according to the vertical parent-relative alignment setting.

vjLeftRatio 67108864 The value of the slot viewBounds.left is
interpreted as a percentage of the width of the
parent or sibling view to which this view is
horizontally justified.

vjRightRatio 134217728 The value of the slot viewBounds.right is
interpreted as a percentage of the width of the
parent or sibling view to which this view is
horizontally justified.

vjTopRatio 268435456 The value of the slot viewBounds.top is
interpreted as a percentage of the height of the
parent or sibling view to which this view is
vertically justified.

vjBottomRatio -536870912 The value of the slot viewBounds.bottom is
interpreted as a percentage of the height of the
parent or sibling view to which this view is
vertically justified.

vjParentAnchored 256 The view is anchored at its location in its parent
view, even if the origin of the parent view is
changed. Other sibling views will be offset, but not
child views with this flag set.

Table 2-3 viewJustify constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

Constants 2-11

viewFormat Constants 2

The constants used for the viewFormat slot are listed and described in
Table 2-4.

Table 2-4 viewFormat constants

Constant Value Description

vfNone 0 There are no format attributes set for the view
(default).

View fill color

vfFillWhite 1 Fill view with white.

vfFillLtGray 2 Fill view with light gray.

vfFillGray 3 Fill view with gray.

vfFillDkGray 4 Fill view with dark gray.

vfFillBlack 5 Fill view with black.

vfFillCustom 14 Fill the view with the custom pattern specified in the
viewFillPattern slot.

View frame color

vfFrameWhite 16 White frame.

vfFrameLtGray 32 Light gray frame.

vfFrameGray 48 Gray frame.

vfFrameDkGray 64 Dark gray frame.

vfFrameBlack 80 Black frame.

vfFrameMatte 240 Thick gray frame bordered by a black frame, giving a
matte effect.

C H A P T E R 2

Views Reference

2-12 Constants

vfFrameDragger 208 Similar effect to vfFrameMatte, except that
vfFrameDragger includes a small control nub in the
top portion of the frame at the center. This nub
indicates that the user can tap there and drag the view
around.

vfFrameCustom 224 Use the custom frame pattern specified in the
viewFramePattern slot.

View frame thickness

vfPen(pixels) pixels *
256

Sets the frame width; pixels specifies the pen thickness
in pixels, from 0 through 15. (Note that this is a
compile-time only function.)

View frame roundedness

vfRound(pixels) pixels *
16777216

Sets the corner radius for a rounded frame. pixels
specifies the corner radius in pixels, from 0 through
15. (Note that this is a compile-time only function.)

View frame inset

vfInset(pixels) pixels *
65536

Sets the inset style for the frame; that is, the amount of
white space (in pixels) between the view bounds and
the frame. pixels specifies the inset, from 0 through 3.
(Note that this is a compile-time only function.)

View shadow style

vfShadow(pixels) pixels *
262144

Sets the shadow style for the view; pixels specifies the
thickness of the shadow in pixels that is shown on the
bottom and right sides of the view frame. Specify a
number from 0 through 3. (Note that this is a
compile-time only function.)

View line style (for clEditView and clParagraphView view classes only)

vfLinesWhite 4096 Draw horizontal lines in white.

Table 2-4 viewFormat constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

Constants 2-13

viewTransferMode Constants 2
The constants that you can specify for the viewTransferMode slot are
listed and described in Table 2-5.

vfLinesLtGray 8192 Draw widely dotted horizontal lines.

vfLinesGray 12288 Draw dotted horizontal lines.

vfLinesDkGray 16384 Draw dashed horizontal lines.

vfLinesBlack 20480 Draw solid black horizontal lines.

vfLinesCustom 57344 Use the custom line pattern specified in the
viewLinePattern slot.

Table 2-5 viewTransferMode constants

Constant Value Description

modeCopy 0 Replaces the pixels in the destination with the
pixels in the source, “painting” over the screen
without regard for what’s already there.

modeOr 1 Replaces screen pixels under the black part of
the source image with black pixels. Screen
pixels under the white part of the source image
are unchanged.

modeXor 2 Inverts screen pixels under the black part of
the source image. Screen pixels under the
white part of the source image are unchanged.

modeBic 3 Erases screen pixels under the black part of the
source image, making them all white. Screen
pixels under the white part of the source image
are unchanged.

Table 2-4 viewFormat constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

2-14 Constants

viewEffect Constants 2
Table 2-6 lists all of the constants that you can use in the viewEffect slot to
create custom animation effects.

modeNotCopy 4 Replaces screen pixels under the black part of
the source image with white pixels. Screen
pixels under the white part of the source image
are made black.

modeNotOr 5 Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are made black.

modeNotXor 6 Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are inverted.

modeNotBic 7 Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are made white.

modeMask 8 This is a special transfer mode used for
drawing views of the clPictureView class
only. It causes the picture mask image to be
erased first and then the picture bit image is
drawn over it using the modeOr transfer mode.

Table 2-6 viewEffect constants

Constant Integer Value Description

fxSteps(x) (x-1)*
2097152

Sets the number of steps (x) that the animation
should take to complete. Specify an integer from 1
to 15.

Table 2-5 viewTransferMode constants (continued)

Constant Value Description

C H A P T E R 2

Views Reference

Constants 2-15

fxStepTime(x) x*33554432 Sets the amount of time (x) to take for each
animation step, in ticks. There are 60 ticks per
second, or 16.6 milliseconds per tick. Specify an
integer from 0 to 15.

fxColumns(x) x-1 Sets the number (x) of columns in which to divide
the view for animation purposes.

fxRows(x) (x-1)*32 Sets the number (x) of rows in which to divide the
view for animation purposes.

fxMoveH 65536 Indicates that you want the animation to include
horizontal movement. (Note that you can also
specify fxMoveV.)

fxHStartPhase 1024 If specified, indicates that you want the first
column to begin moving towards the left. If not
specified, the first column begins moving towards
the right. This flag can be used only if fxMoveH is
specified.

fxColAltHPhase 4096 If specified, the direction of horizontal movement
alternates for each column in the view. If not
specified, all columns move in the same direction
(left or right) as the first column. This flag can be
used only if fxMoveH is specified.

fxRowAltHPhase 16384 If specified, the direction of horizontal movement
alternates for each row in the view. If not specified,
all rows move in the same direction (left or right)
as the first row. This flag can be used only if
fxMoveH is specified.

fxMoveV 131072 Indicates that you want the animation to include
vertical movement. (Note that you can also specify
fxMoveH.)

fxVStartPhase 2048 If specified, indicates that you want the first row to
begin moving upwards. If not specified, the first
row begins moving downwards. This flag can be
used only if fxMoveV is specified.

Table 2-6 viewEffect constants (continued)

Constant Integer Value Description

C H A P T E R 2

Views Reference

2-16 Constants

fxColAltVPhase 8192 If specified, the direction of vertical movement
alternates for each column in the view. If not
specified, all columns move in the same direction
(up or down) as the first column. This flag can be
used only if fxMoveV is specified.

fxRowAltVPhase 32768 If specified, the direction of vertical movement
alternates for each row in the view. If not specified,
all rows move in the same direction (up or down)
as the first row. This flag can be used only if
fxMoveV is specified.

fxLeft 66560 Indicates that motion should be towards the left.
(This flag is the same as specifying
fxHStartPhase+fxMoveH.)

fxRight 65536 Indicates that motion should be towards the right.
(This flag is the same as specifying fxMoveH and
not specifying fxHStartPhase.)

fxUp 133120 Indicates that motion should be towards the top.
(This flag is the same as specifying
fxVStartPhase+fxMoveV.)

fxDown 131072 Indicates that motion should be towards the
bottom. (This flag is the same as specifying
fxMoveV and not specifying fxVStartPhase.)

fxRevealLine 262144 If specified, causes a line to be drawn at the
edge(s) from which the animation is being
revealed. For some types of animation, this setting
improves the effect.

fxWipe 524288 If specified, causes the view to be revealed in place
rather than actually moved into place. In other
words, the view is revealed just like a window is
revealed by rolling a shade away. Without this
flag, the view is actually moved into place.

Table 2-6 viewEffect constants (continued)

Constant Integer Value Description

C H A P T E R 2

Views Reference

Constants 2-17

fxFromEdge 1048576 If specified, causes the animation to begin at the
edge of the screen, ending up at the ultimate view
location. Without this flag, the entire animation
occurs within the bounds of the view being
animated.

fxCheckerboardEffect

155879 Reveals a view using a checkerboard effect, where
adjoining squares move in opposite (up and
down) directions.

fxBarnDoorOpenEffect

627713 Reveals a view from center towards left and right
edges, like a barn door opening where the view is
the inside of the barn.

fxBarnDoorCloseEffect

626689 Reveals a view from left and right edges towards
the center, like a barn door closing where the view
is painted on the doors.

fxVenetianBlindsEffect

131296 Reveals a view so that it appears behind venetian
blinds that open.

fxIrisOpenEffect

1023009 Changes the size of an invisible “aperture”
covering the view, revealing an ever-increasing
portion of the full-size view as the aperture opens.

fxIrisCloseEffect

986145 Like fxIrisOpenEffect, but decreases the size
of an invisible “aperture” covering the view, as the
aperture closes.

Table 2-6 viewEffect constants (continued)

Constant Integer Value Description

C H A P T E R 2

Views Reference

2-18 Functions and Methods

Functions and Methods 2

The following sections describe view functions and methods.

Getting References to Views 2
The following sections describe the functions and methods used to get
references to views.

fxPopDownEffect

393216 Reveals a view as it slides down from its top
boundary.

fxDrawerEffect 133120 Reveals a view as it slides up from its bottom
boundary.

fxZoomOpenEffect

236577 Expands the image of the view from a point in the
center until it fills the screen; that is, the entire
view appears to grow from a point in the center of
the screen.

fxZoomCloseEffect

199713 Opposite of fxZoomOpenEffect. This value
shrinks the image of the view from a point in the
center until it disappears or closes on the screen.

fxZoomVerticalEffect

165920 The view expands out from a horizontal line in the
center of its bounds. The top half moves upward
and lower half moves downward.

Table 2-6 viewEffect constants (continued)

Constant Integer Value Description

C H A P T E R 2

Views Reference

Functions and Methods 2-19

ChildViewFrames 2

view:ChildViewFrames()

Returns an array of views that correspond to the child views of the view to
which this message is sent. The views are returned in the same order they
appear in the view hierarchy, from back to front. The most recently opened
views (which appear on top of the hierarchy) will be later in the list. Views
with the vFloating flag will be located at the end of the array.

IMPORTANT

Use this method to get to the child views of a view. If you
just reference the viewChildren or stepChildren slots
in the view, you get references to the child templates, not the
views. Of course, you can also directly reference any
declared child view. ▲

Parent 2

view:Parent()

Returns the parent view of the view to which this message is sent. This is the
recommended method of getting a reference to a view’s parent view, rather
than directly referencing the _parent slot.

GetRoot 2

GetRoot()

Returns the system root view.

All applications are normally declared in the root view under their
application symbol. This means there is a slot in the root view whose name is
the application symbol and whose value is that view. You can use this code
to test if an application is open:

GetRoot().applicationSymbol.viewCObject;

If the application is open, this function returns a non-nil value; otherwise,
nil is returned. This reference is always present as long as a view is open, and
nil when a view is closed.

C H A P T E R 2

Views Reference

2-20 Functions and Methods

GetView 2

GetView(symbol)

Returns the first view found that corresponds to the specified symbol. If no
view is found, nil is returned.

symbol A symbol identifiying a view template you want to get.
Besides a view template name, you can pass in the
following special symbols (which are evaluated at run
time):

■ 'viewFrontMost, to return the frontmost view on the screen that has the
vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, to return the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

■ 'viewFrontKey, to return the view on the screen that accepts keys (there
can be only one view that is the key receiver) See “Text and Ink Input and
Display” (page 8-1) in the Newton Programmer�s Guide for more
information on key receivers.

Displaying, Hiding, and Redrawing Views 2
The methods and functions described in the following subsections describe
how to display, hide, and redraw views.

Open 2

view:Open()

Creates the graphic representation of the view. This method then plays the
“show” sound (stored in the showsound slot), brings the view to the front,
and shows it and all of its child views.

The view receives the following system messages: ViewSetupFormScript,
ViewSetupChildrenScript, ViewSetupDoneScript,
ViewShowScript, and ViewDrawScript. Note that these same system
messages (except for ViewShowScript) are sent to all visible child views of

C H A P T E R 2

Views Reference

Functions and Methods 2-21

the view as they are created and shown as well. For information about these
system messages, refer to “Application–Defined Methods” (page 2-65).

This method always returns true.

Note that this message must be sent to a view, not to a template. To ensure
that a view exists for the template, you must have declared it. For details on
declaring a view, see “View Instantiation” (page 3-26) in Newton
Programmer�s Guide.

You can use this code to test if a view is open:

view.viewCObject;

If the view is open, this code returns a non-nil value; otherwise, nil is
returned. This reference is always present as long as a view is open, and is
always nil when a view is closed.

Close 2

view:Close()

Closes the specified view. This means that if the view is currently visible, this
method plays the “hide” sound (stored in the hidesound slot), calls
ViewHideScript, hides the view and all of its child views, calls
ViewQuitScript, and then deletes the view from memory. This method
always returns non-nil.

Note that if the view is hidden (it was opened and then sent the Hide
message), and you send it the Close message, it will be closed. This is
because the view is still considered open even when it is hidden. You won’t
see anything change on the screen since the view is already not visible, but
the view will be deleted from memory. Also, in this case, the “hide” sound is
not played and the ViewHideScript message is not sent.

If the view has already been closed, nothing happens.

If the view is a declared view, the view memory object is not deleted as a
result of the Close message, as long as the view it is declared in is still open.
Only the graphic representation of the view is deleted. If you want to reopen
the view, send it an Open or a Toggle message.

C H A P T E R 2

Views Reference

2-22 Functions and Methods

Note

If you need to close a view from a method within the view
itself, you may want to send the Close message using the
function AddDeferredCall so that the Close message is
delayed until after the currently executing method finishes.
For example, you could use code like this:

begin

local me := self;

AddDeferredCall (func() me:close(), '[]);

end

◆

Toggle 2

view:Toggle()

If the view is currently closed, this method performs the same operations as
if the view had been sent the Open message.

If the view is currently open, this method performs the same operations as if
the view had been sent the Close message.

Note that if the view is hidden (it was opened and then sent the Hide
message), and you send it the Toggle message, it will be closed. This is
because the view is still considered open even when it is hidden. You won’t
see anything change on the screen since the view is already invisible, but the
view will be deleted from memory. Also, in this case, the “hide” sound is not
played.

Toggle returns non-nil if the view is to be opened, or nil if the view is to
be closed, as a result of calling this method.

Note that this message must be sent to a view, not to a template. To ensure
that a view exists for the template, you must have declared it. For details on
declaring a view, see “View Instantiation” (page 3-26) in Newton
Programmer�s Guide.

C H A P T E R 2

Views Reference

Functions and Methods 2-23

Note that Toggle actually creates and destroys view objects (like Open and
Close), while Show and Hide simply make existing views visible or
invisible.

Show 2

view:Show()

If the view is currently hidden, this method plays the “show” sound (stored
in the showsound slot), brings the view to the front, shows it and all of its
visible child views, and calls the ViewShowScript. Note that you must
specify a view. The return value is unspecified.

You can use this method only if the view has previously been opened (you
have sent it the Open or Toggle message) and then hidden (you have sent it
the Hide message).

Even though all children of the view being shown are also shown, the child
views are not sent the ViewShowScript message. This message is sent only
to the view on which you use the Show method directly.

Hide 2

view:Hide()

If the view is currently shown, this method plays the “hide” sound (stored in
the hidesound slot), calls the ViewHideScript, and hides the view and all
of its child views. The return values is unspecified.

Even though all children of the view being hidden are also hidden, the child
views are not sent the ViewHideScript message. This message is sent only
to the view on which you use the Hide method directly.

To show the view again, send it the Show message.

Note that when a view is hidden, the view in memory is not destroyed. All
that actually happens is the bits are removed from the screen. The view is
still considered open. This allows fast performance when the view is
subsequently shown again.

C H A P T E R 2

Views Reference

2-24 Functions and Methods

Dirty 2

view:Dirty()

Marks the view as needing redrawing. The view (and its visible child views)
will be redrawn the next time the system idle task is executed. This method
always returns non-nil.

The system tries to handle redrawing only the parts of the view hierarchy
that have been dirtied, but it has a limited cache of update nodes (places in
the view hierarchy where it starts drawing from). If you dirty several views,
the update nodes may merge by remembering a common ancestor of two
dirty views and starting the redrawing from there when the time comes to
update. To flush out the updates, call RefreshViews, which sometimes
may be more efficient since the update is more precise.

When a view is redrawn as a result of the Dirty method, the system does
not necessarily reread all of the slots in the view. For example, slots
describing the view contents are not read—the contents are assumed to have
not changed. If you were to directly change the text slot of a
clParagraphView and then send it the Dirty message, you would not see
the text in the view change.

Usually, you want a view to redraw with its new contents, if the contents
change. To do this, use the global function SetValue (page 2-25) to change
the contents of slots in the view. The SetValue function causes the system
to reread the changed slots in the view before it is redrawn, and it
automatically dirties the view so you don’t have to send it the Dirty
message.

If you change the bounds of a view directly, Dirty does not cause the view
to be redrawn with new bounds. To do that, send the view the SyncView
(page 2-26) message.

OffsetView 2

 view:OffsetView(dx, dy)

Offsets a view by dx horizontally and dy vertically. The return values is
unspecified.

C H A P T E R 2

Views Reference

Functions and Methods 2-25

dx The x coordinate of amount you want to offset the view.

dy The y coordinate of amount you want to offset the view.

OffsetView does the redraw faster and more easily than SetOrigin.
OffsetView changes where a view is within its parent, SetOrigin
changes the locatin of the children/contents of a view.

RefreshViews 2

RefreshViews()

Redraws all views immediately, if they need to be updated. This function
always returns non-nil.

SetValue 2

SetValue(view, slotSymbol, value)

Sets the value of a slot in a view. The view is flagged as dirty, so it will be
redrawn using the new information.

view The view in which you want to change a slot value.

slotSymbol A symbol naming the slot whose value you want to
change. Note that you must specify a symbol (quoted
identifier), for example, 'mySlot.

value The new value of the slot.

This function always returns nil.

You can pass in the following special symbols (which are evaluated at run
time) for the view parameter:

■ 'viewFrontMost, to indicate the frontmost view on the screen that has
the vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, to indicate the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

■ 'viewFrontKey, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

C H A P T E R 2

Views Reference

2-26 Functions and Methods

As expected, the view is redrawn immediately with its new settings if you
set the value of one of the following slots: viewBounds, viewFormat,
viewJustify, viewFont, viewFlags. Additionally, for these slots, the
effect is as if you had sent the SyncView message to the view, including
calling the ViewSetupFormScript method (see the SyncView method,
next).

If the view exists, any dependent views (see the TieViews function on
(page 2-55)) are notified, and the ViewChangedScript message is sent to
the view.

If you specify a slot that does not exist in the view, the slot is created in the
view.

Note

SetValue now changes the recognition behavior of a view
at run time by setting new recognition flags in the
viewFlags slot. The new recognition behavior takes effect
immediately following the SetValue call. See the 1.0
Newton Programmer�s Guide for details on this call’s previous
behavior. ◆

SyncView 2

view:SyncView()

Redraws a view after you change its viewBounds slot. Before the view is
redrawn with new bounds, the ViewSetupFormScript message is sent to
the view. SyncView always returns true.

MoveBehind 2

viewToMove:MoveBehind(view)

Moves a view behind another view, redrawing the screen as appropriate.

view The view identified by viewToMove is moved behind
this view. If the view parameter is nil, viewToMove is
brought to the front.

C H A P T E R 2

Views Reference

Functions and Methods 2-27

If the view is a floating view (has the vFloating viewFlags bit set), it can
be moved behind only another floating sibling view, because floating views
cannot appear behind nonfloating views.

The return value of this method is undefined.

Dynamically Adding Views 2
The following functions are useful for creating and removing views at run
time.

AddStepView 2

AddStepView(parentView, childTemplate)

Dynamically instantiates a new view based on the specified child template
and adds it to the parent’s stepChildren array. You must send the Dirty
message to the new view or to its parent view to cause the new view to be
drawn. See “Using the AddStepView Function” (page 3-35) in Newton
Programmer�s Guide for information on using this function.

parentView The parent view to which you want to add the new
view.

childTemplate A template describing the new view you want to add.

This function returns the view if it was successfully created; otherwise, nil
is returned.

You can pass in the following special symbols (which are evaluated at run
time) for the parentView parameter:

■ 'viewFrontMost, to indicate the frontmost view on the screen that has
the vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, to indicate the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

■ 'viewFrontKey, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

C H A P T E R 2

Views Reference

2-28 Functions and Methods

Because this function adds an item to the parent’s stepChildren array, you
must ensure that the array is in RAM, or AddStepView will fail. You can use
this code:

if not HasSlot(parentView, 'stepChildren) then
parentView.stepChildren := Clone(parentView.stepChildren);

The if statement checks if the stepChildren slot already exists in the
parent view (in RAM). If it does not, it is copied out of the template in your
package into RAM.

Note that you can add an invisible view; that is, one with its vVisible flag
not set. You might want to do this if you want the view to show itself with an
effect. First add it invisibly, then send it the Show message. (If you just add it
as a visible view, any view effect you specify is not done when it is first
displayed.)

RemoveStepView 2

RemoveStepView(parentView, childView)

Removes a child view from its parent view. The child view is closed, if visible.

parentView The parent view from which you want to remove the
child view.

childView The child view you want to remove.

This function always returns nil.

You can pass in the following special symbols (which are evaluated at run
time) for either the parentView or childView parameters:

■ 'viewFrontMost, to indicate the frontmost view on the screen that has
the vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, to indicate the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

■ 'viewFrontKey, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

C H A P T E R 2

Views Reference

Functions and Methods 2-29

If the specified child view is a root-level view (a child of the root view), this
function plays the “hide” sound (stored in the hidesound slot in the view),
sends the view a ViewHideScript message, sends the view a
ViewQuitScript message, and hides the view (and all of its child views).

If the specified child view is not a child of the root view, the same operations
occur, except that the hide sound is not played and the ViewHideScript
message is not sent.

Note

This function removes the view template from the
stepChildren array of the parent view. You do not need to
remove the template yourself. For a description of how this
function worked in the previous release, see “Views” in the
1.0 Newton Programmer�s Guide. ◆

AddView 2

AddView(parentView, childTemplate)

Dynamically instantiates a new view based on the specified child template
and adds it to the parent’s viewChildren array. You must send the Dirty
message to the new view or to its parent view to cause the new view to be
drawn.

parentView The parent view to which you want to add the new
view.

childTemplate A template describing the new view you want to add.

This function returns the view if it was successfully created; otherwise, it
returns nil.

You can pass in the following special symbols (which are evaluated at run
time) for the parentView parameter:

■ 'viewFrontMost, to indicate the frontmost view on the screen that has
the vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, to indicate the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

C H A P T E R 2

Views Reference

2-30 Functions and Methods

■ 'viewFrontKey, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Because this function adds an item to the parent’s viewChildren array, you
must ensure that the array is in RAM, or AddStepView will fail. You can use
this code:

if not HasSlot(parentView, 'viewChildren) then
parentView.viewChildren := Clone(parentView.viewChildren);

The if statement checks if the viewChildren slot already exists in the
parent view (in RAM). If it does not, it is copied out of the template in your
package into RAM.

Note that you can add an invisible view; that is, one with its vVisible flag
not set. You might do this if you want the view to show itself with an effect.
First add it invisibly, then send it the Show message. (If you just add it as a
visible view, any view effect you specify is not done when it is first
displayed.)

RemoveView 2

RemoveView(parentView, childView)

Removes a child view from its parent view. The child view is closed, if visible.

parentView The parent view from which you want to remove the
child view.

childTemplate The child view you want to remove.

This function always returns nil.

You can pass in the following special symbols (which are evaluated at run
time) for the either the parentView or childView parameters:

■ 'viewFrontMost, to indicate the frontmost view on the screen that has
the vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, to indicate the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

C H A P T E R 2

Views Reference

Functions and Methods 2-31

■ 'viewFrontKey, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

If the specified child view is a root-level view (a child of the root view), this
function plays the “hide” sound (stored in the hidesound slot in the view),
sends the view a ViewHideScript message, sends the view a
ViewQuitScript message, and hides the view (and all of its child views).

If the specified child view is not a child of the root view, the same operations
occur, except that the hide sound is not played and the ViewHideScript
message is not sent.

BuildContext 2

BuildContext(template)

Dynamically instantiates a new view based on the specified template and
adds it to the root view.

template A template describing the new view you want to add.

This function returns the view that it creates.

To display the newly created view, send it the Open message. The viewFlags
slot must not have the vVisible flag set. It’s best if you don’t set the
vVisible flag in the template; that way you can display the view with a
simple Open message, and this also allows any view effect you specify to be
done when the view is first shown.

The parent of the new view is set to the root view. The template is not added
to the viewChildren or stepChildren array of any view. The _proto
slot of the new view is set to the template that it was created from.

Making Modal Views 2
The following methods are used to make modal views.

C H A P T E R 2

Views Reference

2-32 Functions and Methods

AsyncConfirm 2

AsyncConfirm(confirmMessage, buttonList, fn)

This method creates and displays a slip that the user must dismiss before
continuing. The slip is created at a deferred time, so the call to
AsyncConfirm returns immediately, allowing the currently executing
NewtonScript code to finish. AsyncConfirm’s return value is unspecified.

confirmMessage A string to be displayed to the user.

buttonList A symbol ('okCancel, 'yesNo), an array of strings,
for example ["Three", "Two", "One"], or an array
of frames; each frame has two slots, 'value and
'text. The slot 'text holds the value for the button, a
string. The slot 'value holds the result that tapping the
button generates.

If a symbol was passed, the result is non-nil for the
“OK” and “Yes” buttons, and nil for the “Cancel” and
“No” buttons. If an array of strings was passed, the
result is the index into the array of the item that was
chosen. If an array of frames was passed, the result is
the contents of the value slot for the item that was
chosen.

fn A closure to be called when the slip is dismissed. It is
passed as one argument, the value of the button tapped.

ModalConfirm 2

ModalConfirm(confirmMessage, buttonList)

This method creates and displays a slip that returns the result of the user’s
choice. Because this method causes a new task to be spawned, it is less
efficient and takes more system overhead, so you should use
AsyncConfirm in most cases.

C H A P T E R 2

Views Reference

Functions and Methods 2-33

For example:

if ModalConfirm("Do you want to erase?", 'okCancel) then

 ...

confirmMessage A string to be displayed to the user.

buttonList See AsyncConfirm for a list of symbols and arrays that
you can pass in for the buttonList.

FilterDialog 2

view:FilterDialog()

This method opens a view and returns true immediately after opening.
FilterDialog is the same as Open except that the view is modal. This
means that all taps outside the modal view are ignored while the modal view
is open. The modal state is exited when the modal view is closed.

FilterDialog is preferred over ModalDialog as it does not spawn a new
task when it is used.

Like Open, the FilterDialog method creates the graphic representation of
the view. It then plays the “show” sound (stored in the showsound slot),
brings the view to the front, and shows it (and all of its child views). The
view receives the following system messages: ViewSetupFormScript,
ViewSetupChildrenScript, ViewSetupDoneScript,
ViewDrawScript, and ViewShowScript. For information about these
system messages, refer to “Application–Defined Methods” (page 2-65).

Note that the FilterDialog message must be sent to a view, not to a
template. To ensure that a view exists for the template, you must have
declared it. For details on declaring a view, see “View Instantiation”
(page 3-26) in Newton Programmer�s Guide..

ModalDialog 2

view:ModalDialog()

This method is the same as FilterDialog, except that it spawns a separate
OS task and doesn’t return until after the dialog is closed.

C H A P T E R 2

Views Reference

2-34 Functions and Methods

This method always returns true.

Note

ModalDialog will not work correctly if it is sent to a
non-root child. ◆

Setting the Bounds of Views 2
The following functions and view methods calculate and return a
viewBounds frame.

RelBounds 2

RelBounds(left, top, width, height)

Returns a bounds frame, if you know the top-left coordinate and the width
and height of the view. This function calculates the right and bottom values
and returns a bounds frame. The value returned can be used for the value of
the viewBounds slot in a template.

left The left coordinate of the view.

top The top coordinate of the view.

width The width of the view.

height The height of the view.

SetBounds 2

SetBounds(left, top, right, bottom)

Returns a bounds frame when supplied with the four bounds values. The
value returned can be used for the value of the viewBounds slot in a
template.

left The left coordinate of the view.

top The top coordinate of the view.

right The right coordinate of the view.

bottom The bottom coordinate of the view.

C H A P T E R 2

Views Reference

Functions and Methods 2-35

GlobalBox 2

view:GlobalBox()

Returns the rectangle, in global coordinates, of the specified view. The
rectangle is returned as a bounds frame. If a valid view is not found, this
method throws an exception.

Note

If called from the ViewSetupFormScript method,
GlobalBox gets the viewBounds and viewJustify slots
from the view, calculates the effects of the sibling and parent
alignment on the view bounds, and then returns the
resulting bounds frame in global coordinates. ◆

GlobalOuterBox 2

view:GlobalOuterBox()

Returns the rectangle, in global coordinates, of the specified view, including
any frame that is drawn around the view. The rectangle is returned as a
bounds frame. If a valid view is not found, this method returns nil.

This method is just like GlobalBox, except that GlobalOuterBox includes
the frame around the view.

Note

If called from the ViewSetupFormScript method,
GlobalOuterBox gets the viewBounds and
viewJustify slots from the view, calculates the effects of
the sibling and parent alignment on the view bounds, and
then returns the resulting bounds frame in global
coordinates. ◆

C H A P T E R 2

Views Reference

2-36 Functions and Methods

LocalBox 2

view:LocalBox()

Returns a viewBounds frame containing the view bounds relative to the
view itself. That is, the top-left coordinates are both zero, the right coordinate
is the width of the view, and the bottom coordinate is the height of the view.
If a valid view is not found, this method throws an exception.

Note

If called from the ViewSetupFormScript method,
LocalBox gets the viewBounds and viewJustify slots
from the view, calculates the effects of the sibling and parent
alignment on the view bounds, and then returns the
resulting bounds frame in local coordinates. ◆

DirtyBox 2

view:DirtyBox(boundsFrame)

Marks a portion of a view (or views) as needing redrawing. The view (and its
visible child views) is redrawn the next time the system idle task is executed.

boundsFrame A bounds frame describing the area of the screen to be
dirtied, in global coordinates.

The return value of this method is undefined.

This method may save screen update time if only a portion of a view needs
redrawing, rather than the whole view.

You can use the DirtyBox method anywhere you would use the Dirty
method.

GetDrawBox 2

view:GetDrawBox()

Returns the bounds of the area on the screen that needs redrawing (the area
marked as dirty). The dirty area is always non-nil. This method returns a
bounds frame containing global coordinates.

C H A P T E R 2

Views Reference

Functions and Methods 2-37

Note

GetDrawBox will provide meaningful results only when
called from ViewDrawScript. ◆

ButtonBounds 2

ButtonBounds(width)

Returns a viewBounds frame when supplied with the width of a button to
be placed in the status bar. You can use this return value for the value of the
button viewBounds slot.

width The width of the button to place in the status bar.

For the first button you place in the status bar, specify the width as a
negative number. For example, if you want the button to be 30 pixels wide,
specify –30. This signals that this is the first button, and the bounds are
calculated to place it at a standard offset (36 pixels) from the left side of the
status bar.

For subsequent buttons that you place in the same status bar, specify the
width as a positive number. For subsequent buttons, you must also use the
viewJustify flag vjSiblingRightH.

Note

This function is available in the Newton Toolkit
development environment at compile time only. It is not
available at run time. ◆

StdButtonWidth 2

StdButtonWidth(str)

Returns the button size necessary to fit a string of specified text.

str A string that contains the button name.

This function internally calls StrFontWidth.

C H A P T E R 2

Views Reference

2-38 Functions and Methods

PictBounds 2

PictBounds(name, left, top)

Returns a viewBounds frame for views containing pictures. This function
opens the picture resource, finds the width and height of the picture, and
returns the proper bounds frame. The value returned is used for the value of
the viewBounds slot in a template.

name A string that is the name of a PICT resource.

left The left coordinate of the view.

top The top coordinate of the view.

Note

This function is available in the Newton Toolkit
development environment at compile time only. It is not
available at run time. ◆

Animating Views 2
There are four view methods that perform special animation effects on views.

Effect 2

view:Effect(effect, offScreen, sound, methodName, methodParameters)

Posts a message to the specified view to redraw it with an animation.
However, the system does not actually do the animation until after it calls
the method that you specify, in which you can do any operations required
before the animation is done. For example, you might want to animate a
view as you change its contents.

effect Specifies an animation effect. You can specify any of the
effect constants that are used in the viewEffect slot
(see “Opening and Closing Animation Effects”
(page 3-23) in Newton Progammer�s Guide).

offScreen Specifies whether or not the view should appear to
animate off or onto the screen. Specify non-nil to make

C H A P T E R 2

Views Reference

Functions and Methods 2-39

the animation appear as if the view is moving off the
screen (for example, closing). Specify nil to make the
animation appear as if the view is moving onto the
screen (for example, opening).

sound A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify nil.)

methodName This method changes the state of your view (the two
states that the effect transitions between). You must
specify a symbol (for example, 'myScript). Do not
change the state of your view before calling Effect.
This method must be accessible from the view to which
the Effect message is sent; that is, this method must
reside in that view or be accessible from that view
through inheritance.

methodParameters An array of parameters that are passed to your method.

The Effect method always returns nil.

Here is an example using this method:

aView := {...

doEffect: func()

begin

view1:Effect(fxZoomVerticalEffect, nil, ROM_plunk,

'effectScript,[]);

end,

...}

view1 := {...

text: "",

effectScript: func()

begin

SetValue(view1, 'text, "This is a paragraph view...");

C H A P T E R 2

Views Reference

2-40 Functions and Methods

end,

...}

SlideEffect 2

view:SlideEffect(contentOffset, viewOffset, sound, methodName,
methodParameters)

Posts a message to the specified view to perform a vertical sliding animation
on it. However, the system does not actually do the animation until after it
calls the method that you specify, in which you must do any operations that
change the state of your view.

contentOffset The number of pixels to animate the view contents
scrolling in a vertical direction. A positive number
makes the view contents appear to move downwards. A
negative number makes the view contents appear to
move upwards. Note that only the bits on the screen are
moved; the location of the actual view data is not
affected.

viewOffset The number of pixels to animate the whole view
moving up or down on the screen. Specify a positive
number to make the view appear to move up on the
screen. To make the view appear to move down, specify
a negative number.

If you don’t want to make the view appear to move, but
just want to scroll its contents, specify zero.

sound A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify nil.)

methodName The method that you want called before the animation
occurs. You must specify a symbol (for example,
'myScript). This method must be accessible from the
view to which the SlideEffect message is sent; that

C H A P T E R 2

Views Reference

Functions and Methods 2-41

is, this method must reside in that view or be accessible
from that view through inheritance.

methodParameters An array of parameters that are passed to your method.

The SlideEffect method always returns nil.

Note that this method does not actually change the bounds of the view or the
position of its contents. The bits are moved on the screen, but that is all that
occurs.

If you want to change the bounds or the position of the contents, you must
do so in the method that you supply, appropriately to correspond to the
visual effect that you specified in this call.

To animate a view scrolling in place, without changing its size, specify a
positive or negative contentOffset and zero for viewOffset (for example, -50, 0).
To slide a view up from the bottom, showing more of it, but keeping the data
that was near the top still near the top, specify a negative contentOffset and a
viewOffset that is the same as contentOffset, but positive (for example, -50, 50).
To shrink the view back down, specify a positive contentOffset and a negative
viewOffset (for example, 50, -50).

Here is an example of this method:

aView := {...
slideUp: func()

begin
local amount := 100;
view1:SlideEffect(-amount, amount, ROM_flip,

'myEffect, ['up, amount]);
end,

slideDown: func()
begin
local amount := 100;
view1:SlideEffect(amount, -amount, ROM_flip,

'myEffect, ['down, -amount]);
end,

...}

C H A P T E R 2

Views Reference

2-42 Functions and Methods

view1 := {...

myEffect: func(direction, amount)

begin

local bounds := self.viewbounds; //copy viewbounds

If direction = 'up then

begin // only top needs changing

bounds.top := bounds.top-amount;

SetValue(view1, 'viewbounds, bounds);

end

Else // direction is down

begin // only top needs changing

bounds.top := bounds.top-amount;

SetValue(view1, 'viewbounds, bounds);

end

end,

...}

RevealEffect 2

view:RevealEffect(distance, bounds, sound, methodName,
methodParameters)

Posts a message to the specified view to perform a revealing animation on it.
However, the system does not actually do the animation until after it calls
the method that you specify, in which you must perform any operations
required before the animation is done.

distance The number of pixels to animate a portion of the view
moving up or down on the screen. Specify a positive
number to make the view portion appear to move
upward on the screen this number of pixels. To make
the view portion appear to move downward, specify a
negative number. The distance parameter should be the
height of the view content you want to reveal (or hide).

bounds The partial area of the view that you want to animate
moving up or down. You should specify a viewBounds

C H A P T E R 2

Views Reference

Functions and Methods 2-43

frame using coordinates local to the view to which you
are sending this message. The portion of the view that
you specify is copied above or below its present
position, depending on the setting of distance.

sound A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify nil.)

methodName The method that you want called before the animation
occurs. You must specify a symbol (for example,
'myScript). This method must be accessible from the
view to which the RevealEffect message is sent; that
is, this method must reside in that view or be accessible
from that view through inheritance.

methodParameters An array of parameters that are passed to your method.

A revealing effect is like a slide effect, except that it slides just a portion of
the view either up or down, while leaving the rest of the view in place. This
can be used to create an effect that reveals new information where the
portion of the view moved from. The method you specify as a parameter
should set up the new information to be revealed so that when the view is
redrawn, the new information is visible.

The RevealEffect method always returns nil.

Here is an example of this method:

aView := {...
revealMore: func() // move view portion downwards

begin
local vb := view1:LocalBox();
vb.top := 60; vb.bottom := 80;
view1:RevealEffect(40,vb,ROM_flip,'myEffect,['dn]);
end,

closeUp: func() // move view portion upwards
begin
local vb := view1:LocalBox();
vb.top := 60; vb.bottom := 120;

C H A P T E R 2

Views Reference

2-44 Functions and Methods

view1:RevealEffect(-40,vb,ROM_flip,'myEffect,['up]);
end,

...}

view1 := {...
myEffect: func(direction)

begin
If direction = 'up then // revealing less

begin
// Here you would change the view contents so it
// removes that portion being hidden ...
end

Else // revealing more
begin
// Here you would change the view contents so it
// includes the "revealed" information ...
end

end,
...}

Delete 2

view:Delete(methodName, methodParameters)

Posts a message to the specified view to perform an animation on it that
crumples the view and tosses it into a trash can that appears on the screen.
The view is not actually deleted—only the animation is done.

methodName The method that actually removes the view or changes
it to make it appear deleted. You must specify a symbol
(for example, 'myScript). This method must be
accessible from the view to which the Delete message
is sent; that is, this method must reside in that view or
be accessible from that view through inheritance.

methodParameters An array of parameters that are passed to your method.

The Delete method always returns nil.

If you want to delete the view or remove the data shown in it, you must do
these things yourself in the method you supply. For example, the view may

C H A P T E R 2

Views Reference

Functions and Methods 2-45

be showing an item from a soup. When the Delete animation is performed,
you would typically want to clear the data from the view and possibly delete
the data from the soup also. Alternatively, you might want to close the view.

Here is an example of this method:

aView := {...

// call Delete method

doDeleteEffect: func(whatData)

textView:Delete('myDelete, [whatData]);

...}

parent_of_textView := {...

myDelete: func(what)

begin

//remove data from soup

EntryRemoveFromSoupXmit(what, kAppSymbol);

textview:Close(); // close the view being deleted

end,

...}

Dragging a View 2
Dragging a view means allowing the user to move the view by tapping it,
holding the pen down, and dragging it to a new location on the screen. To
drag a view, send the view a Drag message.

Drag 2

view:Drag(unit, dragBounds)

This method is typically called from within a ViewClickScript method. It
tracks the pen on the display, and drags the view to follow it.

unit The current stroke unit passed by the
ViewClickScript message.

C H A P T E R 2

Views Reference

2-46 Functions and Methods

dragBounds A bounds frame describing the area, relative to the root
view, within which the view can be dragged. If
dragBounds is nil, the bounds of the entire screen limit
the dragging area.

The return values is unspecified.

The display of electronic ink is turned off during the dragging operation.

Here is an example of this view method:

draggableView :={...
viewFlags: vVisible + vClickable,
viewClickScript: func(unit)

begin
local limits;
limits := SetBounds(5,50, 230, 305);
:Drag(unit, limits);

true; // return true because we’ve handled the tap
end,

...}

Dragging and Dropping a Item 2
The following method is used to drag and drop an item.

DragAndDrop 2

view:DragAndDrop(unit, bounds, limitBounds, copy, dragInfo)

This method is typically sent from the ViewClickScript. It starts the drag
and drop process and returns when the dragged item(s) is dropped into a
view or into the clipboard.

unit The stroke unit received by the ViewClickScript
method.

bounds The bounds of the item to be dragged, in global
coordinates. The bitmap enclosed by the bounds is the
bitmap used by the clipboard.

C H A P T E R 2

Views Reference

Functions and Methods 2-47

limitBounds Lets you pass in a bounds frame, in global coordinates,
whose boundaries limit the dragging, so the object
cannot be dragged outside of the specified bounds.
limitBounds has a value of nil or a bounds frame. A
value of nil means don’t limit the bounds. A bounds
frame specifies the bounds limits.

copy A Boolean value indicating whether to drag a copy or
the original items. Specify non-nil to drag a copy or
nil to move the original items.

dragInfo An array of frames (one frame per dragged item). Each
frame has the following slots:

types An array of symbols of the types to which
an item can be converted.

view A view object type if the dragged item is a
view with a symbol type of 'paragraph,
'polygon, 'picture, and so on).

dragRef Any value that will be passed to other
methods.

label An optional string used when the drop is
to the Clipboard; it is used as the
Clipboard label. If this slot is missing and
the item has a 'text type, the text data is
used as the label; otherwise a default label
is used.

DragAndDrop’s return value can be one of the following:

■ kDragNot = 0 indicates whether the item was actually dragged at all.

■ kDragged = 1 indicates that the item was dragged, but was rejected by
the destination.

■ kDragNDropped = 2 indicates that the view was dropped into another
container (view).

If you want other views to be able to accept data, these views must
implement all of the destination methods. If you have more than one view

C H A P T E R 2

Views Reference

2-48 Functions and Methods

that can receive a drop, it is easier if you make one drop-aware proto and use
it for your other views.

The DragAndDrop method sends several messages to both the source view
(the view to which DragAndDrop was sent) and the destination view (the
view that will receive the items). These messages are documented in
“Application–Defined Methods” (page 2-65).

Scrolling View Contents 2
The following methods are used to scroll a view’s contents.

SetOrigin 2

view:SetOrigin(originX, originY)

Changes the view bounds offset to reflect the new origin point, if it is
different from the current origin, and “dirties” the view (so you don’t have to
send it the Dirty message). SetOrigin works only on view children.

originX The x coordinate of the new view origin.

originY The y coordinate of the new view origin.

This method always returns nil.

This method scrolls the child views of the view to which you send the
SetOrigin message. The following table shows what parameters to pass to
SetOrigin to scroll the child views in different directions:

This method sets the viewOriginX and viewOriginY slots in the view to
the new values you specify.

originX originY Visual direction Scroll direction

zero positive Up Down

zero negative Down Up

positive zero Left Right

negative zero Right Left

C H A P T E R 2

Views Reference

Functions and Methods 2-49

The view origin determines where, within the view bounds, the actual view
contents (child views) are displayed. Initially, the view origin is set to (0, 0).
This means that the top-left corner of the view contents (point (0, 0)) is
positioned at the top-left corner of the view bounds. If you change the view
origin, the view contents are positioned so that the point you specify as the
origin is placed at the top-left corner of the view bounds. Thus, the contents
are offset within the view. The current view origin coordinates are stored in
the slots viewOriginX and viewOriginY within the view.

When using SetOrigin to scroll a view, you typically want the contents of
the view to be clipped to some particular area. For example, you might want
to scroll a large map around within a view so that the user can see different
parts of the map within the same view. To get this effect, make the parent
view smaller than the child (the map, for example) that you want to scroll.
The parent view should be as big as the part of the child you want to show at
one time.

Set the vClipping flag in the viewFlags slot of the parent view. When you
send the SetOrigin message to the parent view, the child view will scroll
and be clipped to the bounds of its parent view.

Figure 2-1 shows an example of a world map before and after it has been
scrolled. The map is enclosed in a parent view, which is the rectangle around
the map. The map was scrolled to the right with this code:

parentView:SetOrigin(40,0)

Figure 2-1 SetOrigin example

C H A P T E R 2

Views Reference

2-50 Functions and Methods

Here is an example of using this view method:

ParentView := {...

viewFlags: vVisible+vClipping,

viewOriginX: 0,

viewOriginY: 0,

...}

ScrollRightButton := {...

buttonPressedScript: func()

begin

parentView:SetOrigin(parentView.viewOriginX+20, 0);

RefreshViews();

end,

...}

SyncScroll 2

view:SyncScroll(what, index, upDown)

Scrolls the child views of a view vertically the increment of one child view in
the direction indicated.

what You can specify either an array of view templates or a
soup cursor, depending on what kind of data is
contained in the view you want to scroll. If all view
children are contained in an array, specify the array. If
your view data consists of child views created from
soup entries, specify the soup cursor.

index Only used if you specify an array of view templates for
what. This is the index of the child view template that is
currently displayed at the top of the parent view.

upDown Set to –1 to scroll up (visually, the views move
downward on the screen), or set to 1 to scroll down
(visually, the views move upward on the screen).

This method has different return values, depending on what you specify for
what. If you specify an array, this method returns a new array of the child

C H A P T E R 2

Views Reference

Functions and Methods 2-51

views that are visible within the parent view after scrolling; or, if there is
nothing to scroll, nil is returned. If you specify a cursor, this method always
returns nil.

This method plays a “scroll up” or a “scroll down” sound effect, depending
on which way the views are scrolling. The sound effect should be stored in
the scrollUpSound or scrollDownSound slot of the view, respectively.

A slot named height is required in each of the child views (or soup entries,
if you are working with a cursor). This slot should contain the height of the
view in its normal (expanded) state.

A slot named index is required in the view that receives the SyncScroll
message (the parent view). Initialize the index slot to the index of the child
template that is at the top of the parent view when the view is first
displayed. Pass the index slot for the index parameter to SyncScroll. The
SyncScroll method modifies this slot when it scrolls the views, so you
don’t need to keep track of the index. On each subsequent call to
SyncScroll, pass the index slot for the index parameter.

The following information applies only if you specify an array for what.

■ This method uses two optional slots in the parent view: allCollapsed
and collapsedHeight. These slots control scrolling when the child
views have both expanded and collapsed modes. The allCollapsed slot
should hold a true value if all child views are in the collapsed mode, or a
nil value if all child views are not collapsed. The collapsedHeight
slot holds the standard, height, in pixels of a collapsed view.

■ This method also uses one specific slot in each of the child views:
collapsed. If there is a collapsed slot in a child view, and it holds a
true value, the individual child view is assumed to be in the collapsed
state.

The following information applies only if you specify a soup cursor for what.

■ This method may or may not move the cursor forward or backward in the
soup. Scrolling does not always require advancing to the next or previous
view, in which case the cursor would not be changed. For example, a
single data item may be longer than the screen space allocated for it in a
view, and so tapping the scroll arrow should scroll the view rather than

C H A P T E R 2

Views Reference

2-52 Functions and Methods

advance to the next data item. In this case, the soup cursor would not be
advanced since a new item need not be retrieved from the soup as a result
of scrolling.

■ Before the scrolling animation is done and the views are redrawn, the
ViewSetupChildrenScript message is sent to the view that is being
scrolled. The view being scrolled must use the
ViewSetupChildrenScript method to recalculate its stepChildren
array so that the correct views are displayed when they are redrawn by
the SyncScroll method.

Working With View Highlighting 2
These methods and functions are used to highlight a view.

Hilite 2

view:Hilite(on)

Highlights or unhighlights a view.

on If non-nil, the view is highlighted if it is not already
highlighted; if nil, the view is unhighlighted.

This method always returns true.

HiliteUnique 2

view:HiliteUnique(on)

Highlights or unhighlights a single view in a group of views.

on If non-nil, highlights the view; if nil, the view is
unhighlighted.

This method always returns true.

The view you specify will be the only view highlighted in its sibling group.
That is, any other child views of the same parent that happen to be
highlighted are unhighlighted, so that only a single view is highlighted at a
time.

C H A P T E R 2

Views Reference

Functions and Methods 2-53

TrackHilite 2

view:TrackHilite(unit)

This method is typically called from within a ViewClickScript method. It
tracks the pen on the display, highlighting the view when the pen is within
its bounds, and unhighlighting the view when the pen is outside it.

unit The current stroke unit passed to the
ViewClickScript method.

This method returns true if the pen is lifted within the view bounds or nil
if the pen is lifted outside the view bounds.

This method repeatedly sends the ButtonPressedScript message to the
view while the pen is down and within the view bounds.

The display of electronic ink is turned off while the pen is tracked.

TrackButton 2

view:TrackButton(unit)

Performs the same operations as TrackHilite, but protects against leaving
the button highlighted if an error occurs. (The button is unhighlighted if an
error occurs during the tracking.)

unit The current stroke unit passed to the
ViewClickScript method.

This function internally calls TrackHilite. It returns non-nil if the pen is
lifted within the view bounds or nil if the pen is lifted outside the view
bounds.

Unlike TrackHilite, however, this function sends the
ButtonClickScript message to the view if the pen is lifted within the
view bounds of the button.

C H A P T E R 2

Views Reference

2-54 Functions and Methods

HiliteOwner 2

HiliteOwner()

Returns the view containing highlighted data. If there is more than one view
containing highlighted data, the common parent of those views is returned.
However, only one application at a time can have highlighted data. This
function returns nil if no views contain highlighted data. See “Determining
Which View Item Is Selected” (page 3-37) in Newton Programmer�s Guide for
information on using this function.

This function works only returns views of the class clEditView or
clParagraphView.

GetHiliteOffsets 2

GetHiliteOffsets()

Returns an array of arrays, containing information about views that have
highlighted data, even if only text from a single paragraph is selected. If you
have a mixed selection; that is, some shapes or sketches and some
paragraphs, this function returns nil.

The format is as follows:

[[view1, startpos1, endpos1], [view2, startpos2, endpos2], ...]

In the above example, text from the first two paragraphs view1 and view2
have been selected. The views in this array are always clParagraphViews.
In addition, you don’t need to use HiliteOwner in conjunction with
GetHiliteOffsets.

A view can have only one range of highlighted characters. Discontiguous
highlighting within a view is not supported. Only one application at a time
can have views with highlighted data; so all views returned by this function
belong to the same application.

This function works only with views of the class clParagraphView. Other
kinds of views containing highlighted data (views of the class
clPolygonView, for example) are not returned.

C H A P T E R 2

Views Reference

Functions and Methods 2-55

SetHilite 2

view:SetHilite(start, end, unique)

Highlights some or all of the text in a view of the class clParagraphView.

start The starting character position of the highlighting. A
character position of zero indicates the beginning of the
view, a position of 1 is after the first character, and so on.

end The ending character position of the highlighting.

unique A Boolean value. Specify non-nil to make the specified
text the only highlighted text in the view; any other
highlighted text is unhighlighted. Specify nil to allow
previously highlighted text to stay highlighted. In the
later case, the highlighting is extended to include the
newly specified highlighted text. Discontiguous
highlighting is not allowed.

This function returns true, unless view is invalid, in which case nil is
returned.

Creating View Dependencies 2
The following functions are used to make one view dependent on another.

TieViews 2

TieViews(mainView, dependentView, methodName)

Makes one view dependent on another so that when the main view changes,
it notifies the dependent view by sending a message to the dependent view.

mainView The main view.

dependentView The view that you want to be notified when mainView
changes.

methodName A symbol that is the name of the method to call in
dependentView when mainView changes. This method is
passed two parameters when it is called. The first

C H A P T E R 2

Views Reference

2-56 Functions and Methods

parameter is a reference to the view that changed and
the second parameter is a symbol that is the name of the
slot that changed.

This function returns non-nil if it successfully registers the dependent view
with the main view; otherwise, it returns nil.

You can pass in the following special symbols (which are evaluated at run
time) for either the mainView or dependentView parameters:

■ 'viewFrontMost, indicates the frontmost view on the screen that has the
vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, indicates the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

■ 'viewFrontKey, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

Here is an example of two views of the clParagraphView class. Any text
entered in the first view is duplicated in the second:

mainView := {...
viewClass: clParagraphView,
viewFlags: vVisible+vClickable+vStrokesAllowed+

 vGesturesAllowed+vCharsAllowed,
ViewSetupFormScript: func()

begin
TieViews(mainView, tieView, 'ItChanged);
end,

...}
tieView := {...
viewClass: clParagraphView,
viewFlags: vVisible,
ItChanged: func(view, slot)

begin
local newtext := view.text;
setvalue(self, 'text, newtext);
end,

...}

C H A P T E R 2

Views Reference

Functions and Methods 2-57

Synchronizing Views 2
The following two methods are used to synchronize views.

RedoChildren 2

view:RedoChildren()

Closes, then reopens and redraws, all of a view’s child views. This method
always returns true.

As a result of the RedoChildren message, the following system actions
occur:

1. The child views are sent ViewQuitScript messages, and then they are
closed.

2. The parent view (the view to which you sent the RedoChildren
message) is sent the ViewSetupChildrenScript message, and the
child templates are reread from the viewChildren and stepChildren
slots of the parent view.

3. The child views are reopened, and in this process are sent the following
messages: ViewSetupFormScript, ViewSetupChildrenScript,
ViewSetupDoneScript.

4. The parent view, and then the child views, are drawn and sent the
ViewDrawScript message.

For more information about system messages, refer to “Application–Defined
Methods” (page 2-65).

Note that because the RedoChildren method closes child views, any new
data that you have stored in those views during run time will be lost. For
example, if you have created a slot in a child view and stored a value in it,
that slot and value will be lost when the view is closed and reopened. The
view is reopened directly from its template, so of course, any data that was in
the view memory object in RAM is lost.

However, if a child view is declared in a view that is still open (typically the
parent view), then, even though the child view is closed, its view memory
object is not destroyed and any data stored in the view is preserved. This is
the same as when you send the Close message to a declared view. For more

C H A P T E R 2

Views Reference

2-58 Functions and Methods

information about declared views, see “View Instantiation” (page 3-26) in
Newton Programmer�s Guide.

Because the RedoChildren method closes and reopens all child views, it is
relatively slow. If you know that some of the child views are still visible
within the parent, you can use SyncChildren instead, which gives better
performance since it doesn’t close views that are still visible.

SyncChildren 2

view:SyncChildren()

Redraws all of a view’s child views, with their new bounds, if the bounds
have changed. This method always returns true.

As a result of the SyncChildren message, the following system actions
occur:

1. The ViewSetupChildrenScript message is sent to the view to which
the SyncChildren message was sent.

2. The child views are synchronized with the stepChildren and
viewChildren arrays of the parent view to which this message was sent.
If a view is no longer listed in the stepChildren or viewChildren
array, then the ViewQuitScript message is sent to it and it is closed. If a
new view template is listed in one of these arrays, the new child view is
created and opened. As a result of its opening, the new view is sent the
usual messages: ViewSetupFormScript,
ViewSetupChildrenScript, and ViewSetupDoneScript.

3. Internally, the system does a SyncView for each of the child views. As a
result, the ViewSetupFormScript message is sent to each child view,
and each view whose bounds has changed is redrawn.

Note that if a new child view is created, it receives the
ViewSetupFormScript message twice, once in step 2 and once in step 3.

The view to which you send the SyncChildren message is not dirtied.
Usually this is not a problem, except in one case, in which you must send the
view the Dirty message to cause it to be redrawn. If a child view is closed in
step 2 and another child view is not drawn completely over it, the old child
view will still be visible.

C H A P T E R 2

Views Reference

Functions and Methods 2-59

Here is an example of using the SyncChildren method:

{...
addOneChild: func(childTemplate)

begin
// ensure that stepChildren array is in RAM
if not HasSlot(self, 'stepChildren) then

self.stepChildren := Clone(self.stepChildren);
// add new template into the array
AddArraySlot(self.stepChildren, childTemplate);
// sync up the views
self:SyncChildren();
end

...}

Laying Out Multiple Child Views 2
The following methods are used to layout multiple child views.

LayoutTable 2

view:LayoutTable(tableDefinition, columnStart, rowStart)

Generates a table where each cell is a child of the parent view to which this
message is sent. This method essentially calculates the bounds for each child
view so that the children are laid out in a table-like format in the parent.

tableDefinition A frame describing the table. The slots are described
later in this method description.

columnStart The column number of the cell that should be placed in
the upper-left corner of the parent view. Specify an
integer from zero (for the first column) to one less than
the total number of columns.

rowStart The row number of the cell that should be placed in the
upper-left corner of the parent view. Specify an integer
from zero (for the first row) to one less than the total
number of rows.

C H A P T E R 2

Views Reference

2-60 Functions and Methods

This method returns an array of child templates that can be used as the value
of the stepChildren slot in the parent template.

The viewBounds slots of the children are calculated so that the first child is
placed in the upper-left corner of the parent view. You can use the
columnStart and rowStart parameters to change which child is the first child.
By using these parameters to specify a different upper-left cell, you can
display just a portion of the entire table.

For example, to generate templates for all cells in a table, specify 0, 0 for
columnStart and rowStart. This places the top-left cell in the table in the
top-left corner of the parent view. This is illustrated in the first view shown
in Figure 2-2.

To offset the table upward and to the left, specify 1, 1. This places the second
cell in the second row in the top-left corner of the parent view. This is
illustrated in the second view shown in Figure 2-2. Note, however, that cells
are laid out sequentially beginning with the indicated cell. That is, cells 5
through 10 are all shown. The table isn’t simply shifted up and to the right.

Templates are not generated for cells that precede the starting cell. The first
template in the array returned by LayoutTable is the template for the first
cell indicated by columnStart and rowStart.

Figure 2-2 LayoutTable results

C H A P T E R 2

Views Reference

Functions and Methods 2-61

TableDefinition slots

tabAcross The number of columns in the table.
tabDown The number of rows in the table.
tabWidths An integer giving the fixed width of the columns, in

pixels, or an array of column widths.
tabHeights An integer giving the fixed height of the rows, in pixels,

or an array of row heights.
tabProtos A reference to a template used in creating the child

views, or an array of references to templates. The array
elements are mapped to the table of views beginning at
the top-left cell of the table and continuing down the
first column, and then down the second column, and so
on. If there are fewer array elements than table cells,
after the last array element is mapped, the mapping
continues with the first element.

tabValues A value that is used as the value of each of the child
views. Alternately, an array of values that are mapped
to table cells as above.

tabValueSlot A symbol naming the slot in each of the child views
where its view value (specified in tabValues) is
stored. (Remember to quote the symbol; as with
'text.) For example, if the table consists of child views
based on the clParagraphView class, you would
specify 'text for this slot, since the value of a
clParagraphView is stored in the text slot.

tabSetup A method that is called before each of the child views is
instantiated. It is passed three parameters: a reference to
the child template, its column number in the table, and
its row number in the table. This allows you to do
special initialization operations to each child view
before it is instantiated. This method must be passed the
context with the call.

C H A P T E R 2

Views Reference

2-62 Functions and Methods

The following example of LayoutTable method shows the code used to
generate the first table in Figure 2-2:

{...

viewclass: clView,

viewBounds: {left: 42, top: 26, right: 193, bottom: 129},

tabAcross: 3,

tabDown: 4,

tabWidths: nil,

tabHeights: nil,

tabProtos:{viewclass: clParagraphView,

viewBounds: nil,

viewJustify: vjLeftH+vjCenterV+oneLineOnly,

viewFlags: vVisible+vClickable,

viewFormat: vfFillWhite+vfFrameBlack+vfPen(1),

text:nil,

viewFont: simpleFont10},

tabValues: nil,

tabValueSlot: nil,

ViewSetupChildrenScript: func()

begin

local box, cells;

box := self:localBox();

viewWidth := box.right - box.left;

tabWidths := viewWidth DIV tabAcross;

tabHeights := FontHeight(tabProtos.viewFont);

tabValues := ["1", "2", "3", "4", "5", "6", "7", "8",

 "9", "10", "11", "12"];

tabValueSlot := 'text;

self.stepChildren := self:LayoutTable(self, 0, 0);

end,

...};

C H A P T E R 2

Views Reference

Functions and Methods 2-63

LayoutColumn 2

view:LayoutColumn(childViews, index)

In the view to which this message is sent (the main view), LayoutColumn
displays a subset of views from a larger array of views.

childViews The array of views from which you want to display a
subset.

index The index of the view in the childViews array that you
want to display at the top of the view to which you send
this message.

This method returns a reference to an array of child views that fill the
bounds of the main view, beginning with the view at index and containing as
many subsequent views as it takes to fill the main view to the bottom. Each
child view must have a height slot that is set to the height of the view in
pixels.

Miscellaneous View Operations 2
This section describes other miscellaneous view methods and functions.

SetPopup 2

view:SetPopup()

After a view is shown, call this method to make the view a pop-up view (a
picker); that is, a view that gets closed on the next pen tap (whether inside or
outside of it). An example of using this feature is in the protoPicker view
proto (page 5-13).

This method always returns nil.

Here’s how you would typically call this method in your view template:

viewSetupDoneScript: func()

self:SetPopup();

C H A P T E R 2

Views Reference

2-64 Functions and Methods

GetViewFlags 2

GetViewFlags(template)

Returns the value of the viewFlags slot in the view corresponding to the
specified template, or in the template itself, if its view has not yet been
instantiated.

template The template or view whose viewFlags slot you want
to get.

You can pass in the following special symbols for the template parameter:

■ 'viewFrontMost, indicates the frontmost view on the screen that has the
vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, indicates the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

■ 'viewFrontKey, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

These symbols are evaluated at run time.

Visible 2

Visible(view)

This function tests a view to see if it is visible or not. This function returns
non-nil if the view is visible or nil if the view is not visible. Note that a
view can be open but not visible, so this function is not a valid test of
whether a view is open.

view The view that should be tested to see if it is visible.

You can pass in the following special symbols for the view parameter:

■ 'viewFrontMost, indicates the frontmost view on the screen that has the
vApplication flag set in its viewFlags slot.

■ 'viewFrontMostApp, indicates the frontmost view on the screen that
has the vApplication flag set in its viewFlags slot, but not including
floating views (those with vFloating set in their viewFlags slot).

C H A P T E R 2

Views Reference

Functions and Methods 2-65

■ 'viewFrontKey, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

These symbols are evaluated at run time.

ViewIsOpen 2

ViewIsOpen(view) //platform file function

Returns true if the view is open and nil if it is not.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kViewIsOpenFunc with (view);

▲

view The view you wish to check.

Note that a view can be open but not visible (if it is hidden).

This function is a better way to check if a view is open, rather than checking
if the viewCObject slot is non-nil.

Application–Defined Methods 2

The following subsections describe application-defined methods. When
using any of these methods, always call inherited:?ViewXXXScript
when using protos or in case the present or future system software provides
such a method.

ButtonToggleScript 2

view:ButtonToggleScript(frontmostApp)

Lets the application perform special handling when its icon is tapped in the
Extras Drawer.

frontmostApp The base view of the application that is frontmost on the
screen.

C H A P T E R 2

Views Reference

2-66 Functions and Methods

The value that the application returns from the ButtonToggleScript
method is important. It can return either nil or non-nil. A return value of
nil means that the system should proceed with the normal operations that it
does when an icon is tapped. A value of non-nil means that the system
should do nothing — the assumption being that the application handled the
icon tap in whatever way it wanted to itself.

ViewSetupFormScript 2

view:ViewSetupFormScript()

During view creation, this message is sent before any slots in the view
template are read. In this method, you can do any special initialization that
your view needs, including setting the value of any slots other than the
viewClass slot. For example, you can dynamically change the
viewBounds slot, the viewFlags slot, the viewFont slot, and so on. Note
that you cannot perform any operations involving child views of your view
since they haven’t yet been instantiated at this point. (However, you can
manipulate the stepChildren array at this point.) The return values is
unspecified.

This message is also sent during execution of the system view method
SyncView, before it begins its operations. It is sent during execution of the
global function SetValue (it calls SyncView internally), if you set the value
of one of these slots: viewBounds, viewFormat, viewJustify, or
viewFont.

Here is an example of using this method:

ViewSetupFormScript: func()

begin

self.viewBounds := SetBounds(0, 15, 200, 180);

end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

C H A P T E R 2

Views Reference

Functions and Methods 2-67

ViewSetupChildrenScript 2

view:ViewSetupChildrenScript()

This message is sent after a view is created but before its children are
instantiated. In this method, you can do any special initialization that you
need to do before the child views are instantiated. For example, you might
want to dynamically set up the stepChildren array, which controls what
child views are to be created. The return values is unspecified.

This message is also sent during execution of the following system view
methods before the child views are redrawn: SyncChildren,
RedoChildren, and SyncScroll (only if you pass a soup cursor for the
first parameter in SyncScroll).

Here is an example of using this method:

ViewSetupChildrenScript: func()
begin
self.stepChildren := [pg4, pg5]; // child templates
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

ViewSetupDoneScript 2

view:ViewSetupDoneScript()

This message is sent after all of the child views of the view are instantiated,
just before the view is displayed. ViewSetupDoneScript is sent for
children before it is sent for the parents of the children. The return values is
unspecified.

Here is an example of using this method:

ViewSetupDoneScript: func()
begin
self:SetPopup();
end

C H A P T E R 2

Views Reference

2-68 Functions and Methods

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

ViewQuitScript 2

view:ViewQuitScript()

This message is sent just before the view is closed. It gives you a chance to do
any processing or clean-up that you need to just before the view is closed.

Note that an undeclared view is destroyed when it is closed. A declared view
still exists, if the view in which it is declared is still open. A view can get
control after all of its children have been destroyed.

When a view is closing, this message is sent to the topmost view that is
closing as well as to all of the children of that view, since they too are closing
with it. That is, the first child view receives this message, then all of its
children, in order, and then the second child view receives this message, and
so on. For each child view, the message is sent recursively to all of its
children before the next top-level child is notified.

The child views are closed in reverse order. That is, the views at the bottom
of the hierarchy are closed first, then those above them, and so on, until the
original view receiving the ViewQuitScript message is closed last.

If you return the symbol 'postQuit from the ViewQuitScript method of
a view, that same view will then be sent the ViewPostQuitScript
message after all of its child views have been destroyed. This allows you an
opportunity to do extra clean-up, if necessary. See ViewPostQuitScript
(page 2-69) for additional details.

Note that you can’t send any view messages to a view whose
ViewQuitScript has already executed. If you do, the system throws an
exception.

C H A P T E R 2

Views Reference

Functions and Methods 2-69

IMPORTANT

If you override the ViewQuitScript of any proto, you
must return the value of the expression
inherited:?ViewQuitScript. Otherwise, if there is a
ViewPostQuitScript method in the proto, it may not be
executed. Even if current protos don’t use the
ViewPostQuitScript feature, they may in the future. ▲

Here is an example of this method:

ViewQuitScript: func()

begin

RemoveSlot(GetRoot(), 'businessFormat);

RemoveSlot(GetRoot(), 'myAuxFormat);

inherited:?viewQuitScript();

end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

ViewPostQuitScript 2

view:ViewPostQuitScript()

This message is sent to a view following the ViewQuitScript message and
after all of the view’s child views have been destroyed. This message is not
automatically sent to all views, but is sent only if the ViewQuitScript
method returns the symbol 'postQuit. See ViewQuitScript (page 2-68)
for more information.

Note that when a view receives the ViewPostQuitScript message, it is
not actually a full-fledged view anymore, but only the remnants of its view
frame. This means that from within the ViewPostQuitScript method,
you can’t send any view messages to self; however, the parent view is still
valid, so the children can still send messages to the parent view.

C H A P T E R 2

Views Reference

2-70 Functions and Methods

ViewShowScript 2

view:ViewShowScript()

This message is sent when the view is instructed to show itself; it is not sent
to any child views. This can occur as a result of the Show, Open, or Toggle
messages. When showing a view, the view system first shows the view and
then sends this message to allow you to perform any additional operations.
The return value is ignored.

Here is an example of using this method:

ViewShowScript: func()

begin

// idle method will close view after 5 seconds

:SetupIdle(5000);

end

ViewHideScript 2

view:ViewHideScript()

This message is sent when the view is instructed to hide itself. This can occur
as a result of the Hide, Close, or Toggle view methods. When hiding a
view, the view system first sends this message, then hides the view and all of
its child views. However, this message is not sent to any of the child views.
The return value is ignored.

This message is not always sent when a view is closed. Do not use this
method to do clean-up when a view is closing—use the ViewQuitScript
method instead. The ViewQuitScript message is sent immediately after
the ViewHideScript message when a view is being closed.

Here is an example of this method:

ViewHideScript: func()

begin

// open anotherView when this one is hidden

anotherView:Open();

end

C H A P T E R 2

Views Reference

Functions and Methods 2-71

ViewDrawScript 2

view:ViewDrawScript()

This message is sent when the view is drawn. First the view system draws
the view, this message is sent, and the view frame and view highlighting (if
any) are drawn. This message is sent before any child views are drawn. If
you wish to augment the drawing done by the view system or to perform
other operations whenever the view is drawn, do it in this method.

If you want to draw in a view other than when the ViewDrawScript
message is sent, use the DoDrawing view method, documented in “Drawing
and Graphics Reference” (page 10-1)

▲ W A R N I N G

All coordinates in the viewBounds slot and the global
coordinates of the bounds, such as returned by GlobalBox,
of a view must be within the range -32768 to 32767. If this is
not the case, the behavior of the views and view scripts are
undefined. ▲

Here is an example of using this method:

ViewSetupFormScript: func()

// set up line objects and save them in the lines slot

begin

local box;

box := self:LocalBox();

self.lines[MakeLine(0, 0, box.right, box.bottom),

MakeLine(0, box.bottom, box.right, 0)];

end

ViewDrawScript: func()

// draw an X in the view

begin

:DrawShape(self.lines, nil);

end

C H A P T E R 2

Views Reference

2-72 Functions and Methods

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

ViewHiliteScript 2

view:ViewHiliteScript(on)

This message is sent just before the system is about to highlight or
unhighlight the view.

on A Boolean value that is non-nil if the view is to be
highlighted or nil if the view is to be unhighlighted.

The return values is unspecified, it is assumed that you have handled the
highlighting or unhighlighting operation, and the system won’t do it. If this
method returns nil, the system performs the operation.

Note that you don’t have to use the DoDrawing method to draw in your
ViewHiliteScript method.

Here is an example of this method:

ViewHiliteScript: func(on)
begin
local box;
box := self:LocalBox();
r := MakeRoundRect(box.left+3, 0, box.right-3,

box.bottom, 4);
:DrawShape(r, {transferMode: modeXor,

fillPattern: vfBlack});
true;
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

C H A P T E R 2

Views Reference

Functions and Methods 2-73

ReorientToScreen 2

view:ReorientToScreen()

This message is sent to each child of the root view when the screen
orientation changes. It is sent to validate a view as supporting landscape or
rotation or it is sent to a view during rotation so that the view can adjust
itself appropriately. The return values is unspecified.

▲ W A R N I N G

An application must have a ReorientToScreen method in
order to be opened on a landscape screen. If a user tries to
open an application that doesn’t have this method, a slip is
displayed to give the user the option of not opening the
application at all or rotating the screen back to portrait
before it is opened. ▲

When the screen orientation changes, the system checks each child of the
root view to see if the ReorientToScreen method exists. If this slot exists,
ReorientToScreen is sent to each child view and the rotation occurs. If it
doesn’t exist, a slip appears warning the user that some functions will not
show after rotation because they can’t operate while rotated. The slip
contains a “Cancel” and “OK” button. If the user taps “Cancel” the rotation
is cancelled and nothing happens. If the user taps “OK,” any view that
doesn’t implement the ReorientToScreen method is closed and the
rotation occurs.

To support rotation, your application should implement this method in its
base view or any other view that will be a child of the root view.
ReorientToScreen should resize, move, or close your application. The
easiest way to implement this behavior is take advantage of the default
function provided by the ROM by placing the function
ROM_DefRotateFunc in your ReorientToScreen slot as in this example:

ReorientToScreen: ROM_DefRotateFunc

If the view is offscreen, any viewbounds slot in the view frame is also
removed. This behavior restores the view to its default position if the user
has dragged it.

C H A P T E R 2

Views Reference

2-74 Functions and Methods

A more sophisticated way of handling rotation in the ReorientToScreen
method is to use the GetAppParams function to check the new screen
dimensions, and then resize and redisplay the base application view and all
child views, if necessary.

ViewScrollDownScript 2

view:ViewScrollDownScript()

This message is sent when the view system receives a scroll down event,
which occurs when the user taps the downward-pointing scroll arrow. There
is no default view-system operation that occurs as a result of this event—
only this message is sent. Note that “scrolling down” means that visually the
items on the screen move upward, showing you new items that were
previously hidden “below” the bottom of the view.

Only a view with the vApplication flag set in its viewFlags slot can
receive this message.

Here is an example of this method:

ViewScrollDownScript: func()

begin

if index < length(notes)-1 then

begin

roll:SyncScroll(notes, index, 1); // 1 = down

index := index + 1;

end

end

ViewScrollUpScript 2

view:ViewScrollUpScript()

This message is sent when the view system receives a scroll up event, which
occurs when the user taps the upward-pointing scroll arrow. There is no
default view-system operation that occurs as a result of this event—only this
message is sent. Note that “scrolling up” means that visually the items on the

C H A P T E R 2

Views Reference

Functions and Methods 2-75

screen move downward, showing you new items that were previously
hidden “above” the top of the view. The return values is unspecified.

Only a view with the vApplication flag set in its viewFlags slot can
receive this message.

Here is an example of this method:

ViewScrollUpScript: func()

begin

if index > 0 then

begin

roll:SyncScroll(notes, index, -1); // -1 = up

index := index - 1;

end

end

ViewOverviewScript 2

view:ViewOverviewScript()

This message is sent when the view system receives an overview event,
which occurs when the user taps the overview dot between the scroll arrows.
There is no default view-system operation that occurs as a result of this
event—only this message is sent. The return values is unspecified.

Usually the overview button is used to toggle between two views of the data
in an application: a close-up (normal) view, and an overview view.

Only a view with the vApplication flag set in its viewFlags slot will be
sent this message.

Here is an example of this method:

ViewOverviewScript: func()

begin

if (cardPrefs.mode = modeCloseUp) then

cardPrefs.mode := modeOverview

C H A P T E R 2

Views Reference

2-76 Functions and Methods

else

cardPrefs.mode := modeCloseUp;

closeUp:Toggle();

overView:Toggle();

status:RedoChildren();

end

ViewAddChildScript 2

view:ViewAddChildScript(child)

This message is sent when a child is about to be added to a view of the
clEditView class.

child The child template to use to create the child view.

This method gives you a chance to create and add the child view, or to do
some other processing before the view is created and added automatically.

If this method returns non-nil, it is assumed that you have added the child
view entry to your view’s stepChildren array and have created the child
view. If this method returns nil, these things are done for you.

In any case, a view must be instantiated from the template passed to this
method—either by you or by the system. If you return non-nil, and fail to
instantiate the view, the system displays an error message, because it expects
the view to exist.

Here is an example of using this method:

ViewAddChildScript: func(child)

begin

AddToDefaultStore(mySoup, child);

AddUndoAction(KillAddition, [child]);

AddView(myView, child);

end

C H A P T E R 2

Views Reference

Functions and Methods 2-77

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

Use this method if you have a clEditView that is creating paragraph and
polygon child views with the vNoScripts flag set, and you want to
override the viewFlags slot to remove the vNoScripts flag.

ViewChangedScript 2

view:ViewChangedScript(slot, view)

This message is sent when the value of a slot in the view is changed as a
result of the SetValue function, or as a result of other view operations such
as changing the bounds, changing the contents or the text style, and so on.
The return values is unspecified.

slot A symbol that is the name of the slot whose value
changed.

view The view that slot resides in.

Here is an example of this method:

ViewChangedScript: func(slot, view)

begin

if slot = 'text then

textChanged := true; //set flag if text was changed

end

ViewDropChildScript 2

view:ViewDropChildScript(child)

This message is sent when a view of the clEditView class is about to
remove a child view.

child The child view to remove.

C H A P T E R 2

Views Reference

2-78 Functions and Methods

This method gives you a chance to remove the child view entry from your
view’s viewChildren array, or to do some other processing before the view
is removed.

The return values is unspecified, it is assumed that you have removed the
child view entry from your viewChildren array. If this method returns
nil, this is not assumed and it is done for you. In either case, the child view
itself is deleted for you by the system. (Note that you can use the
RemoveView function to delete the view yourself.)

Here is an example of this method:

ViewDropChildScript: func(child)

begin

EntryRemoveFromSoupXmit(child, kAppSymbol);

base:RedoChildren();

nil;

end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. ◆

ViewIdleScript 2

view:ViewIdleScript()

When an idler is installed for a view, this message is sent repeatedly and at
regular intervals when the view is open, to allow you to do periodic tasks
such as polling a network for information or updating a clock on the display.

You install an idler for a view by sending it the SetupIdle message, which
specifies an initial delay after which the ViewIdleScript message is sent.
The ViewIdleScript method returns an integer which specifies the delay,
in milliseconds, until it is called again. For example, to have the system call
this method every second, you should return 1000.

C H A P T E R 2

Views Reference

Functions and Methods 2-79

To stop idling, you can return the value nil, or you can send the view the
SetupIdle message with a value of zero.

There is no default view-system operation that occurs during idling—only
the ViewIdleScript message is sent.

Note

When you install an idler for a view, the time that the
ViewIdleScript message will next be sent is not
guaranteed to be the exact interval you specify. This is
because the idler may be delayed if a method is executing
when the interval expires. The ViewIdleScript message
cannot be sent until an executing method returns.

Do not install idlers that use repeated intervals of less than
100 milliseconds. ◆

Here is an example of this method:

ViewShowScript: func() // initialize blinking sequence

begin

icon := onBitmap;

self.numBlinks := 0;

self:SetupIdle (750); // start in 3/4 second

end

ViewIdleScript: func()

begin

if icon = onBitmap then

icon := offBitmap;

else begin

icon := onBitmap;

numBlinks := numBlinks + 1;

end;

self:Dirty();

if numBlinks < 4 then // blink 4 times

return 750; // return time until next blink

C H A P T E R 2

Views Reference

2-80 Functions and Methods

numBlinks := 0; // else return 0 to stop blinking

end

This example blinks an icon in a view of the clPictureView class when the
view is shown.

Be careful not to send this message too frequently for long periods of time
(for example, many times each second for a few minutes). This causes the
Newton hardware to consume significantly more power than usual and
reduces battery life.

Note

The system searches for this method only in the current view and its protos.
The parent chain is not searched for the method. ◆

ViewDrawDragDataScript 2

sourceView:ViewDrawDragDataScript(bounds)

bounds The bounds that were passed to DragAndDrop.

If supplied, this method draws the image that will be dragged. The default
(if this method is missing) is to use the area of the screen inside the rectangle
defined by bounds parameter to DragAndDrop.

This method returns a Boolean value. Returning non-nil means that this
method handled the drawing. Returning nil means that the default
behavior should take place.

ViewDrawDragBackgroundScript 2

sourceView:ViewDrawDragBackgroundScript(bounds, copy)

bounds The bounds parameter as passed to DragAndDrop.

copy The copy parameter as passed to DragAndDrop.

If supplied, this method draws the image that appears behind the dragged
data. The default (if this method is missing or if it returns nil) is to use the
bitmap of the area inside the rectangle defined by bounds XORed with the

C H A P T E R 2

Views Reference

Functions and Methods 2-81

bitmap from ViewDrawDragDataScript. Note that the XOR happens only
if copy is nil.

This method returns a Boolean value. Returning non-nil means that this
method handled the drawing. Returning nil means that the default
behavior should take place.

ViewGetDropTypesScript 2

destView:ViewGetDropTypesScript(currentPoint)

Returns an array of symbols; that is, the data types accepted by the view at
the location currentPoint. For example, 'text or 'picture. The array is
sorted by priority (preferred type first). This method can return nil,
meaning no drop is allowed at the current point.

currentPoint The current pen position in global coordinates (a frame
containing x and y slots).

ViewFindTargetScript 2

destView:ViewFindTargetScript(dragInfo)

Lets the destination view redirect the drop to a different view.
ViewFindTargetScript returns a view frame of the view that gets the
drop messages. It is called right after the ViewGetDropTypesScript.

 dragInfo An array of frames (one frame per dragged item). See
DragAndDrop (page 2-46) for a list of approved slots.

ViewDropApproveScript 2

sourceView:ViewDropApproveScript(destView)

Provides a way for the sourceview to disallow dropping onto a particular
view. ViewDropApproveScript returns nil if the drop shouldn’t happen,
and non-nil if the drop should happen. It is called only if the drop types
match up with the dragged data and the destView, and is called right before
the ViewDropScript, ViewDropMoveScript and/or
ViewDropRemoveScript methods are called.

destView Destination view in which the dropping will occur.

C H A P T E R 2

Views Reference

2-82 Functions and Methods

ViewDragFeedbackScript 2

destView:ViewDragFeedbackScript(dragInfo, currentPoint, show)

Allows a view to give visual feedback while items are dragged over it.

dragInfo The same parameter passed to DragAndDrop
(page 2-46).

currentPoint The current pen position in global coordinates (a frame
containing x and y slots).

show A Boolean value indicating whether to show or hide the
feedback. Specify non-nil to show the feedback or nil
to hide it. Hiding the feedback means erasing any
highlighting drawn when show is non-nil, so the view
appears normally.

This method returns a Boolean value. Returning non-nil means that the
method did draw. Returning nil means that no feedback was drawn, so this
method does not need to be called again with show nil at the point
dragPoint. The return value is ignored if show is nil.

This method is always called with show set to nil after it’s called with show
set to non-nil. This action ensures that your function is called twice for
every “point” being dragged. An example use is drawing your drag
feedback with the XOR drawing mode. By calling
ViewDragFeedbackScript a second time, the view can ensure that it was
using the dragPoint when drawing and can XOR the exact image onto the
screen again. The screen will then show the original pixels.

Alternately, if no “drawing” occurred during ViewDragFeedbackScript,
return nil and the script won’t be called again.

Note that XORing is not required as a draw mechanism. The view might be
saving part of the screen to an offscreen bitmap and drawing feedback. Then
when asked to hide the feedback (show is set to nil), it could restore the
original image from the offscreen bitmap.

C H A P T E R 2

Views Reference

Functions and Methods 2-83

ViewGetDropDataScript 2

src: ViewGetDropDataScript(dragType, dragRef)

Called when a destination view that accepts all the dragged items is found.
ViewGetDropDataScript is called for each item being dragged.

dragType The type accepted by the destination view for this
particular item as passed to DragAndDrop in the
dragInfo array.

dragRef The drag reference for this item as passed to
DragAndDrop in the dragInfo array.

ViewGetDropDataScript returns a frame containing the actual data to be
dropped into the destination view. This data could be any frame (not
necessarily a view). The frame should contain a text slot if the required
type is 'text, a points slot if the required type is 'polygon, an ink slot if
the required type is 'ink, or an icon slot if the required type is 'picture.
For polygon, ink, or picture types, the frame should also contain a
viewBounds slot in the src view coordinates.

If the dragged item is a view—that is, the view slot was set in the dragType
array element passed to DragAndDrop—the default behavior occurs by
returning a frame with the necessary slots unless the
ViewGetDropDataScript returns a non-nil value.

If you want to drag system data types to or from a plain view, use these
formats for the built in types:

dragType RequiredSlots Optional slots
'text text

viewBounds
any other clParagraphView slots

'polygon points
viewBounds

any other clPolygonView slots

'ink ink
viewBounds

any other clPolygonView slots

'picture icon
viewBounds

any other clPictureView slots

C H A P T E R 2

Views Reference

2-84 Functions and Methods

Note

The viewBounds slot is no longer necessary for text type.
However, if the viewBounds slot exists, it will be used. ◆

ViewDropScript 2

destView:ViewDropScript(dropType, dropData, dropPt)

This message is sent to the destination view for each dragged item.

dropType One of the types that the destination view returns from
the ViewGetDropTypesScript method.

dropData The frame that the source view returns from the
ViewGetDropDataScript method. If this frame has a
viewBounds slot, this slot is converted to be in
destination view coordinates before calling
ViewDropScript.

dropPt The last stroke point in global coordinates (a frame
containing x and y slots).

This method returns a Boolean value. Returning non-nil means that this
method handled the drop. Returning nil means that the drop is not
accepted.

Note that this method posts an undo action, if necessary.

ViewDropMoveScript 2

sourceView:ViewDropMoveScript(dragRef, offset, lastDragPt, copy)

This message is sent for each dragged item when dragging and dropping in
the same view. (In this case, ViewGetDropDataScript and
ViewDropScript messages are not sent.)

dragRef The drag reference for this item (as passed to
DragAndDrop in the dragInfo array).

offset A frame with x and y slots indicating the horizontal and
vertical offsets of the item.

C H A P T E R 2

Views Reference

Functions and Methods 2-85

lastDragPt The last stroke point in global coordinates (a frame
containing x and y slots).

copy The copy parameter as passed to DragAndDrop.

This method returns a Boolean value. Returning non-nil means that this
method handled the move. Returning nil means that the move was not
done.

Note that this method posts an undo action if necessary.

ViewDropRemoveScript 2

sourceView:ViewDropRemoveScript(dragRef)

This message is sent for each dragged item when the copy parameter to
DragAndDrop is nil.

This method removes the item from the source view.

dragRef The drag reference for this item (as passed to
DragAndDrop in the dragInfo array).

This method returns a Boolean value. Returning non-nil means that this
method handled removing the item. Returning nil means that the remove
operation was not done.

Note that if you are using your own drop types and your own scripts, an
undo action must be added to this method for this part of the operation.

ViewDropDoneScript 2

destView:ViewDropDoneScript()

Sent at the very end of each drag and drop to let the destination view know
that all specified items have been dropped or moved.

C H A P T E R 2

Views Reference

2-86 View Warning Messages

View Warning Messages 2

The warnings in Table 2-7 are printed to the inspector when a NewtonScript
application calls a view method in situations where the requested operation
is unwise, unnecessary, ambiguous, invalid, or just a bad idea. The function
or method typically does nothing other than print this warning message, but
such messages point out situations where code needs to be changed since
these calls may very well not be supported in the future.

In the future, you might get an exception thrown instead of just this error
message, or something more serious could occur since the problem might not
be detected.

If the global variable noEvilLiveOn is set to true, a breakloop is entered,
which helps to find out exactly which view is causing the problem. Setting
noEvilLiveOn also causes other “incompatibility” errors to enter a
breakloop.

Table 2-7 View warning messages

Error number Message

4711 Remove[Step]View was called while the parent view
was being opened or closed

4712 Remove[Step]View was called with a template instead
of a view frame

4713 Remove[Step]View was called on a view which was
being opened or closed

4714 Remove[Step]View was called with a read-only
stepChildren array (i.e., the view wasn't
previously added with AddView)

4715 Close() was sent to a view which was opening or
closing

C H A P T E R 2

Views Reference

View Warning Messages 2-87

4716 Toggle() was sent to a view which was opening or
closing

4717 Toggle() was sent to a view whose parent was being
opened or closed

4718 Show() was sent to a view which was opening or
closing

4719 Hide() was sent to a view which was opening or
closing

4720 RedoChildren() was sent to a view which was opening
or closing

4721 SyncChildren() was sent to a view which was opening
or closing

4722 SetKeyView() was sent to a view that wasn't a
clParagraphView

Table 2-7 View warning messages

Error number Message

Required Code 3-1

C H A P T E R 3

NewtApp Reference 3

This chapter describes the NewtApp framework data types and prototypes
(protos). The protos are divided into the following categories:

■ general application protos

■ slot view protos

■ labelled input-line protos

Required Code 3

This section describes the required InstallScript and RemoveScript
functions.

Required InstallScript and RemoveScript Functions 3
A NewtApp application has required InstallScript and RemoveScript
functions that you must include in your application build so it can register

Figure 3-0
Table 3-0

C H A P T E R 3

NewtApp Reference

3-2 General Application Protos

properly for various system services. You may copy these functions directly
from the following code:

InstallScript := func(partFrame)

begin

partFrame.removeFrame := (partFrame.theForm):

NewtInstallScript(partFrame.theForm);

end;

RemoveScript := func(partFrame)

begin

(partFrame.removeFrame):NewtRemoveScript(removeFrame);

end;

General Application Protos 3

Included in this section are

■ data storage proto newtSoup

■ base view proto newtApplication

■ base view control protos

■ layout protos

■ entry view protos

newtSoup 3
This is the abstract proto (in other words, it has no visible component) that
contains soup-handling routines. Soup definitions in a NewtApp application

C H A P T E R 3

NewtApp Reference

General Application Protos 3-3

must be based on the newtSoup proto, and are set up in the
newtApplication.allSoups slot (page 3-10).

Slot descriptions

soupName Required. This should be a string that is unique to your
application. If the application has only one soup, you
can use a string version of your application symbol, for
example, "MyApp:SIG".
For an application that uses more than one soup, you
can add a prefix to a string version of the application
symbol, so the soup name becomes something like
"00:MyApp:SIG".

soupIndices An array of frames in which you define the indices for
your soup. An index can be based on a single slot in the
entry, or multiple slots in the entry. See the “Data
Structures” (page 9-1) for more information about how
to define a valid index. Here is an example:

soupIndices:

[

{structure: 'slot,

path: 'title,

type: 'string},

{structure: 'slot,

path: 'timeStamp,

type: 'int},

{ structure: 'multislot,

path: ['label1, 'label2],

type: ['string, 'int] }

]

soupQuery Required. A soup query. Currently you cannot define a
tags slot or a validtest method in the soup query.
The soup query can include everything else; that is,

C H A P T E R 3

NewtApp Reference

3-4 General Application Protos

BeginKey, EndKey, indexValidTest, words, and
text. Here are a few examples:

soupQuery: {type: 'index,

indexPath:'title}

soupQuery: {type: 'index,

indexPath:'timeStamp,

BeginKey: time1, EndKey: time2}

soupQuery: {words: ["Newton", "NewtApp"]}

soupDescr Optional. A string describing the soup.
defaultDataType

Optional. (This slot pertains to applications that use
stationery.) A unique symbol naming a data type for
your soup entries. You may reuse your application
signature as a value for this slot. An example is
'|BasicCard:sig|. If an entry adopted from
stationery does not already have a type defined (in its
class slot) it is assigned this value.

AddEntry 3

myNewtSoup:AddEntry(entry, store)

Adds the entry to the specified store. If no store is given the entry is added to
the default store. The return value is unspecified.

entry The entry to add. The only valid entries are those
returned by the various cursor and entry methods.

store The result of a call to GetDefaultStore or
GetStores—naming the device on which to store data.
A value of nil causes the entry to be added to the
default store.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-5

AdoptEntry 3

myNewtSoup:AdoptEntry(entry, type)

Returns a soup entry frame with the values in the entry frame. This new
entry consists of the frame specified in the CreateBlankEntry method,
which you define in the newtApplication.allSoups slot, and—if your
application has a dataDef—an entry defined in either a FillNewEntry or
MakeNewEntry method. Note that if FillNewEntry exists,
MakeNewEntry is not called.

entry Required. If nil, a blank entry is created. The new entry
is based on this entry.

type Optional. Defaults to nil. If the value is true, the
method looks for the value of the class slot of this
entry. See Chapter 5, “Stationery,” in Newton
Programmer�s Guide, for more information on the class
slot.

The class slot and other slots of the dataDef entry are preserved as the
entry is added to the application soup. If an entry is provided with a class
slot, the type is automatically set to the same value as the class slot. If the
value of the type parameter is nil and there is no class slot, the value of the
defaultDataType slot, which is set in the newtSoup definition, is used to
set the type and class slots for the entry.

CreateBlankEntry 3

myNewtSoup:CreateBlankEntry()

Returns a blank entry. Override this method to create the necessary structure
of your soup. You may or may not want to put a class slot in your soup
entry. However, note that any routable item must have one. (For more
information about how the class slot is used, see Chapter 21, “Routing
Interface,” in Newton Programmer�s Guide.)

C H A P T E R 3

NewtApp Reference

3-6 General Application Protos

DeleteEntry 3

myNewtSoup:DeleteEntry(entry)

Removes an entry from its soup. The entry frame is converted to a plain
frame (which is unmarked as belonging to a soup).

entry The entry to remove from the soup.

DuplicateEntry 3

myNewtSoup:DuplicateEntry(entry, store)

Clones and returns the specified entry. The duplicate entry is stored on the
specified storage device.

entry The entry to be duplicated.

store The result of a call to GetDefaultStore or
GetStores—naming the device on which to store data.
A value of nil causes the entry to be added to the
default store.

DoneWithSoup 3

myNewtSoup:DoneWithSoup(appSymbol)

Unregisters both the soup changes and the union soup to which the
newtSoup you sent this message belongs.

appSymbol A constant value specifying a unique alphanumeric
symbol by which the application identifies itself to the
system. An example of a suitable value is '|Sample
newtApp:DTS|.

FillNewSoup 3

myNewtSoup:FillNewSoup()

Called by MakeSoup to add soup values to a new soup. The return value is
unspecified. You should define this method with soup values appropriate to
your application. A typical use of this method is to create “starter” entries for

C H A P T E R 3

NewtApp Reference

General Application Protos 3-7

a new soup. If this is the desired behavior, you must create the entries and
add them to the soup.

GetAlias 3

myNewtSoup:GetAlias(entry)

Returns an entry alias. This alias represents the specified soup entry—for fast
access later—without holding on to the actual entry. The entry alias can be
used later as input to the GotoAlias function to retrieve the soup entry. See
“Entries” beginning on page 11-17 in Newton Programmer�s Guide for more
information.

entry The soup entry to which this method creates a an alias.

GetCursor 3

myNewtSoup:GetCursor()

Returns the cursor set up for the soup named within the allSoups slot of
the newtApplication proto.

GetCursorPosition 3

myNewtSoup:GetCursorPosition()

Returns an alias to the cursor entry.

GotoAlias 3

myNewtSoup:GotoAlias(alias)

Returns the soup entry referenced by the specified alias. Returns nil if the
entry cannot be retrieved. When this error occurs, typically it is because the
original store, the original soup, or the original entry cannot be found.

alias The entry alias for which this method retrieves the
corresponding soup entry.

C H A P T E R 3

NewtApp Reference

3-8 General Application Protos

MakeSoup 3

myNewtSoup:MakeSoup(appSymbol)

Used by the newtApplication proto to return and register a new soup. It
assumes the soup is a standard union soup. If the soup is a new soup, it’s
filled with values by a call to FillNewSoup. Override this method to
implement different behavior.

appSymbol A constant value specifying a unique alphanumeric
symbol by which the application identifies itself to the
system. An example of a suitable value is '|Sample
newtApp:PIEDTS|.

Query 3

myNewtSoup:Query(querySpec)

Message you send to a newtSoup to perform a query on the soup. It returns
a cursor that references a set of soup entries.

The querySpec frame may include the slots structure, path, type, and
tagSpec. For more information on queries, see “Queries” (page 11-10) in
Newton Programmer�s Guide.

SetupCursor 3

myNewtSoup:SetupCursor()

Creates or resets the cursor as specified by the queryspec in the
soupQuery slot.

newtApplication 3

The application base view template for all NewtApp applications. In an
application, this proto contains the application-wide elements like the folder
tab bar and status bar. It also contains references to all the layout protos and
sets up the application soup.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-9

Handlers for application-wide events like scrolling and filing are defined in
this proto. It also dispatches the information to the appropriate parts of the
application.

You must define the slots marked as required. Many of these contain strings
that describe objects for menus or are used in alerts and notification slips.

Slot descriptions

appSymbol Required. A constant value that specifies a unique
alphanumeric symbol by which the application
identifies itself to the system. An example of a suitable
value is '|IOU:PIEDTS|.
If you use NTK as your development environment, the
application symbol is constructed for you from values
you set in the Output Settings dialog box for that
application.

title Required. A string that names your application. It is
used by the system. An example is "Roll Starter".

appObject Required. An array of two strings, in both the singular
and plural, describing the data objects in the application
soup. These strings are used by the system in the filing
and action menus and for setting up soups. An example
is ["Ox", "Oxen"].

appAll Required. A string used in the folder tab picker (pop-up
menu) to provide the All items option. For example, the
value of the appAll slot in the built-in Notes
application is "All Notes".

aboutInfo Optional. Defines information about your application
that appears when the user chooses About from the
newtInfoButton (page 3-23). To use, create a slot in
your application’s base a called aboutInfo and place a
frame in this slot with the following slots:

{

tagLine: ““, // A tagline for your application

version: ““, // The version number for the application

copyright: ““, //Copyright information

C H A P T E R 3

NewtApp Reference

3-10 General Application Protos

trademarks: ““, // Trademark information

}

aboutView Optional. Defines information about your application
that appears when the user chooses About from the
newtInfoButton (page 3-23). To use, create a slot in
your application’s base view called aboutView. Use the
GetLayout function to place a template of your view in
this slot. A view is then created from the specified
template when the user taps About in the
newtInfoButton.

allSoups Required. Define the soup(s) for your application in this
frame. Your soup definition should consist of a frame
based on the newtSoup proto (page 3-2) containing the
slots soupName, soupIndices, and soupQuery. An
optional soupFilter slot supports filing.

Following is a sample allSoups frame:

allSoups: {

mySoup: {

 _proto: newtSoup,

 soupName: "MySoup:SIG",

 soupIndices: [],

 soupQuery: {type: 'index},

CreateBlankEntry: func()

 { slot1: 123,

 slot2: 456, }

}

}

Note that each layout is tied to one of these soups by
using the soup name(s) in its masterSoupSlot.

allLayouts Required. A frame that contains references to the
application’s layouts. Two slots are required: default

C H A P T E R 3

NewtApp Reference

General Application Protos 3-11

and overview. These slots must contain paths to
existing layout files.
A suitable definition for the allLayouts frame follows:

 allLayouts:

{default:GetLayout("DefaultLayoutFile"),

 overview:GetLayout("OverviewLayoutFile"),

 }

scrollingEndBehavior
Optional. Defaults to 'beepAndWrap. You may also set
it to the values 'wrap, 'stop, 'beepNWrap, or
'beepAndStop.
The values select how scrolling is handled at the end of
a view. 'wrap causes scrolling to display from the last
entry around to the first (or vice versa). 'stop means
that scrolling stops when the display reaches either end.
'beepAndStop means the application will stop at the
last entry and play a beep. 'beepNWrap means to
continue scrolling past the last entry, and play a
scrolling sound and "wrap" to the first entry.
Each scrolling choice comes in a quiet and noisy form. If
you choose the noisy version, it makes an extra scrolling
sound.

scrollingUpBehavior
Optional. Defaults to 'bottom. You can set it to either
'top or 'bottom.
These settings select how roll-style entries are displayed
when scrolling up. For instance, say you scroll
backwards to a note that is two screens high; you’ll see
either the bottom or top screenful of the note. A
roll-style application would use 'bottom, but an
application that uses information slips would use 'top.

statusBarSlot Optional. A symbol that is the declared name of the
status bar. It is used by the layout to govern the
appearance/disappearance of buttons on the status bar.
For this to work, the layouts must also have

C H A P T E R 3

NewtApp Reference

3-12 General Application Protos

menuLeftButtons and menuRightButtons slots.
See newtStatusBarNoClose (page 3-29) and
newtLayout (page 3-32), for more information.

The following slots are used to create and save preferences.

Slot descriptions

prefsView Optional. Contains a template of your preferences slip
and is opened when the user selects Prefs in the
newtApp.

theApp Optional. Adds a reference to the application’s base
view, the default newtAboutBox.

The following slots are important if you are incorporating stationery into
your application:

Slot descriptions

allDataDefs Required if your application supports stationery. A
frame that contains the symbol(s) identifying the
dataDef(s) and a reference to the file(s) containing the
data definition(s) for this application. Following is the
allDataDefs slot of the Basic Card example:

{|basicCard:SIG|: GetLayout("iouDataDef")}

The system automatically registers all dataDefs in this
frame when the application installs. For more
information about dataDefs, see Chapter 5, “Stationery,”
in Newton Programmer�s Guide.

allViewDefs Required if your application supports stationery. This
frame contains the unique dataDef symbol(s), which
are registered in the base view allDataDefs slot, and
the references to the layout files for the viewDef(s),
which can display their data. The following example

C H A P T E R 3

NewtApp Reference

General Application Protos 3-13

contains two viewDef template references for the
default and notes layout files:

{|IOU:SIG|:

{default:

GetLayout("iouDefaultViewDef"),

notes:

GetLayout("iouNotesViewDef"),}}

The system uses this slot to register the view formats for
each given dataDef.

superSymbol Required for stationary. A unique symbol that identifies
the superset of data defs used for this application. It is
recommended that you set it to the value of the
application symbol if the application has only one
dataDefs. For instance, assuming one data type for the
application, both your application symbol and
superSymbol could be set to '|IOU:SIG|.
Note that any would-be stationery extensions to this
application must also have a superSymbol that
matches this value.

Following are the routing, filing, and find slots:

Slot descriptions

doCardRouting Optional. Defaults to true. This enables the filing
interface to allow moves to and from cards. Set to
'onlyCardRouting for filing to cards without folders.

dateFindSlot Optional. Enables your application to be used in a
dateFind query. Set it to a path expression that
evaluates to a slot in your soup entry that contains a
date. This slot must be indexed in the
newtApplication.allSoups slot. An appropriate
value is 'timeStamp.

routeScripts Optional. Contains default route scripts for Delete and
Duplicate. If you do not want these options to show in

C H A P T E R 3

NewtApp Reference

3-14 General Application Protos

the Action menu, you must override the default
routeScripts array.

The following slots are included for your information only and should not be
set by you. They are maintained automatically by the NewtApp framework
code.

Slot descriptions

labelsFilter Created dynamically as needed by the system, it is used
to store filing settings by the newtApplication proto.

newtAppBase This identifies the base view of your application. The
system uses the value of newtAppBase to identify, for
instance, which view should be closed when a close box
is tapped.

retargetChain This contains a dynamically built array of views
contained by (or chain out from) a particular view.
When the base container view is changed and redrawn,
these views are also updated.

targetView This is the view in which data from the target entry is
displayed.

target This usually points to the entry being displayed and is
used by system services such as filing.

layout This is set to the current layout.

GetAppPreferences 3

myNewtApplication:GetAppPreferences()

Returns a frame of preferences for the application. Use this method to add a
preference slip to your application.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-15

NewtApplication Stationary Methods 3

The following methods support adding stationary to your application.

ShowLayout 3

myNewtApplication:ShowLayout(layout)

Used to display a particular layout, at the appropriate time, in your
application. This method sets the current layout to the layout you specify. A
parameter value of nil sets the value of the current layout to the value of the
previous layout. You can use it to switch the display from one layout to the
other layout (for example, from the main view to the overview.)

layout A symbol referring to a specific layout, as listed in the
allLayouts slot.

AddEntryFromStationery 3

myNewtApplication:AddEntryFromStationery(stationerySymbol)

Called by the stationery button (newtNewStationeryButton proto) to
create a blank entry and initialize its class slot with the value passed in as
stationerySymbol.

stationerySymbol A symbol referring to the value of the stationery’s
symbol slot. It is used to set a class slot for the new
blank entry. An example of an appropriate value from
the built-in Notes soup is 'paperroll.

AdoptEntryFromStationery 3

myNewtApplication:AdoptEntryFromStationery (adoptee,
stationerySymbol, store)

Like AddEntryFromStationery, but also copies all slots from the existing
entry into the new entry. There is no protection here, so be careful it does not
overwrite existing slots.

adoptee The data being adopted. This is usually a soup entry.

C H A P T E R 3

NewtApp Reference

3-16 General Application Protos

stationerySymbol A symbol that is the same as the stationery’s dataDef
symbol. It creates a new entry from an existing entry.
The existing entry is created on the appropriate store,
and then is used to set a class slot according to the
stationery symbol. The new entry is built using the
MakeNewEntry and FillNewEntry methods in the
stationery dataDef. After the entry is built, all slots from
the existing entry are copied to the new entry and the
new entry is added to the soup.

store The store on which to keep the information. If nil is
specified, data is stored on the internal storage device.

AdoptSoupEntryFromStationery 3

myNewtApplication:AdoptSoupEntryFromStationery(adoptee,
stationerySymbol, store, soup)

Copies all slots from the entry to be adopted into the new entry and sets the
class slot of that entry to the value of the stationerySymbol. You may specify
to which soup and store the entry should be added.

adoptee The entry being adopted.

stationerySymbol A symbol referring to the value of the stationery’s
symbol slot. It is used to set a class slot for the new
blank entry. An example of an appropriate value from
the built-in Notes soup is 'paperroll.

store The store on which to keep the information. If nil is
specified, data is stored on the internal storage device.

soup The symbol for one of the soups in the allSoups slot.
Use nil to indicate the current soup.

NewtApplication Filing Methods 3

The following methods, defined in the newtApplication proto, are used
to support filing in your application.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-17

FolderChanged 3

myNewtApplication:FolderChanged(soupName, oldFolder, newFolder)

Changes the folder tab label to the new folder name if it is different from the
old folder name, and saves the new folder information for the soup.

soupName Required. The name of the soup.

oldFolder Required. The folder where the document was
previously found.

newFolder Optional. A missing newFolder parameter means the
folder was deleted.

FilterChanged 3

myNewtApplication:FilterChanged()

Saves the old folder name for each soup in the allSoups slot, updates it to
the new folder name, and sets the soup cursor to refer to the new folder.
Finally, it sends the FilterChanged message to the newtLayout proto so
it targets the appropriate view for the new folder.

ChainIn 3

myNewtApplication:ChainIn(chainSymbol)

Adds a view to an array of views to be notified when the data in a layout is
changed by sending the Retarget message. This is automatically done for
you in the newtFilingButton proto and the newtAZTabs proto.

Any time the contents of a view are changed, this method updates the
affected view(s) and change the data target entry.

chainSymbol A symbol naming a slot that holds an array of views
that need to be notified when a Retarget message is
sent. The symbol should be 'retargetChain for the
retargetChain slot provided in the
newtApplication proto.

C H A P T E R 3

NewtApp Reference

3-18 General Application Protos

ChainOut 3

myNewtApplication:ChainOut(chainSymbol)

Removes a view from an array of views which are to be notified when the
data in a layout is changed by sending the Retarget message. This is done
automatically for you in the newtFilingButton proto and the
newtAZTabs proto.

Any time the contents of a view are changed, this method updates the
affected view(s) and change the data target entry.

chainSymbol A symbol naming a slot that holds an array of views
that need to be notified when a Retarget message is
sent. The symbol should be 'retargetChain for the
retargetChain slot provided in the
newtApplication proto.

GetTarget 3

myNewtApplication:GetTarget()

Returns the current soup entry, which is also known as the target soup entry.
The target in the application level is undefined.

GetTargetView 3

myNewtApplication:GetTargetView()

Returns the view in which the target soup entry is displayed. The target view
in the base application level is undefined.

newtApplication Find Methods 3

The following methods, defined in the newtApplication proto, are used
to add Find support to your application. You do not call any of these
methods. For more about the Find system services, see Chapter 13, “Find
Reference,” in the Newton Programmer�s Guide.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-19

DateFind 3

myNewtApplication:DateFind(date, findType, results, scope, findContext)

The default DateFind method as provided in the NewtApplication
proto. You must supply a dateFindSlot to your newtApplication proto
for your application to utilize this DateFind method.

This method searches for all items that occur on, before, or after a date,
depending on which choice the user makes from the Find dialog box.

This DateFind method displays a status view that reports where it is
currently searching for the date value. It looks for the specified date in all the
soups specified in the allSoups slot of your application and builds an array
that contains the results. You should use the ShowFoundItems method to
report the results.

date Specifies the date selected by the user. The date is
represented as an integer that is the number of minutes
passed since midnight, January 1, 1904.

findType Either the symbol 'dateBefore or 'dateAfter.
Specifies whether the user chose to find items before or
after the date specified by the value of the date
parameter.

results This DateFind method appends the slot myResult to
the results array passed to the DateFind method by the
system. The exact content of the myResult slot
depends on the kind of finder proto used to create the
frame returned by your search method. If you used the
soupFinder proto, the frame contains a cursor that
iterates over a list of entries returned by your search
method’s query on the application data soup. If you
used the ROM_CompatibleFinder proto, the frame
contains an array of found items. If a global find is in
progress, the results array may contain slots created by
other applications’ search methods.

scope Either 'localFind or 'globalFind. Indicates
whether the search is local or global, allowing you to
handle these two cases differently if you prefer.

C H A P T E R 3

NewtApp Reference

3-20 General Application Protos

findContext A frame to which the message SetStatus is sent. The
SetStatus function accepts as its sole argument a
string to display to the user while the search is in
progress.

Find 3

myNewtApplication:Find(text, results, scope, findContext)

Searches all the soups in the allSoups frame for the text specified by the
user. The return value of this method is ignored; the results of the search are
returned in the results parameter.

text Contains the user-specified string for which Find is to
search.

results This Find method appends the slot myResult to the
results array passed to the Find method by the system.
The exact content of the myResult slot depends on the
kind of finder proto used to create the frame returned
by your search method. If you used the soupFinder
proto, the frame contains a cursor that iterates over a list
of entries returned by your search method’s query on
the application data soup. If you used the
ROM_CompatibleFinder proto, the frame contains an
array of found items. If a global find is in progress, the
results array may contain slots created by other
applications’ search methods.

scope Either 'localFind or 'globalFind. Indicates
whether the search is local or global, allowing you to
handle these two cases differently if you prefer.

findContext A frame to which the message SetStatus is sent. The
SetStatus function accepts as its sole argument a
string to display to the user while the search is in
progress.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-21

ShowFoundItem 3

myNewtApplication:ShowFoundItem(entry, finder)

Switches folders as necessary to show the found items as they are chosen by
the user from the dialog box.

entry The entry in which the item is found.
finder A NewtApp-compatible finder constructed by the

newtApplication proto.

newtApplication Delete and Duplicate Methods 3

The following methods, defined in the newtApplication proto, can be
used to delete and duplicate data items.

NewtDeleteScript 3

myNewtApplication:NewtDeleteScript(what, view)

Deletes the specified item(s) and removes it from the specified view. This
method displays alerts, in case someone tries to use delete when nothing is
selected or tries to delete items in the Overview. This method also saves the
item and the view for a possible undo action.

what A cursor or other reference to the item(s) to delete.

view A symbol referring to the view in which the item
appears.

NewtDuplicateScript 3

myNewtApplication:NewtDuplicateScript(what, view)

Duplicates the specified item(s) and adds the duplicate to the specified view.
This method also displays an alert which appears if someone tries to
duplicate when nothing is selected. This method saves the item and the view
for a possible undo action.

what A cursor or other reference to the item(s) to be
duplicated.

C H A P T E R 3

NewtApp Reference

3-22 General Application Protos

view A symbol referring to the view in which the item
appears.

NewtApplication Status Methods 3

The following methods, defined in the newtApplication proto, can be
used to obtain information about and save the state of your application.

GetAppState 3

myNewtApplication:GetAppState()

Gets the application preferences and uses them to set the values of the labels
filter, the current and previous layouts, and the recognition settings. It then
returns a copy of the application preferences.

Your application may override GetAppState, SaveAppState, and
GetDefaultState to add your own application preferences.

GetDefaultState 3

myNewtApplication:GetDefaultState()

This method sets the default values for the application preferences, including
values for the labels filter, the position of the current layout, the current and
previous layouts, and the recognition settings.

Your application may override GetAppState, SaveAppState, and
GetDefaultState to add your own application preferences.

SaveAppState 3

myNewtApplication:SaveAppState()

Saves application status. The following is saved:

■ folder positions for each entry in each soup in the allSoups slot

■ filters used to determine filing location

■ view positions, including the current and previous layouts

C H A P T E R 3

NewtApp Reference

General Application Protos 3-23

Your application may override GetAppState, SaveAppState, and
GetDefaultState to add your own application preferences.

newtInfoButton 3
This proto provides the standard “i” information button, which always
appears to the far left of the status bar. It is based on protoInfoButton,
discussed in Chapter 6, “Controls Reference.”

Unlike the protoInfoButton, the newtInfoButton proto provides the
default methods DoInfoAbout, DoInfoHelp, and DoInfoPrefs, which
are invoked when the user taps About, Help, or Prefs in the picker, as shown
in Figure 3-1.

Figure 3-1 The Information button and picker

The following methods provide default handling for items in the picker
menu of the newtInfoButton.

DoInfoAbout 3

myInfoButton:DoInfoAbout()

Closed and set to nil if an About view has been created. If no About view is
open, one is created.

DoInfoHelp 3

myInfoButton:DoInfoHelp()

Closed and set to nil if an on-line Help book has been created. If no Help
book is open, this method looks for an index to one in a viewHelpTopic

C H A P T E R 3

NewtApp Reference

3-24 General Application Protos

slot in the base view. If one exists, the Help manual is opened to the index
location; otherwise, it is just opened.

DoInfoPrefs 3

myInfoButton:DoInfoPrefs()

Closed and set to nil if a Preferences view has been created. If no
Preferences view is open, one is created.

newtAboutView 3
This proto is the view in which information about the application is stored.
The About view is displayed when the user chooses About from the Info
(“i”) button picker, which sends the DoInfoAbout message. It appears as
shown in Figure 3-2.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-25

Figure 3-2 The NewtApp About view

newtPrefsView 3
This proto is the view in which information about the application is stored.
The Preferences view is displayed when the user chooses Prefs from the Info
(“i”) button picker and the method DoInfoPrefs is sent. It appears as
shown in Figure 3-3.

C H A P T E R 3

NewtApp Reference

3-26 General Application Protos

Figure 3-3 A NewtApp Preferences view

newtActionButton 3
This proto provides the standard action button. If you have a card-style
application and want routing, place this in the menuRightButtons slot of
newtStatusBar (page 3-30) and the framework will place it correctly on
the status bar. The action button belongs next to the close box (to the left). It
appears as shown in Figure 3-4.

Figure 3-4 The Action button

newtFilingButton 3
This proto provides the standard filing button, with added functionality of
working with the NewtApp framework. If you have a card-style application
and want filing, place this in the menuRightButtons slot of
newtStatusBar (page 3-30) and the framework will place it correctly on
the status bar. The filing button belongs to the left of the action box. It
appears as shown in Figure 3-5.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-27

Figure 3-5 The Filing button

newtAZTabs 3
This proto is used to include alphabetical tabs, arranged horizontally, in a
view; it is based on the protoAZTabs but adds useful functionality to that
base. (See protoAZTabs in Chapter 6, “Controls Reference.”) The
newtAZTabs view appears as shown in Figure 3-6.

Figure 3-6 NewtApp A-Z tabs

When a view is changed and a new view is set up, as happens when
someone taps an alphabet tab, each view is automatically added to a
retargetChain array. When a view needs to update and redraw itself, the
rest of the views in the chain of views contained by it are notified, and a
Retarget message is sent to the entire chain.

Note that newtAZTabs works by using the index you have set up in an
indexPath slot of the soupQuery for your soup. (These are defined in the
newtApplication.allSoups base view slot.)

This proto defines its own versions of RetargetNotify and
PickLetterScript, which you can override to add functionality
appropriate to your application data. If you do, however, remember to call
the inherited method.

C H A P T E R 3

NewtApp Reference

3-28 General Application Protos

PickLetterScript 3

myTabs:PickLetterScript(letter)

Called when the user taps a tab. The letter on the tab is matched to the value
set up in the indexPath slot of the soupQuery frame (in the
newtApplication.allSoups slot), and the entry and view are retargeted.

letter The letter that was tapped.

newtFolderTab 3
This is the plain folder tab. If you want filing to operate correctly in your
application, it must use either this proto or the newtClockFolderTab
proto. The newtFolderTab view is shown in Figure 3-7.

Figure 3-7 The plain folder tab

newtClockFolderTab 3
This folder tab incorporates a date and time indicator. It is automatically
updated if the current folder is deleted. When the user taps the folder tab, a
picker containing the list of folders available to your application displays. If
you want filing to operate correctly in your application, it must use either the
newtFolderTab proto or the newtClockFolderTab proto, shown in
Figure 3-8.

Figure 3-8 The digital clock and folder tab

C H A P T E R 3

NewtApp Reference

General Application Protos 3-29

newtStatusBarNoClose 3
This proto is the basic component of the newtStatusBar: the bar alone,
with no buttons or close box.

This proto implements the menuLeftButtons and menuRightButtons
slots, which are placeholders for buttons you add. The slots
menuLeftButtons and menuRightButtons are arrays of buttons to be
displayed on the status bar. They are arranged at display time as
stepchildren of the menu bar.

When there is no statusBarSlot (page 3-11) set in the newtApplication
base view, the status bar figures the correct size of the buttons in the
menuLeftButtons and menuRightButtons arrays and places them
correctly. It is recommended that you use these slots to ensure the correct
justification of your status bar buttons with future enhancements.

If the statusBarSlot in the base view has been set, the appearance and
disappearance of the buttons on the status bar is governed by the values set
for the menuLeftButtons and menuRightButtons slots, at the layout
level of the application. See “newtLayout,” beginning on page 3-32.

The buttons in the menuLeftButtons array are laid out from left to right,
starting with the Info button. The buttons in the menuRightButtons array
are laid out from right to left, starting with the close box.

Slot descriptions

menuLeftButtons
An array of standard text buttons. The elements in the
array are laid out from left to right, with the first
element at the far left. An appropriate value is shown in
the following code:

menuLeftButtons:

 [newtInfoButton,

newtNewStationeryButton,

newtShowStationeryButton]

C H A P T E R 3

NewtApp Reference

3-30 General Application Protos

menuRightButtons
An array of standard text buttons. The elements in the
array are laid out from right to left, with the first
element at the far right. An appropriate value is shown
in the following code:

menuRightButtons:

 [newtActionButton,

newtFilingButton,]

newtStatusBar 3
This proto is based on the newtStatusBarNoClose. The only difference
between the two is that this status bar includes a large close box at its far
right side, as shown in Figure 3-9. As with the newtStatusBarNoClose
proto, you may use the menuLeftButtons and menuRightButtons
arrays.

Figure 3-9 A status bar view

Slot descriptions

menuLeftButtons
An array of standard text buttons. The elements in the
array are laid out from left to right, with the first
element at the far left. An appropriate value is shown in
the following code:

menuLeftButtons:

 [newtInfoButton,

newtNewStationeryButton,

newtShowStationeryButton]

C H A P T E R 3

NewtApp Reference

General Application Protos 3-31

menuRightButtons
An array of standard text buttons. The elements in the
array are laid out from right to left, with the first
element at the far right. An appropriate value is shown
in the following code:

menuRightButtons:

 [newtActionButton,

newtFilingButton,]

newtFloatingBar 3
This proto is like a standard newtStatusBar, but it floats at the bottom of a
view. It was originally designed for the Notes application where individual
view types such as the Outline view have their own menu buttons that are
not necessary for the main application view. Like the newtStatusBar
proto, it implements a menuButtons slot, in which you may enumerate the
buttons to appear on the floating bar. A floating bar view is shown in
Figure 3-10.

Figure 3-10 A floating bar view

Slot description

menuButtons An array of button protos. Buttons are laid out, an equal
distance apart, left to right in array order on the status
bar.

C H A P T E R 3

NewtApp Reference

3-32 General Application Protos

newtLayout 3
This proto must have at least one newtEntryView proto as a child view. (It
may also contain other protos.) For layouts to work correctly, you must set
the masterSoupSlot to the soup from the newtApplication.allSoups
slot to be used for this layout. In addition, you can direct your application to
force a new entry to be created (or not) when a user opens an empty folder,
by setting a layout’s forceNewEntry slot.

The menuLeftButtons and menuRightButtons slots allow you to control
which buttons appear on the status bar from the layout layer of the
application. (The statusBarSlot of the newtApplication base view
must also be set.)

The following slots originate in the newLayout proto and are inherited by
the other layout protos:

Slot descriptions

name Optional. An example is "All Info".
masterSoupSlot Required. A symbol that refers to the soup in the

newtApplication.allSoups frame that is the main
soup of your application. It sets up the cursor and soup
query for your application. An appropriate value would
be 'mySoup.

forceNewEntry Optional. Defaults to true. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.
If forceNewEntry is set to nil, no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAll slot set in the
newtApplication base view.

menuRightButtons
Optional. If the statusBarSlot in the base view is set,
this is used to replace the menuRightButtons on the
status bar in the main layout.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-33

menuLeftButtons
Optional. If the statusBarSlot in the base view is set,
this is used to replace the menuLeftButtons on the
status bar in the main layout.

The following slots are included for your information. They are maintained
automatically, so you need not worry about setting them. The dataCursor
slot is the main cursor to your application soup.

Slot descriptions

dataSoup Set to the soup that contains the data this layout
displays.

dataCursor The main cursor to the data soup; it points to the
topmost visible entry.

The following methods are defined in the newtLayout proto.

FlushData 3

myLayout:FlushData()

Flushes all entries in the child views held by the layout view.

NewTarget 3

myLayout:NewTarget()

Resets the view origin and redoes the screen.

Retarget 3

myLayout:Retarget(setViews)

Sets the cursor (dataCursor) to the new or changed entry and redraws the
screen after the cursor is changed, if the setViews parameter is true. Note
that you should not use this method with a newtOverLayout or
newtRollOverLayout proto.

setViews If set to true, the child views are redrawn.

C H A P T E R 3

NewtApp Reference

3-34 General Application Protos

DoRetarget 3

myLayout:DoRetarget

If received by the entry layer, it performs a ReTarget on itself. If received by
the layout layer, it performs a ReTarget, with a non-nil value, on itself.

ScrollCursor 3

myLayout:ScrollCursor(delta)

Moves the cursor delta entries and resets it.

delta An integer which can be greater than 0 or less than or
equal to 0, depending on the direction for the scroll and
the amount to scroll.

If delta is not equal to 0 (and the cursor is valid), the
cursor is moved that number of places.
A value less than or equal to 0 causes the cursor to reset
to the end of the entries (for a scrolling end behavior of
'wrap or 'beepAndWrap) or to move to the next entry
(for a scrolling end behavior of 'stop or
'beepAndStop). A value greater than 0 causes the
cursor to reset (for a scrolling end behavior of 'wrap or
'beepAndWrap) or to move to the previous entry (for a
scrolling end behavior of 'stop or 'beepAndStop).

SetUpCursor 3

myLayout:SetUpCursor()

Sets the cursor to an entry in the master soup and returns the entry to which
the cursor is set. If there are no entries in the master soup and
forceNewEntry is true, this method creates a blank entry (by calling
AddBlankEntry) and sets the cursor to it.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-35

Scroller 3

myLayout:Scroller(numAndDirection)

Traverses the number of entries specified by the parameter. In addition,
depending on whether the parameter is less than or greater than 0, the
scroller scrolls either up or down.

numAndDirection Either +n or –n, where n is the number of entries to
traverse. A value less than 0 is a scroll up and a value
greater than 0 is a scroll down.

IMPORTANT

This cannot be used in a newtOverLayout or
newtRollOverLayout. ▲

ShowFoundItem 3

myLayout:ShowFoundItem(entry, finder)

Uses the cursor already set up in the dataCursor slot to go to the slot in the
specified entry and conditionally sends the ShowFoundItem message to any
child views. You may choose to override the method to customize it to the
specific data.

entry A valid soup entry.

finder A NewtApp-compatible finder.

ViewScrollDownScript 3

myLayout:ViewScrollDownScript()

Produces a visual effect and calls the scroller method with a value of 1.

ViewScrollUpScript 3

myLayout:ViewScrollUpScript()

Produces a visual effect and calls the scroller method with a value of -1.

C H A P T E R 3

NewtApp Reference

3-36 General Application Protos

newtRollLayout 3
An example of this prototype can be seen in the built-in Notes application,
which it was designed to support. This proto is meant to work with
stationery-based children and does not work with other protos without a lot
of effort on your part.

AnewtRollLayout calculates at run time how many children it has,
depending on the number and size of the entries in the soup. It uses the
layout file—which must contain a newtRollEntryView proto you
provided as the value of the protoChild slot—as the default child view to
use when it dynamically builds itself.

IMPORTANT

Do not place the entry view of a roll-style application inside
a layout view; instead, it must be in a layout file (in NTK)
which is declared in an expression in the protoChild slot,
as shown in the following example:

MyRollLayout.protoChild :=
GetLayout("DefaultEntryView") ▲

Slot description

protoChild Required. Reference to the layout file containing the
view to use to lay out the child views. The child view
must be a newtRollEntryView. This is the most
important newtRollLayout slot. Do not create the
entry view within a layout view in a page-style
application. Instead, create it in a separate layout file.
An appropriate value for the protoChild slot of a
newtRollLayout is
GetLayout("DefaultEntryView").

There are no new methods specifically for the roll layout proto. However, it
does have its own version of the Scroller method, modified so it works
with the long pages of the newtRollLayout. See the newtLayout
Scroller method (page 3-35) for more information.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-37

newtPageLayout 3
This layout allows one entry to be visible at a time; otherwise, it acts the
same as the roll layout. The entry shown can be longer than one screenful.

A newtPageLayout, like the newtRollLayout proto, calculates at run
time how large it is, depending on the size of its child views. It uses the
layout file—which must contain a newtPageEntryView proto you
provided as the value of the protoChild slot—as the default child view to
use when it dynamically builds itself.

IMPORTANT

Do not place the entry view of a page-style application
inside a layout view; instead, it must be in a layout file (in
NTK) which is declared in an expression in the protoChild
slot, as shown in the following example:

MyPageLayout.protoChild :=
GetLayout("DefaultEntryView") ▲

Slot description

protoChild Required. Reference to the layout file containing the
view to use to lay out the child views. The child view
must be a newtRollEntryView. This is the most
important newtRollLayout slot. Do not create the
entry view within a layout view in a roll-style
application. Instead, create it in a separate layout file.
An appropriate value for the protoChild slot of a
newtPageLayout is
GetLayout("DefaultEntryView").

newtOverLayout 3
This is the default overview. It is based on protoOverview. (See
protoOverview (page 5-85) for more information.) It is singled out by the
newtApplication proto so that overview events invoke it.

C H A P T E R 3

NewtApp Reference

3-38 General Application Protos

As with the protoOverview, the newtOverLayout proto doesn’t have
view children; instead, it builds up shapes containing the overview
information and handles taps. These shapes are returned by the Abstract
method.

Because of the way the newtOverLayout proto is implemented, you should
make sure that if you override an inherited method, you include a call to that
method by using the conditional message send (:?) operator.

Slot descriptions

masterSoupSlot Required. A symbol that matches a value in the
allSoups slot in the newtApplication base view.

dataCursor Required. Do not set this; value is inherited from the
parent layout proto.

name Required. Set it to something meaningful, like
“Overview.”

centerTarget Optional. Defaults to nil. When set to true, the
current entry is centered in the overview list.

forceNewEntry Optional. Defaults to true. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.
If forceNewEntry is set to nil, no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAll slot set in the
newtApplication base view.

menuRightButtons
Optional. If the statusBarSlot in the base view is set,
this is used to replace the menuRightButtons in the
newtStatusBar in the main layout.

menuLeftButtons
Optional. If the statusBarSlot in the base view is set,
this is used to replace the menuLeftButtons in the
newtStatusBar in the main layout.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-39

nothingCheckable
Optional. When true, the check boxes and vertical
dotted line are suppressed.

Several methods are defined in this proto.

Abstract 3

myOverLayout:Abstract(targetEntry, bbox)

Returns a shape or shape list representing an item in the overview. It is
passed two parameters; the first is the target soup entry and the second a
bounds frame within which the returned shape should be placed. You should
override this method to extract text from your soup format.

It extracts an icon for the entry (if one is provided) from the icon slot of a
dataDef.

targetEntry Required. The soup entry frame to be displayed.

bbox Required. The bounding box defining the shape for the
overview information. This includes a value for the left,
right, top, and bottom.

An Abstract method example follows:

Abstract:

 func(item, bbox)

 begin

 // returns a shape for one line in the overview

 MakeText(item.name, bbox.left, bbox.top,

bbox.right, bbox.bottom);

 end;

GetTargetInfo 3

myOverLayout:GetTargetInfo(targetType)

Used by several system services (such as Filing, Find, and Routing) to get
information about the currently selected item. You can override this method
if necessary.

C H A P T E R 3

NewtApp Reference

3-40 General Application Protos

targetType A symbol identifying what special kind of information
the view should return, besides the default frame.
Currently, the only symbol defined is 'filing. Any
other value is ignored.

Slot descriptions

This method returns a frame that has the following slots:

target The value of the target slot in the view to which this
message is sent.

targetView The value of the targetView slot in the view to which
this message is sent. If targetType is 'filing, this slot
contains the value of the targetApp slot in the current
view instead.

targetStore If the target slot is a soup entry, the store on which the
entry resides is returned in this slot.

HitItem 3

myOverLayout:HitItem(index, x, y)

A method called when an item is tapped. The default method returns true if
it handled the tap; that is, if it determined the tap was within the
selectIndent margin and selected the item.

If you choose to override this method, you should check the x, y values; if
you don’t want to handle them, call inherited:HitItem. Also, be sure to
exclude the indent margin from your test.

index The index to the item in the list (the first one being 0).

x The x coordinate of the tap, relative to the left edge of
the item that was tapped.

y The y coordinate of the tap, relative to the top edge of
the item that was tapped.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-41

newtRollOverLayout 3
Same as the newtOverLayout proto, except that it must be used in a
roll-style application. It is based on newtOverLayout. It is singled out by
the newtApplication proto so overview events invoke it.

The newtOverLayout proto doesn’t have view children; instead, it builds
up a shape containing the overview information and handles taps. These
shapes are returned by the Abstract method.

Because of the way the newtRollOverLayout proto is implemented, you
should make sure that if you override an inherited method, you include a
call to that method by using the conditional message send (:?) operator.

Slot descriptions

masterSoupSlot Required. A symbol that matches a value in the
allSoups slot in the newtApplication base view.

dataCursor Required. You do not set this, it is inherited from the
parent layout proto.

name Required. Set it to something easy to remember, like
“Overview.”

forceNewEntry Optional. Defaults to true. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.
If forceNewEntry is set to nil, no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAll slot set in the
newtApplication base view.

centerTarget Optional. Defaults to nil. When set to true, the
current entry is centered in the overview list.

menuRightButtons
Optional. If the statusBarSlot in the base view is set,
this replaces the menuRightButtons in the
newtStatusBar in the main layout.

menuLeftButtons
Optional. If the statusBarSlot in the base view is set,

C H A P T E R 3

NewtApp Reference

3-42 General Application Protos

this replaces the menuLeftButtons in the
newtStatusBar in the main layout.

nothingCheckable
Optional. When true, the check boxes and vertical
dotted line are suppressed.

newtEntryView 3
The newtEntryView proto is the invisible container view for the protos that
allow you to view and edit data. See “Slot View Protos” (page 3-49) for
details. This proto is essential because it sets the target slot to refer to the
soup entry that contains the data for the slot views to display.

There are no unusual slots to set, just the usual bounds and justify slots, and
then only if you want to override the default settings.

The following slots are set automatically. Note that dataDefs and viewDefs
are identified and used as target entries and target views in several
newtEntryView slots.

IMPORTANT

Do not change the values of any of the following slots, or
your application will not work correctly. ▲

Slot descriptions

entryChanged When an entry is changed in a viewDef, this is set to
true for flushing.

entryDirtied If the targeted viewDef was changed once and a flush
occurred, this is set to true. When the view is closed
down, it checks this. If set, it does a broadcast soup
change to other applications.

target Set to the entry that is ready to display.
viewJustify Optional. Defaults to parent full justify for horizontal

and vertical vjParentFullH + vjParentFullV
currentDataDef Set by the enclosed stationery view to the current

dataDef. (See Chapter 5, “Stationery,” in Newton
Programmer�s Guide for more information.) This is a

C H A P T E R 3

NewtApp Reference

General Application Protos 3-43

convenient access point for items like the
newtEntryRollHeader, so it can pull out the
appropriate icon from the newtInfoBox.

currentViewDef Set by the enclosed stationery view to the current
viewDef.

currentStatView Set by the enclosed stationery view to the current
context of the viewDef. If the target entry has a dataDef
displayed, this points to it.
Internal methods need to know the context for the view
that contains the dataDef so messages may be sent to it.

The following methods are defined for the newtEntryView proto and are
inherited by all entry views that are based on it.

StartFlush 3

myEntryView:StartFlush()

Starts the timer that flushes out the entry after a few seconds of inactivity.
Normally this is called automatically by a dataDef, but if you have some
other reason for causing an entry to be flushed, call this directly. Calling this
sets the entryChanged slot and begins the flush timer.

EndFlush 3

myEntryView:EndFlush()

Called when the flush timer fires. If you want an immediate flush, set
entryChanged to true and call this method.

EntryCool 3

myEntryView:EntryCool(report)

Checks to see if the target entry is on read-only media.

report If report is a non-nil value, the notice “This is on a
write-protected card and cannot be changed” is
displayed, if the target entry in on read-only media.

C H A P T E R 3

NewtApp Reference

3-44 General Application Protos

JamFromEntry 3

myEntryView:JamFromEntry(otherEntry)

Looks for a JamFromEntry method in each child of the entry view and
sends the same message to its childviews if appropriate. It then retargets the
view to display the changes. For more information, see the slot view’s
redefinition of JamFromEntry (page 3-50).

otherEntry A soup entry. This is intended to be an entry other than
the one to which the entryView is already targeted.

Retarget 3

myEntryView:Retarget()

Changes the display for the viewDef(s) and dataDef(s) before conditionally
sending the Retarget message to each child view. For more information,
see the slot view’s redefinition of Retarget (page 3-59).

DoRetarget 3

myEntryView:DoRetarget()

If received by the entry layer, it performs a ReTarget on itself. If received by
the layout layer, it performs a ReTarget, with a non-nil value, on itself.

newtFalseEntryView 3
This proto, which is based on newtEntryView, allows the use of the
NewtApp framework’s slot view protos and stationary without the rest of
the NewtApp structure for updating entries. It is ideal for converting an
existing non-NewtApp application to use the NewtApp slot view protos.

When you use slot views or stationary outside a NewtApp application, you
must put them in a newtFalseEntryView proto and make sure the
target and targetView slots are set. This is accomplished by sending a
Retarget message to the newtFalseEntryView whenever entries are
changed.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-45

Writing a changed entry back to the soup is the responsibility of the
application. You may want to set up a flush timer, or at least write back
changes when scrolling and closing.

Slot descriptions

targetSlot Optional. Defaults to 'target. There’s no need to reset
it if the slot in the parent context of this view, which
holds the current entry (or target), is named target. If
not, set it to the symbol that refers to the slot in the
parent context that holds the data from the target entry.

dataCursorSlot Optional. Defaults to 'dataCursor. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the main soup cursor, is named
dataCursor. If not, set it to the symbol that refers to
the slot in the parent context that refers to the main
soup cursor.

dataSoupSlot Optional. Defaults to 'dataSoup. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the main soup, is named dataSoup. If
not, set it to the symbol that refers to the slot in the
parent context that refers to the main soup.

soupQuerySlot Optional. Defaults to 'soupQuery. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the soup query, is named soupQuery. If
not, set it to the symbol that refers to the slot in the
parent context that refers to the soup query.

The newtFalseEntryView inherits all the methods documented in the
newtEntryView proto, although they have been altered slightly to provide
a simulated NewtApp application environment.

newtRollEntryView 3
This proto is based on the newtEntryView proto and is equivalent to it,
except that it supports the roll style application (as implemented by the
newtRollEntryView proto). It dynamically sizes the entries, depending on
the size of the viewDef. You must use stationery with this proto.

C H A P T E R 3

NewtApp Reference

3-46 General Application Protos

Slot descriptions

target Set by the system to point to the current entry.
targetView Refers to the newtRollEntryView proto itself, so that

routing and other system services can use it.
bottomlessHeight

Optional. Sets the height of the entry view when it is the
last item in a roll style application. Set to the constant
kEntryViewHeight.

newtEntryPageHeader 3
This proto implements the standard header/divider bar for a page entry
view. If this header is displayed in association with some stationery (a
dataDef is the current target entry) and it has an icon assigned to its icon
slot (page 3-48) that icon is used at the far left of the header. Otherwise a
default icon provided by the system is used.

When you press the header icon on the left of the bar, the newtInfoBox
proto page 3-47 is automatically opened. If your entry has a title slot, the
title is displayed in the area where the date is shown; otherwise, the date is
displayed. You can see all these features in the built-in Notes application.

Figure 3-11 A page header

newtEntryRollHeader 3
This proto implements the standard header/divider bar in a roll entry view.
If this header is displayed in association with some stationery (a dataDef is
the current target entry) and if the dataDef has an icon assigned to its icon
slot (page 3-48), it is used at the far left of the header. Otherwise, a default
icon provided by the system is used.

C H A P T E R 3

NewtApp Reference

General Application Protos 3-47

When you tap the header icon, a newtInfoBox proto (page 3-47) is
automatically displayed. If your entry has a title slot, the title is displayed;
otherwise, the date is displayed. You can see all of these features in the
built-in Notes application. A roll header is shown in Figure 3-12.

Figure 3-12 A roll header

Slot descriptions

hasFiling Optional. Defaults to true. Set to nil for no Filing or
Action buttons.

resizable Optional. Defaults to true. Set to nil for no drag
resizing.

newtEntryViewActionButton 3
This is the standard Action button. It must be a child of the entry view. It
handles the usual routing actions, but in the entry view rather than the
application base view context.

newtEntryViewFilingButton 3
This is the standard Filing button, but it must be a child of the entry view. It
handles the usual filing actions, but in the entry view rather than the
application base view context.

newtInfoBox 3
This is a floating view based on protoFloatNGo. It displays informational
text including the date, the size of the target entry, and the storage location of
the entry. It also contains an input line with the label “Title.” If the text on

C H A P T E R 3

NewtApp Reference

3-48 General Application Protos

that line is changed, the new text is saved automatically and displayed next
to the icon on the title bar after the proto is closed.

If your application uses stationery, the icon you declared in the icon slot is
used next to its description, which is also taken from the dataDef. You need
to add nothing to get a view that looks very similar to the one from the
built-in Notes application shown in Figure 3-13.

Figure 3-13 A NewtApp Information slip

Slot descriptions

icon Optional. An icon representing the object about which
the information is provided.

description Optional. A string describing the entry being displayed.

C H A P T E R 3

NewtApp Reference

Slot View Protos 3-49

Slot View Protos 3

3

The slot view protos include all the protos you use to view and edit the data
held in the slots of a soup entry. The slot view protos usually have a
one-to-one correspondence with soup slots.

There are two categories of slot views:

■ Simple read-only (RO) and edit views

■ Labelled input-line protos

All slot views assume a soup entry has been set by the parent proto as the
value of the target slot. The target slot is a reference to the soup entry
containing the data to be displayed in a slot view. This soup entry will also
stores the user-entered data.

This is set at run time by the NewtApp framework, where target is a slot
defined in the newtApplication base view. The targetView is the
newtEntryView proto that contains the slot view in which the target data is
to be displayed.

When slot views are used outside a NewtApp application, the target and
targetView slots must be set by you. In this case, the slot view protos must
be contained by a newtFalseEntryView proto (page 3-44), which must be
the view referred to by the targetView slot.

Slot views also require a path slot. Depending on the proto, this slot must be
a path expression leading to a slot that holds a certain kind of data. For
instance, the path slot of a newtROTextDateView proto must refer to a slot
in an entry that contains dates.

Also included in this view category are two protos: newtEntryLockedIcon,
(page 3-59) which you can use to indicate locked media or read-only views
and newtStationeryView (page 3-59) which provides a bounding box for
your dataDef stationery component.

C H A P T E R 3

NewtApp Reference

3-50 Slot View Protos

Slot description

path Required for all slot views. A symbol that is a path
expression to the slot in the target frame where the
initial value for the input line resides, and in which the
final value is to be stored.
The slot identified by the path expression should
contain the specified data for the specific slot view.

Also defined for the slot view protos is a TextScript method that displays
the text for the target entry and a JamFromEntry method that puts the path
of a new entry into the path slot. These work for all simple slot views.

TextScript 3

mySlotView:TextScript()

Returns a text representation of the data at the specified path in the target
soup entry for any slot view in your application.

JamFromEntry 3

mySlotView:JamFromEntry(otherEntry)

Replaces the path expression in the path slot with a new path expression.
The new path is formed by appending the value of the otherEntry parameter
to the path expression that leads to the soup entry in which the slot resides,
which it obtains from the jamSlot slot (if it’s not nil).

This essentially resets the target entry to a different entry and causes the
display to change so the user is looking at the new value.

otherEntry A soup entry. This is intended to be an entry other than
the one to which the entryView is already targeted.

For an example of when you might want to use this method, imagine you are
developing an order-entry system. You want the customer address stored in
the order, but it’s in the Names soup. To extract the data, you set the
jamSlot to a path expression that leads to the address in the Names soup
and send the JamFromEntry message with the Names soup entry as the
value of the otherEntry parameter.

C H A P T E R 3

NewtApp Reference

Slot View Protos 3-51

newtROTextView 3
This proto displays read-only text. It is the base proto for the rest of the
simple slot views.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

styles Optional. Defaults to nil.
tabs Optional. Defaults to nil.
jamSlot Optional. Defaults to nil. If this view has a jamSlot

that is not nil, the slots from an entry passed to the
JamFromEntry method are placed (“jammed”) into the
soup slot referred to by path.
The jamSlot may be set to a path expression that
defines the path to use to extract data from a slot in an
entry, when the entry is not the one already targeted by
the entry view (which encloses the slot view).

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtTextView 3
This is the other base proto for the slot views; it is based on the read-only text
view (newtROTextView). Use it to display editable text that does not need a
label.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

styles Optional. Defaults to nil.
tabs Optional. Defaults to nil.

C H A P T E R 3

NewtApp Reference

3-52 Slot View Protos

jamSlot Optional. Defaults to nil. If this view has a jamSlot
that is not nil, the slots from an entry passed to the
JamFromEntry method are placed (“jammed”) into the
soup slot referred to by path.
The jamSlot may be set to a path expression that
defines the path to use to extract data from a slot in an
entry, when the entry is not the one already targeted by
the entry view (which encloses the slot view).

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtRONumView 3
A read-only view for numbers, which is based on the NewtApp read-only
text view (newtROTextView). It has functionality added for number
formatting.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

format Optional. The format string for displaying the data
defaults to %.10g and a 10-place decimal. See
FormattedNumberStr (page 23-17) for complete
details.

integerOnly Optional. Defaults to true, signaling that conversion
from text to number should result in an integer.

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtNumView 3
An editable number view that is based on the read-only number view
(newtRONumView) and inherits its slots. Specify number formatting by
assigning values to the format and integerOnly slots.

C H A P T E R 3

NewtApp Reference

Slot View Protos 3-53

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

format Optional. The format string for displaying the data
defaults to %.10g and a 10-place decimal.

integerOnly Optional. Defaults to true, signaling that conversion
from text to number should result in an integer. A value
of nil allows real (decimal) numbers.

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtROTextDateView 3
This proto is set to contain text and dates. Depending on which of the two
slots, longFormat or shortFormat, is non-nil, this proto displays either
long or short dates, such as February 29, 1984, or 2/29/84.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text or date to
display in this view, and in which to store the final
value.

longFormat Optional. Defaults to yearMonthDayStrSpec, which
is a format for use by the LongDateStr function
(page 17-23). The longdate specification is defined by
the system. Either this slot or the shortFormat slot
should not be nil, so the view can choose the format.

shortFormat Optional. Defaults to nil. This is a format defined by
the system for use by the ShortDateStr function
(page 17-24).

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

C H A P T E R 3

NewtApp Reference

3-54 Slot View Protos

newtTextDateView 3
This editable view is based on its read-only version
(newtROTextDateView) and inherits its slots.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text or date to
display in this view, and in which to store the final
value.

longFormat Optional. Defaults to yearMonthDayStrSpec, which
is a format for use by the LongDateStr function
(page 17-23). The longdate specification is defined by
the system. Either this slot or the shortFormat slot
should not be nil, so the view can choose the format.

shortFormat Optional. Defaults to nil. This is a format defined by
the system for use by the ShortDateStr function
(page 17-24).

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtROTextTimeView 3
This proto is based on the newtROTextView proto, but has functionality
added to display and format a time string. The slot to be displayed must
contain a time or text.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text and/or time to
display in this view, and in which to store the final
value.

format Optional. Defaults to ShortTimeStrSpec which is a
format for use by the TimeStr function (page 17-27).

C H A P T E R 3

NewtApp Reference

Slot View Protos 3-55

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtTextTimeView 3
This editable view protos from its read-only version (newtROTextTimeView)
and inherits its slots.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text and/or time to
display in this view, and in which to store the final
value.

format Optional. A format for use by the TimeStr function
(page 17-27). Defaults to ShortTimeStrSpec.

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtROTextPhoneView 3
This view, which is based on the newtROTextView proto, displays a
telephone number from the application soup.

Slot description

path Required. The slot identified by this path expression is
the slot from which to get the initial phone number to
display in this view, and in which to store the final
value.

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

C H A P T E R 3

NewtApp Reference

3-56 Slot View Protos

newtTextPhoneView 3
This view, based on the newtROTextView proto, formats a number entered
into it by a user as a telephone number.

Slot description

path Required. The slot identified by this path expression is
the slot from which to get the initial numbers to display
in this view, and in which to store the final value.

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

newtROEditView 3
This is a fixed-size edit view that displays the application soup. It may also
be set up to have its own scrollers by setting the optionFlags slot.

Slot descriptions

doCaret Optional. Defaults to true, which autosets the caret.
optionFlags Optional. Defaults to kNoOptions (which has a

numeric value of 0) and sets the scrollers not to show.
The constant kHasScrollersOption (which has a
numeric value of 1) sets them to show.

viewLineSpacing
Optional. Defaults to 28.

path Required. The slot identified by this path expression is
the slot from which to get the initial numbers to display
in this view, and in which to store the final value.

This proto also defines the method ScrollToWord for your convenience.
See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

C H A P T E R 3

NewtApp Reference

Slot View Protos 3-57

ScrollToWord 3

myeditView:ScrollToWord(words, hilite)

This method finds the specified word, scrolls the edit view to the found
word, and highlights it—if the hilite parameter is true. If no match is found
for the specified word in any view child of the edit view, ScrollToWord
does nothing. This method does not work in roll layouts.

words May be a string or an array of single words to find.

hilite If true, the matching text of the paragraph view is
highlighted.

newtEditView 3
This view protos is based on its read-only version (newtROEditView) and
behaves simply, somewhat like a clEditView. (See “General Input Views”
beginning on page 8-6 in Newton Programmer�s Guide.) Unlike the read-only
version, this proto accepts user-entered text. A newtEditView, with scroll
bars showing, is shown in Figure 3-14. This proto can use any of the
NewtROEditView slots (page 3-56).

Figure 3-14 A newtEditView proto

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

C H A P T E R 3

NewtApp Reference

3-58 Slot View Protos

newtCheckBox 3
This view is based on the protoCheckBox page 6-24. Basically, it works so
the check mark is on when the value of the target.(path) slot is equal to
the value of the assert slot. If you want more complex behavior, override
the ViewSetupFormScript and the ValueChanged method.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which the initial text to display in this
view is gotten, and in which the final value is to be
stored.

assert Optional. Defaults to true. Holds the “checked” value
negate Optional. Defaults to nil. Holds the “unchecked” value.

The values of assert and negate are written back to and read from target.

See also the methods TextScript and JamFromEntry in “Slot View
Protos” (page 3-49).

This proto also implements the following two methods.

ViewSetupFormScript 3

myCheckbox:ViewSetupFormScript()

Checks the value of target.(path)for equality against the value of the
assert slot. Override this method for more complex behavior.

ValueChanged 3

myCheckbox:ValueChanged()

If the equality check in the ViewSetupFormScript is non-nil, the slot
target.(path) is set to the assert value; otherwise, it is set to the
negate value. Override this method for more complex behavior.

C H A P T E R 3

NewtApp Reference

Slot View Protos 3-59

newtStationeryView 3
This view holds nothing; its function is to give a viewDef its bounding box. It
contains the instantiated view of a ViewDef template. This proto is different
from the newtStationery proto, page 4-3 which you use to create a
dataDef.

newtEntryLockedIcon 3
You use this proto to show a lock icon if the slot is on locked media, on a
ROM card, or contained in a read-only view. The newtEntryLockedIcon
proto is set either to show or not show when your view is opened.

Slot description

icon Optional. Defaults to nil; it may also have the value
lockedIcon.

The following methods are defined internally to newtEntryLockedIcon.
They should not be changed, or the proto does not work as documented.

Retarget 3

myLockedIcon:Retarget()

Calls SetIcon to show either the locked or unlocked icon (according to
whether the store is locked or in ROM) and redraws the icon.

SetIcon 3

myEntryLockedIcon:SetIcon()

Checks the target soup entry to find out if it is or locked or in ROM. If it is,
the locked icon is displayed.

C H A P T E R 3

NewtApp Reference

3-60 Labelled Input-Line Slot View Protos

Labelled Input-Line Slot View Protos 3

The NewtApp labelled input-line protos function similarly to the
protoLabelInputLine family of protos. (If you are not familiar with those
protos, you may read about them in Chapter 8, “Text and Ink Input and
Display.”)

In addition to their label and pop-up menu capabilities, these protos include
the flavor and access slots. The access slot limits the type of access each
label input-line slot view allows. The flavor slots contain references to the
NewtApp filter protos. These protos assign appropriate pickers and correct
formatting for the intended data type. They are enumerated in Table 3-1.

Table 3-1 The NewtApp filters used to set the flavor slot

Filter* Description Slots

newtTextFilter This is the filter the other filter
protos are based on. It allows
the label input-line proto,
which uses it as the value of its
flavor slot, to accept text
input.

This proto contains no slots for
you to set.

newtInteger
Filter

This filter is based on the
newtTextFilter proto. It is set
to accept only integers as input
and contains a format slot,
which you may set.

format: Optional. Defaults to
%.10g. You should change this
as needed.

newtNumber
Filter

This filter is based on the
newtIntegerFilter proto. It
is set to accept all numbers as
input and contains a format
slot, which you may set.

format: Optional. Defaults to
%.10g. You should change this
as needed.

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-61

newtDateFilter This filter is based on the
newtTextFilter proto. It is set
to accept dates as input and
contains two format slots,
which you may set; one must
be set to a non-nil value. This
proto specifies that the
protoDatePopup picker is to
be used.

shortFormat: Optional.
Defaults to nil. May be set
to a format used by the
ShortDateStr function.

longFormat: Optional. Defaults
to yearMonthDayStrSpec, a
format used by the LongDateStr
function.

newtSimple
DateFilter

This filter is based on the
newtDateFilter proto and, is
similarly set to accept and
format dates. This filter allows
dates that look like 5/15/55 or
5/15 and is useful for birthday
input lines. It also contains two
format slots, one of which must
be set to a non-nil value.

shortFormat: Optional.
Defaults to nil. May be set
to a format used by the
ShortDateStr function.

longFormat: Optional. Defaults
to monthDayStrSpec, which is
the format used by the
LongDateStr function to
withhold the year.

newtTimeFilter This filter is based on the
newtTextFilter proto. It
contains a format and
increment slot, which you
may set. If an input line of a
newtTimeFilter flavor uses a
pop-up menu, a
protoTimePopup picker is
specified by this proto.

format: Optional. Defaults to
shortTimeStrSpec. You should
change this as needed.

increment: Optional. Defaults
to 10.

Table 3-1 The NewtApp filters used to set the flavor slot (continued)

Filter* Description Slots

C H A P T E R 3

NewtApp Reference

3-62 Labelled Input-Line Slot View Protos

newtDateN
TimeFilter

This filter is based on the
newtTextFilter proto. It
contains the slots format,
longFormat, and
shortFormat, which you may
set. Note that of the two slots,
longFormat and
shortFormat, one must be set
to a non-nil value.

If an input line of a
newtDateNTimeFilter flavor
uses a pop-up menu, a
protoDateNTimePopup
picker is specified by this proto.

shortFormat: Optional.
Defaults to nil. May be set to a
format used by the
ShortDateStr function.

longFormat: Optional. Defaults
to yearMonthDayStrSpec, the
format used by the LongDateStr
function to withhold the year.

format: Optional. Defaults to
shortTimeStrSpec. You should
change this as needed.

newtPhoneFilter This filter is on the
newtTextFilter proto and is
used to format numbers as
phone numbers.

kind: Optional. Defaults to nil.
The built-in types include fax,
home, and work, and are used
to change the label for the
input line.

newtCityFilter This filter is based on the
newtTextFilter proto and is
used to format text as cities.

This proto contains no slots for
you to set.

newtStateFilter This filter is based on the
newtTextFilter proto and is
used to format text as state
names or abbreviations.

If an input line of a
newtStateFilter flavor
uses a pop-up menu, a
protoLocationPopup picker
is specified by this proto.

This proto contains no slots for
you to set.

Table 3-1 The NewtApp filters used to set the flavor slot (continued)

Filter* Description Slots

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-63

newtProtoLine 3
The newtProtoLine is the base view for the input line protos. This proto
inherits behavior from both the view class clView and the proto
newtROTextView. In addition, it contains built-in code that creates the label
picker and interprets menu item commands.

Most of the following slots are included for your information only. The only
slot you should change for the built-in protos is the label slot. Do not
change the access or flavor of the other slots; they will not work as planned.

newtCountry
Filter

This filter is based on the
newtTextFilter proto and is
used to format text as country
names or abbreviations.

If an input line of a
newtCountryFilter flavor
uses a pop-up menu, a
protoLocationPopup picker
is specified by this proto.

This proto contains no slots for
you to set.

newtSmartName
Filter

This filter is based on the
newtTextFilter proto and is
used to present the Names
soup to the user, who may
choose a name that appears on
the input line.

If an input line of a
newtSmartNameFilter flavor
uses a pop-up menu, a
protoPeoplePopup picker is
specified by this proto.

This proto contains no slots for
you to set.

*Filter names in the first column are all one word. They have been broken here due to space
limitations.

Table 3-1 The NewtApp filters used to set the flavor slot (continued)

Filter* Description Slots

C H A P T E R 3

NewtApp Reference

3-64 Labelled Input-Line Slot View Protos

Slot descriptions

label Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

labelCommands Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
value is

["picker option one", "picker option two"]

curLabelCommand
Optional. If the labelCommands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the labelCommands array. If you
omit this slot, no item is initially marked with a check
mark. Note that you must update this value when a
different value is chosen.

usePopup Optional. Defaults to true. When set to true and you
provide a labelCommands array, the input-line label
displays a diamond, indicating a picker (pop-up menu).

access Optional. Defaults to 'readWrite. Valid values
include 'readWrite, 'readOnly, and 'pickOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

flavor Optional. Defaults to newtFilter. See Table 3-1 for a
list of filters. Do not change this value for the built-in
protos or they will not work as expected.

memory Optional. Defaults to nil. Used to reference a list of the
last n items chosen. The value of this slot is a symbol
that names the list. The symbol must incorporate your
developer signature.

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-65

This proto also contains the following methods:

ChangePopup 3

myProtoLine:ChangePopup(item, entry)

Allows you to change a menu item before it is displayed (assuming there is a
picker menu). For example, if you do a name query, but want to display “Bob
Johnson, Apple” instead of just “Bob,” use this method. If ChangePopup
isn’t defined, the menu just shows the original data.

item An item to be displayed in the picker menu.

entry The entry corresponding to the item selected from the
picker menu.

UpdateText 3

myProtoLine:UpdateText(newText)

Updates text for an Undo action. It changes the old text to the text passed in
as a parameter and posts that change to the Undo system service.

newText A string to which the entry is changed, which is passed
in as the parameter to this method.

newtLabelInputLine 3
This proto is used for a one-line input field that includes a text label and can
optionally feature a pop-up menu. It is similar to protoLabelInputLine,
and can use all of the slots available to that proto. It also shares some
behavior (jamSlot, etc.) with the text view, and is based on the
newtProtoLine proto.

The newtLabelInputLine proto is a one-line input field that includes a
text label at its left. When a labelCommands array is provided, a diamond
appears to the left of the label and the contents of the array appear in a
picker menu. Without labelCommands, the newtLabelInputLine proto
appears as shown in Figure 3-15.

C H A P T E R 3

NewtApp Reference

3-66 Labelled Input-Line Slot View Protos

Figure 3-15 A NewtApp label input line

Slot descriptions

access Optional. Defaults to 'readWrite. Valid values
include 'readWrite, 'readOnly, and 'pickOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

label Optional. Defaults to the empty string. Set to a string
such as “Some Text”, which is the label text you wish
to display.

labelFont Optional. Sets the font used for the label. The default is
ROM_fontSystem9Bold.

labelCommands Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
value is:
["picker option one", "picker option two"]

curLabelCommand
Optional. If the labelCommands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the labelCommands array. If you
omit this slot, no item is initially marked with a check
mark.

usePopup Optional. Defaults to true. When set to true and you
provide a labelCommands array, the input line label
displays a diamond, indicating a picker (pop-up menu).

path Required. The path expression should identify the soup
slot where the text is saved. An example is

[pathExpr: kAppSoupSymbol, 'someText]

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-67

flavor Set to newtTextFilter; do not change this, or the
proto will not work as expected.

newtROLabelInputLine 3
This is the same as newtLabelInputLine, except that there is no dotted
line and the text displayed is read-only.

Slot descriptions

label Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input-line
label. An example is

"Some Text:"

path Required. The path expression should identify the soup
slot where the text is saved. An example is

[pathExpr: kAppSoupSymbol, 'someText]

flavor Set to newtNumberFilter; do not change this, or the
proto will not work as expected.

newtROLabelNumInputLine 3
This proto (the read-only version and its editable counterpart) is the numeric
equivalent of the newtLabelInputLine protos. It is based on the
newtProtoLine proto, but has a newtNumberFilter as the value of its
flavor slot, which imparts number formatting features to it.

The read-only display consists of the label designated in the label slot and
the data stored in the location specified by the path slot, but without a
dotted line for the input line. Note that it is not possible to create a picker for
a newtROLabelInputLine. An example is shown in Figure 3-16.

C H A P T E R 3

NewtApp Reference

3-68 Labelled Input-Line Slot View Protos

Figure 3-16 A NewtApp label display line for text

Slot descriptions

label Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label. An example of a valid value is

"A Number:"

path Required. A path expression of the form:

[pathExpr: yourSoupSymbol, 'aNumber]

newtLabelNumInputLine 3
This is the same as the newtROLabelNumInputLine, except that data may
be entered on the dotted input line and is saved to the data location specified
in the path slot. The proto, with a labelCommands array with the specified
value ["1","2","3","4","5"] and a true value for the usePopup slot,
is shown in Figure 3-17.

Figure 3-17 A NewtApp label number input line

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-69

Slot descriptions

access Optional. Defaults to 'readWrite. Valid values
include 'readWrite, 'readOnly, and 'pickOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

label Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input line
label. An example of a valid value is

"A Number:"

labelCommands Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
value is: ["1","2","3","4","5"]

usePopup Optional. Defaults to true. When set to true and you
provide a labelCommands array, the input-line label
displays a diamond, indicating a picker (pop-up menu).

path Required. A path expression of the form

[pathExpr: yourSoupSymbol, 'aNumber]

flavor Set to newtNumberFilter; do not change this, or the
proto will not work as expected.

newtLabelDateInputLine 3
This proto allows inputs of dates through a system-provided picker or by
directly entering them on the input line. A label date input-line view is
shown in Figure 3-18.

C H A P T E R 3

NewtApp Reference

3-70 Labelled Input-Line Slot View Protos

Figure 3-18 A NewtApp label date input line

When a date is entered on the input line, the calendar changes to match. If
the date is written in any other format than the one shown in Figure 3-18, it
is accepted and recognized but is changed automatically to the date format
shown in the figure.

Note that neither the labelCommands nor the usePopup slot is necessary
with this proto. The pop-up menu is specified in the newtDateFilter.

Slot descriptions

access Optional. Defaults to 'readOnly. Valid values include
'readWrite and 'pickOnly. Do not change this
value for the built-in protos, or they will not work as
expected.

label Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

path Required. A path expression that leads to a slot with a
date in it, of the form

[pathExpr: soupSymbol, 'aDate]

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-71

flavor Set to newtDateFilter; do not change this, or the
proto will not work as expected.

newtROLabelDateInputLine 3
This is the same as the newtLabelDateInputLine except that it is used to
display, not edit, a date from a soup slot. As with all the read-only input-line
protos, the dotted line disappears when it is displayed. An example is shown
in Figure 3-19.

Figure 3-19 A newtROLabelDateInputLine proto

Slot descriptions

label Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

path Required. A path expression that leads to a slot with a
date in it, of the form

[pathExpr: soupSymbol, 'aDate]

flavor Set to newtDateFilter; do not change this, or the
proto will not work as expected.

newtLabelSimpleDateInputLine 3
This proto accepts simple dates (dates without the year, such as 7/24 and
July 24) in addition to fully specified dates (such as 7/24/88 and July 24,
1988). It is useful for birthday and anniversary fields. The
newtLableSimpleDateInputLine proto is based on the
newtProtoLine proto. It is shown in Figure 3-20.

C H A P T E R 3

NewtApp Reference

3-72 Labelled Input-Line Slot View Protos

Figure 3-20 The simple date input line

Slot descriptions

access Optional. Defaults to 'readWrite. Valid values
include 'readOnly, and 'pickOnly. Do not change
this value for the built-in protos, or they will not work
as expected.

label Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input-line
label.

path Required. A path expression that leads to a slot with a
date in it, of the form:

[pathExpr: soupSymbol, 'birthday]

flavor Set to newtSimpleDateFilter; do not change this, or
the proto will not work as expected.

newtNRLabelDateInputLine 3
This proto is based on newtProtoLine and allows date input through a
system-provided protoDatePopup picker. The initial display is simply the
label with a diamond to its left and no input line following it. Once a date

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-73

has been displayed, any attempt to edit it causes the date picker to display. It
is shown in Figure 3-21.

Figure 3-21 Date input with picker-only access

Slot descriptions

access Optional. Defaults to 'pickonly. Valid values include
'readWrite, 'readOnly, and 'pickOnly. Do not
change this value for the built-in protos, or they will not
work as expected.

flavor Set to newtDateFilter; do not change this, or the
proto will not work as expected.

label Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

path Required. A path expression that leads to a slot with a
date in it, of the form:

[pathExpr: yourSoupSymbol, 'date]

C H A P T E R 3

NewtApp Reference

3-74 Labelled Input-Line Slot View Protos

newtROLabelTimeInputLine 3
This proto is based on newtProtoLine and is set to display a time. No
input or editing is recognized.

Slot descriptions

label Optional. A string which labels the input line.
path Required. A path expression, that leads to a slot with a

time in it, of the form

[pathExpr: soupSymbol, 'time]

flavor Set to newtTimeFilter; do not change this, or the
proto will not work as expected.

newtNRLabelTimeInputLine 3
This allows date input through a system-provided protoTimePopup picker
only. The picker is specified by the newtTimeFilter, which is the value of
its flavor slot. You should not change this or the proto will not work as
expected. It is based on newtProtoLine. It appears as shown in Figure 3-22.

Figure 3-22 Time input with picker-only access

Slot descriptions

label Optional. A string that labels the input line.
flavor Set to newtTimeFilter; do not change this, or the

proto will not work as expected.
access Defaults to 'pickOnly, can be 'readOnly.

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-75

newtLabelTimeInputLine 3
This proto provides a labelled input line for a time. When it initially displays,
the line is blank and a diamond appears to the left of the label. When the
label is tapped, a time picker displays. It is shown in Figure 3-23.

Figure 3-23 A newtLabelTimeInputLine proto

Slot descriptions

label Optional. A string that labels the input line.
flavor Set to newtTimeFilter; do not change this, or the

proto will not work as expected.
path Required. Must be a path expression identifying a soup

slot that holds a time.

newtNRLabelDateNTimeInputLine 3
This proto is set up to contain times and dates, and is based on
newtProtoLine. Depending on which of the two slots, longFormat or
shortFormat, is non-nil, this proto displays either long or short dates,
such as 10:05 AM, or 10:10 AM. For more information about these formats,
which are used in calls to LongDateStr and ShortDateStr, see “Date and
Time Format Specifications” (page 17-11).

Slot descriptions

flavor Set to newtDateNTimeFilter; do not change this, or
the proto will not work as expected.

access Defaults to 'pickOnly can be 'readOnly.

C H A P T E R 3

NewtApp Reference

3-76 Labelled Input-Line Slot View Protos

path Required. Must be a path expression identifying a soup
slot that holds a date and time.

longFormat Optional. Defaults to yearMonthDayStrSpec. The
longdate specification as defined by the system. Either
this slot or the shortFormat slot should be non-nil so
the view can choose the format.

shortFormat Optional. Defaults to nil. This is a shortdate
specification as defined by the system. Either this slot or
the longFormat slot should be non-nil so the view
can choose the format.

newtLabelPhoneInputLine 3
This proto formats numbers as phone numbers, just like the
newtTextPhoneView (page 3-56), except that this proto has a label. It is
based on newtProtoLine.

Slot descriptions

flavor Set to newtPhoneFilter; do not change this, or the
proto will not work as expected.

access Defaults to 'readWrite.
label Optional. Defaults to the empty string. Provide a string

containing the text you wish to display in the input-line
label.

usePopup Optional. Defaults to true. When set to true, the
input-line label displays a diamond, indicating a picker
(pop-up menu).

memory Optional. Defaults to nil. This keeps track of the most
recent choices and displays them as items in the picker.
The value of this slot is a symbol that names the list. The
symbol must incorporate your developer signature.

C H A P T E R 3

NewtApp Reference

Labelled Input-Line Slot View Protos 3-77

newtAreaCodeLine 3
This proto is for numbers only and specifically for area codes.
Double-tapping the input line displays the phone keyboard. It is based on
newtProtoLine.

Slot description

flavor Set to newtPhoneFilter; do not change this, or the
proto will not work as expected.

access Defaults to 'readWrite.
label Optional. Defaults to the empty string. Provide a string

containing the text you wish to display in the area code
line label.

path Required. Must be a path expression identifying a soup
slot that holds a area code.

newtAreaCodePhoneLine 3
Allows area code input, as well as phone number input. It contains the basic
functionality for parsing phone numbers, and for updating, targeting,
drawing, and setting up the views in which they occur. It is based on
newtProtoLine.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which the initial text to display in this
view is gotten, and in which the final value is to be
stored.

flavor Set to newtPhoneFilter; do not change this, or the
proto will not work as expected.

access Defaults to 'query
label Optional. Defaults to the empty string. Provide a string

containing the text to display in the input-line label.

C H A P T E R 3

NewtApp Reference

3-78 Labelled Input-Line Slot View Protos

newtSmartNameView 3
This proto gets names from the Names application soup. It is based on
newtProtoLine, so it also implements a label. When you use it, a tap on
the picker menu item Other displays the protoPeoplePopup picker with
the names from the Names soup. If you wish to control this behavior, you
may implement your own version of the JamFromEntry method. See the
sample in the section, “Creating a Custom Labelled Input-Line Slot View”
(page 4-24) in Newton Programmer�s Guide.

Slot descriptions

flavor Set to newtSmartNameFilter; do not change this, or
the proto will not work as expected.

access Defaults to 'readWrite.
label Optional. Defaults to the empty string. Provide a string

containing the text you wish to display in the input line
label.

usePopup Optional; the default is nil. If true, the proto creates a
pop-up menu under the label. If the user chooses an
item in the pop-up menu that item is displayed on the
input line and the value of the target is changed to refer
to the chosen soup entry. If the user chooses the menu
item, Other, the protoPeoplePicker is displayed,
allowing a choice from that soup.

path Required. A path expression leading to the slot in the
application soup where data changes should be stored.

Data Structure 4-1

C H A P T E R 4

Stationery Reference 4

This chapter documents the data structures, protos, and functions relevant to
using dataDefs and viewDefs.

Data Structure 4

This section documents the viewDef frame.

viewDef Frame 4
You create a viewDef by basing it on a general view proto or class, such as a
clView, and adding the slots specified here. Note that once the viewDef has
been created it must be added to an application by using a
newtStationeryView proto, as described in Chapter 4, “NewtApp
Applications,” in Newton Programmer�s Guide.

Slot descriptions

type Required. The view types 'editor, 'viewer, and
'routeFormat are used by the system and the built-in
applications to collect specific kinds of viewDefs. For

Figure 4-0
Table 4-0

C H A P T E R 4

Stationery Reference

4-2 Data Structure

instance, the Newton routing code collects viewDefs of
type 'routeFormat (and 'printFormat, for
compatibility) and offers them as choices in the Format
picker within the routing slip. You may also define
custom types for your application.

symbol Required. A symbol that identifies this view for the
dataDef. One viewDef for each dataDef must have the
symbol slot set to 'default. This symbol is saved as a
convenient reference by which to retrieve the view.

name Required. A string that is used to build menus like the
Show menu. An example of a suitable value is "Note".

version Required. This integer should match the version
number of the dataDef.

viewDefHeight Required, except in card-style applications. An integer
that specifies a default height for applications that
display data in a roll format. This value is not used by a
card-style NewtApp application.

The following methods are used with viewDefs.

MinimalBounds 4

myViewDef:MinimalBounds(entry)

Returns the minimal enclosing bounding box for the data in a soup entry.

entry A soup entry.

In a viewDef, you must use the MinimalBounds method if the height of the
entry is dynamic, as it is in a paper roll-style application. This method is not
necessary for a card-style application, which has a fixed height. If the entry
size is static, use the viewDefHeight slot instead.

SetupForm 4

targetViewDef:SetupForm(entry, entryView)

Allows you to modify the data displayed by a viewDef before it is displayed.
This function is called by the ViewSetupFormScript method of the entry

C H A P T E R 4

Stationery Reference

Protos 4-3

view containing the viewDef to be displayed. Override this method to
modify the data before it’s instantiated.

entry The target soup entry.

entryView The target view, in which the soup entry is about to be
displayed.

Protos 4

This section describes the newtStationery proto, which is used to
construct a dataDef, and the stationery button protos.

newtStationery 4
You use this proto as the template when constructing a dataDef. Its basic
function is to create the infrastructure for specified kinds of data; it is not a
view proto.

Slot descriptions

description Optional. A string describing this dataDef’s data entry.
An example is "Lined note paper". This is used in
the Information slip (newtInfoBox proto), which is
seen when the icon on the header bar is tapped.

height Required, except in card-style applications. This is the
default height used by viewers that display the data
type in a paper-roll format, like the built-in Notes
application. This value should match the value in the
viewDefHeight slot of the viewDef. It is not used by a
card-style NewtApp application.

icon Optional; a bitmap frame. If you provide an icon for this
dataDef, it is used in the New menu (the
newtNewStationeryButton proto); the header bar
(newtEntryRollHeader); and in the Information slip

C H A P T E R 4

Stationery Reference

4-4 Protos

(newtInfoBox proto), which is seen when the icon on
the header bar is tapped.

name Required. This string appears in the New button’s
picker to identify the dataDef. The New button
(implemented by the newtNewStationeryButton
proto) collects all the strings from the name slots of the
registered dataDefs that have the same superSymbol
slot value and displays them as items in the New picker.
For example, the Notes application uses the string
"Note" to identify one of its dataDefs.

symbol Required. A unique symbol that identifies the data type
(also known as the class) of the entries that are created
using this dataDef. The example in this chapter uses the
constant kDataSymbol, set to the value of
kAppSymbol, as the value of both this slot and an
optional class slot within the entry template.
The value of the symbol slot is used by a
newtStationery view to select the viewDef and
dataDef to use for a given entry.

superSymbol Required. A unique symbol used to identify the
application with which this dataDef should be
associated. The value of this slot must match the value
of a superSymbol slot in the host application.

version Required. This integer identifies the version number of
the viewDef.

The following methods are defined in newtStationery.

FillNewEntry 4

myDataDef:FillNewEntry(newEntry)

Returns a modified soup entry when given a new entry as returned by the
CreateBlankEntry method.

newEntry A frame that is a soup entry, as returned by the
CreateBlankEntry method (page 3-5), which is
defined in the newtApplication.allSoups slot of a
NewtApp application.

C H A P T E R 4

Stationery Reference

Protos 4-5

You should use this method to add a class slot value and the other
application-specific data structures you require to the entry. It is
recommended that you put application-specific data structures in a slot
embedded within the entry. For an example of this, see “Using
FillNewEntry” beginning on page 5-6 in Newton Programmer�s Guide.

MakeNewEntry 4

myDataDef:MakeNewEntry()

Returns a frame that will be added to some soup to make an entry. This
method is used only if FillNewEntry does not exist. However, it is useful if
you are creating stationery as an auto part instead of as part of a NewtApp
application. Furthermore, if the application using this dataDef has no
CreateBlankEntry method, then MakeNewEntry is called.

StringExtract 4

myDataDef:StringExtract(entry, nLines)

Called by overviews and Find to get a string description of an entry for
display in an overview. You must supply a version of this method that
creates a string description from your soup entry.

entry A soup entry.

nLines An integer specifying if your method should return one
or two lines of text.

TextScript 4

myDataDef:TextScript(item, target)

Extracts a text version of an entry for use by routing (for example, as an
e-mail message).

item The In/Out Box item frame. The data being routed is
stored in the body slot of this frame. Because the body
slot might contain an alias constructed by the Routing
interface, in order to access it you should always call the
ResolveBody routing format method (page 18-15) on

C H A P T E R 4

Stationery Reference

4-6 Protos

item. ResolveBody returns the data in the body slot
whether or not it is referenced by an alias.

target The soup entry that is being routed.

This method must return a string containing the data you want to be routed
from the soup entry.

newtStationeryPopupButton 4
This button proto is used as the basis for both the
newtNewStationeryButton and the newtShowStationeryButton; the
former displays a list of dataDefs, and the latter a list of viewDefs.

The newtStationeryPopupButton is based on the protoPopupButton,
thus incorporating the necessary functionality for creating a picker for the
stationery buttons. It also includes the StatScript method, which you
must define to assign an action to a picker choice, and the SetUpStatArray
method, which you may override to intercept or tweak the stationery items
before they are displayed in the picker.

The methods BuildPopup and ViewSetupFormScript are defined
internally to newtStationeryPopupButton. If you need to use one of
these methods, be sure to call the inherited method first (for example,
inherited:?ViewSetupFormScript()); otherwise the proto may not
work as expected.

▲ W A R N I N G

Do not override the internally defined methods
ButtonClickScript, PickActionScript, and
PickCancelledScript. ▲

C H A P T E R 4

Stationery Reference

Protos 4-7

Slot descriptions

text Required. A string that is the text displayed in the
button. An example is "New".

form Required. A symbol that determines which form of
stationery is shown in the picker. Specify either
'viewDef or 'dataDef.

symbols Optional. Specifies the list of stationery to display in the
picker. This slot defaults to nil, which indicates that all
stationery of the kind indicated in the form slot are to
be displayed in the picker. If you don’t want all the
stationery, you can specify an array of unique symbols.
When collecting viewDefs, specify an array of dataDef
symbols in this slot. All viewDefs registered for those
dataDefs are collected. When collecting dataDefs,
specify an array of superSymbol symbols. In this case,
all dataDefs whose superSymbol slot matches one of
the specified symbols are collected.

types Required when the form slot is set to 'viewDef. This
slot indicates which types of viewDefs are to be
included in the picker. This slot must contain an array of
viewDef type symbols, for example: ['viewer,
'editor, 'symbolYouDefined].
This slot is ignored if the form slot is set to 'dataDef.
The default value of this slot is nil.

sorter Optional. The default is the symbol '|str<| for sorting
in alphabetical order. Set to nil to prevent sorting.
This slot can be set to any of the string sort tests defined
for the test parameter in “Sorted Array Functions”
(page 23-43).

shortCircuit Optional. A Boolean that controls the pop-up behavior
of the button. This slot defaults to true. When it is set
to true and there is only one item in the stationery
picker array, the diamond normally displayed to the left
of the text in the button is not shown. Tapping the
button does not display a picker but instead causes the

C H A P T E R 4

Stationery Reference

4-8 Protos

action to occur with the single item. Set this slot to nil
if you prefer a picker list with one item.

The following methods are defined in this proto.

SetUpStatArray 4

popupButton:SetUpStatArray()

Returns a list of stationery to display in the picker. Override this method to
change or intercept what is displayed in the picker.

The default method returns the stationery array to be used in the picker by
calling the GetDefs function (page 4-14) with the values you provide for the
form, symbols, and types slots as its parameters.

StatScript 4

popupButton:StatScript(stationeryItem)

Called when an item is chosen from the stationery picker. This method
should perform an action appropriate for the chosen stationery item.

stationeryItem The stationery that corresponds to the item chosen from
the popup menu. It can be either a viewDef or a
dataDef, depending on which is specified in the form
slot.

newtNewStationeryButton 4
This proto implements the New button. This button collects the dataDef
stationery for your application and includes them in a picker that is
displayed when the user taps the New button. If an icon exists for a dataDef,
it is also displayed in the picker list, next to the stationery name.

If there is only one dataDef for your application, the default behavior of this
button is to hide the diamond that indicates it’s a picker. If more than one
dataDef exists for the application, the diamond appears at the left of the
button. You can control this behavior by changing the shortCircuit slot
(page 4-7). An example of this can be seen in the built-in Calls application,

C H A P T E R 4

Stationery Reference

Protos 4-9

where the New button is used to create a New entry and display a blank
page. The Calls application menu bar is shown in Figure 4-1.

Figure 4-1 Calls application menu bar

When a picker item is chosen, the proto (through the StatScript method)
adds a new entry (defined by the dataDef) to the application soup and
displays the blank entry. If you wish to perform other actions when the user
chooses an item, override the StatScript method (inherited from the
newtStationeryPopupButton proto) and be sure to call the inherited
method in your code.

The newtNewStationeryButton picker that appears in the built-in Names
application is shown in Figure 4-2.

Figure 4-2 newtNewStationeryButton in Names

The newtNewStationeryButton proto is based on
newtStationeryPopupButton, and thus inherits its methods and slots.

newtShowStationeryButton 4
This proto implements the Show button. This button collects the viewDef
stationery for your application and includes them in a picker that is

C H A P T E R 4

Stationery Reference

4-10 Protos

displayed when the user taps the Show button. If an icon exists for a
viewDef, it is also displayed in the picker list, next to the stationery name.

If there is only one viewDef for your application, the default behavior of this
button is to hide the diamond that indicates it’s a picker. If more than one
viewDef exists for the application, the diamond appears at the left of the
button. You can control this behavior by changing the shortCircuit slot
(page 4-7).

You should use a Show button when you want to be able to extend your
application with multiple views of the data. For instance, you may wish to
allow a choice between an informational view and an editable view, in which
the user can enter notes, as shown in Figure 4-3.

Figure 4-3 newtShowStationeryButton

When a picker item is chosen, that viewDef is displayed and a checkmark is
placed next to the picker item to indicate which is the current viewDef. If you
wish to perform other actions when the user chooses an item, override the
StatScript method (page 4-8) inherited from the
newtStationeryPopupButton proto, and be sure to call the inherited
method in your code.

The newtShowStationeryButton proto is based on
newtStationeryPopupButton, and thus inherits its methods and slots.
The following slot is different.

C H A P T E R 4

Stationery Reference

Functions 4-11

Slot description

types This slot indicates which types of viewDefs are to be
included in the picker. This slot must contain an array of
viewDef type symbols, for example: ['viewer,
'editor, 'symbolYouDefined].
The default value of this slot is ['viewer, 'editor].

newtRollShowStationeryButton 4
This Show button is based on the newtShowStationeryButton; this
version is meant to be used within a page- or roll-style application. It has all
the same slots and methods as newtShowStationeryButton.

Again, if you wish to modify the StatScript method (page 4-8), make sure
to call the inherited method.

newtEntryShowStationeryButton 4
This Show button is based on the newtShowStationeryButton; this
version is meant to be used within the entry view of an application. Like the
newtShowStationeryButton, it allows the user to change the viewDef
being displayed. However, unlike that proto, this occurs for only the entry
being displayed. This enables a different view for each entry. For instance,
one entry might be a note, while another might be an information view.

Functions 4

This section describes global functions used to register stationery
components and retrieve information about them.

C H A P T E R 4

Stationery Reference

4-12 Functions

RegDataDef 4

RegDataDef(dataDefSym, newDefTemplate)

Registers a dataDef with the system. The return value of this function is
undefined and you should not rely on it.

If you build an application using the NewtApp framework protos, the base
view proto, newtApplication, automatically registers any dataDefs you
create by using the values you put in its allDataDefs slot. For more
information see “Registering DataDefs and ViewDefs” beginning on
page 4-20 in Newton Programmer�s Guide.

dataDefSym The symbol that uniquely identifies the dataDef you
wish to add to the system registry. The symbol is the
value of the dataDef’s symbol slot. An example of an
appropriate value is '|IOU:PIEDTS|

newDefTemplate The dataDef template. If you’ve defined the dataDef in a
layout file in NTK, the template may be obtained with a
call like this:

GetLayout("iouDataDef");

UnRegDataDef 4

UnRegDataDef(dataDefSym)

Unregisters a dataDef registered by RegDataDef. The return value of this
function is undefined and you should not rely on it.

dataDefSym The symbol that uniquely identifies the dataDef you
wish to remove from the system registry. The symbol is
the value of the dataDef’s symbol slot.

C H A P T E R 4

Stationery Reference

Functions 4-13

RegisterViewDef 4

RegisterViewDef(viewDef, dataDefSym)

Registers a viewDef view template or routing format frame under the unique
identifying symbol of its corresponding dataDef in the system registry. The
return value of this function is undefined and you should not rely on it.

viewDef The viewDef view template or routing format frame.

dataDefSym The symbol identifying the dataDef associated with this
viewDef. This symbol corresponds to the class of data
with which this viewDef or routing format can be used.

If you build an application using the NewtApp framework protos, the base
view proto, newtApplication, automatically registers any viewDefs you
create by using the values you put in its allViewDefs slot. For more
information see “Registering DataDefs and ViewDefs” beginning on
page 4-20 in Newton Programmer�s Guide.

If you are building an auto part extension, use a line of code like the
following in its InstallScript function:

RegisterViewDef(GetLayout("defaultViewDef"),kDataSymbol);

UnRegisterViewDef 4

UnRegisterViewDef(viewDefSym, dataDefSym)

Removes a viewDef or routing format frame from the system registry. The
return value of this function is undefined and you should not rely on it.

viewDefSym The symbol identifying the viewDef or routing format.
This is the value of the symbol slot in the viewDef or
routing format frame.

dataDefSym The symbol under which the viewDef or routing format
was registered.

C H A P T E R 4

Stationery Reference

4-14 Functions

GetDefs 4

GetDefs(form, symbols, types)

Returns an array of dataDef or viewDef stationery that match the specified
criteria.

form This symbol determines which of the stationery forms is
returned. Specify either 'viewDef or 'dataDef.

symbols Specifies the list of stationery to return. Specify either
nil or an array of symbols. The value nil causes this
function to return all stationery of the kind indicated by
the form parameter. If you don’t want all the stationery,
you can specify an array of unique symbols to select
particular stationery.
When collecting viewDefs, specify an array of dataDef
symbols in this slot. All viewDefs registered for those
dataDefs are returned. When collecting dataDefs,
specify an array of superSymbol symbols. In this case,
all dataDefs whose superSymbol slot matches one of
the specified symbols are returned.

types Indicates which types of viewDefs are to be returned.
This parameter is used only when the form parameter is
set to 'viewDef. It is ignored if the form parameter is
set to 'dataDef.

When the form parameter is set to 'viewDef, types can
be nil or an array of symbols identifying viewDef
types to return. The symbols you specify in the array
may be any of the built-in symbols ('viewer, 'editor,
or 'routeFormat), or they may include symbols you
define. Here is an example of a types array: ['viewer,
'editor, 'symbolYouDefined].

Specifying a nil value causes this function to return
viewDefs of all types.

C H A P T E R 4

Stationery Reference

Functions 4-15

GetDataDefs 4

GetDataDefs(dataDefSym)

Returns a dataDef, given the value of its symbol slot.

dataDefSym The value of the symbol slot of a dataDef.

The following example uses the symbol defined for the built-in Notes
application:

GetDataDefs('paperroll)

{_proto: {symbol: NIL,

superSymbol: NIL,

name: "",

description: "",

icon: {@59},

version: 0,

height: 200,

metadata: NIL,

MakeNewEntry: <function, 0 arg(s) #4277B9,

MinimalBounds: <function, 1 arg(s) #4277D9,

SetupForm: <function, 2 arg(s) , #4277F9

StringExtract: <function, 2 arg(s), #427819

textScript: <function, 2 arg(s) #427839>},

symbol: paperroll,

name: "Note",

superSymbol: notes,

description: "Note",

icon: {bits: <bits, length 76>,

bounds: {#37B70D}},

version: 1,

metadata: NIL,

MakeNewEntry: <function, 0 arg(s) #467251>,

StringExtract: <function, 2 arg(s) #467271>,

textScript: <function, 2 arg(s) #467291>}

C H A P T E R 4

Stationery Reference

4-16 Functions

GetAppDataDefs 4

GetAppDataDefs(superSymbol)

Returns an application’s dataDefs when passed the value of the
superSymbol slot of that application.

superSymbol The value of the superSymbol slot defined in an
application.

GetEntryDataDef 4

GetEntryDataDef(soupEntry)

Returns a dataDef for a given soup entry.

soupEntry The soup entry whose dataDef you want to get.

GetEntryDataView 4

GetEntryDataView(soupEntry, viewDefSym)

Returns a viewDef for a given soup entry.

soupEntry The soup entry whose viewDef you want to get.

viewDefSym A symbol identifying a viewDef. This is the value of the
symbol slot of a viewDef.

GetViewDefs 4

GetViewDefs(dataDefSym)

Returns a frame containing the viewDefs that are registered for a particular
dataDef. If none are found, this function returns nil.

dataDefSym A symbol identifying a dataDef. This is the value of the
symbol slot of a dataDef.

C H A P T E R 4

Stationery Reference

Functions 4-17

GetDataView 4

GetDataView(dataDefSym, viewDefSym)

Returns a specific viewDef registered for a particular dataDef.

dataDefSym A symbol identifying a dataDef. This is the value of the
symbol slot of a dataDef.

viewDefSym A symbol identifying a viewDef. This is the value of the
symbol slot of a viewDef.

Data Structures 5-1

C H A P T E R 5

Pickers, Pop-up Views, and
Overviews Reference 5

Data Structures 5

The protoListPicker uses a specialized data structure called a name
reference and also has an array of column specification frames.

Name References 5
A name reference is a wrapper for a soup entry. A name reference has the
following structure:

local aNameRef := {

class: dataClass, usually a subclass of 'nameRef

_unselected: true or nil,

<application defined slots>,

};

Figure 5-0
Table 5-0

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-2 Data Structures

Slot descriptions

class A symbol specifying a registered data definition that
can interpret the name reference. This is usually just
'nameRef or a subclass of a name reference.

_unselected A Boolean that determines whether an item is displayed
as selected (in other words, checked) or not. By default,
adding a name reference to the array of selections
causes the name reference to be displayed as selected.
However, if this slot is present and non-nil, the name
reference is displayed with its checkbox unchecked.
This slot is useful if items are displayed for which no
entry exists in the soup, and which should not be
selected. For example, the system uses this slot when
there are several possible locations for a meeting but
only one can be chosen (singleSelect is true), and
an item must be added to the list for each person
attending the meeting. See the description of the
selected slot in the description of
protoPeoplePicker for more details.

Name references also have several global functions:

■ The IsNameRef function determines whether a given item is a name
reference.

■ The AliasFromObj function returns an entry alias for an object.

■ The EntryFromObj function returns the entry.

■ The ObjEntryClass function returns the class of an entry (returned by
the EntryFromObj function).

All these functions can be passed an alias, an entry, or a name reference. (If
you pass any other type of object, the result is nil.)

To make a name reference, you can use the MakeNameRef method, as shown
in the following example:

pickerDef.MakeNameRef := func(item, dataClass) begin

 local nameRef:= :MakeCanonicalNameRef(item,dataClass);

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Data Structures 5-3

 if IsFrame(item) AND IsArray(nameRef.otherPrices) then

Sort(nameRef.otherPrices, '|<|, nil);

nameRef;

end;

Column Specifications 5

A picker list for a protoListPicker is defined by an array of column
specifications; each specification is a frame with the following slots.

Slot descriptions

tapWidth Required. An integer that specifies the width of the
column. If this value is zero or negative, it’s interpreted
as a distance from the right margin of the view; if
positive, it’s considered a true width.

fieldPath Required. A symbol uniquely identifying the field that
should be displayed in this column. This list picker uses
this symbol to retrieve the data, and (in most cases,
including the default case) is the actual path in the entry
to the data field desired. However, it is possible to use
the symbol purely as a marker—for example if the
particular data required is a calculated aggregate of a
number of data fields—as long as all the routines in the
data definition that use this symbol are overridden to
recognize this usage.

optional Optional. This slot tells the list picker that the contents
of this field must be non-nil before the item may be
selected. If optional is not set and the data specified
by the fieldPath is nil, when an attempt to select the
item is detected, the user is given the opportunity to fill
in this field.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-4 General Pickers

General Pickers 5

This section describes general-purpose pickers and pop-up views.

protoPopupButton 5

This proto is a text button that displays a picker when tapped. The button is
highlighted while the picker is open. The picker appears to the right of the
button if there’s room; otherwise it appears to the left or slightly overlapping
the button.

Figure 5-1 illustrates a pop-up button, without and with a picker.

Figure 5-1 Pop-up button and picker

The ViewClickScript method is used internally in the
protoPopupButton and should not be overridden.

The protoPopupButton uses protoTextButton as its proto;
protoTextButton is based on a view of the clTextView class.

Slot descriptions

viewFlags The default is vVisible + vReadOnly +
vClickable.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-5

viewBounds Set to the size and location where you want the button
to appear. If you do not set this slot, the button appears
seven pixels to the right of its sibling. It is designed to
be placed next to another button—in the status bar, for
example.

viewJustify Optional. The default setting is vjSiblingRightH +
vjCenterH + vjCenterV + oneLineOnly.

text A string that is the text inside the button.
popup An array of items to be displayed in the picker list. See

“Specifying the List of Items for a Popup” (page 6-37) in
Newton Programmer�s Guide for more information.

ButtonClickScript 5

picker:ButtonClickScript()

This method is called when the button is tapped. You can use this method if
you want to construct the popup array dynamically. After setting the value
of the popup slot, call the inherited buttonClickScript to preserve the
pop-up behavior of the view. For example,
inherited:buttonClickScript().

PickActionScript 5

picker:PickActionScript(index)

This method is called when an item is selected from the picker list.

index The index of the item that was chosen from the popup
array.

If you don’t supply this method, the button is simply unhighlighted. If you
do supply this method, call the inherited method to unhighlight the button.
For example, inherited:PickActionScript(index).

If no item is selected because the user taps outside the list, the
PickCancelledScript method is called instead.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-6 General Pickers

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the picker is cancelled by a tap outside it. If you
don’t supply this method, the button is unhighlighted. If you do supply this
method, call the inherited method to unhighlight the button. For example,
inherited:PickCancelledScript().

protoPopInPlace 5

This proto is a text button that displays a picker when it is tapped. When an
item is chosen from the picker, the text of the chosen item appears in the
button. Figure 5-2 shows an example of a protoPopInPlace text button.

Figure 5-2 A protoPopInPlace text button

Note that the ViewSetupFormScript is called multiple times; use the
ViewSetupDoneScript to provide the initial text.

Also note that the ViewClickScript and ButtonClickScript methods
are used internally; if you need to use one of these methods, be sure to call
the inherited method.

The protoPopInPlace proto uses the protoTextButton as its proto;
protoTextButton is based on a view of the clTextView class.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-7

Slot descriptions

viewBounds Set to the size and location where you want the button
to appear. Note that the right bounds value is set
automatically, based on the length of the text.

viewFlags The default is vVisible + vReadOnly +
vClickable.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV + noLineLimits.

text A string that is the text inside the button. This string
must not begin with a space. Note that this string will
be modified.

popup An array of items to be displayed in the picker list. See
“Specifying the List of Items for a Popup” (page 6-37) in
Newton Programmer�s Guide for more information.

PickActionScript 5

picker:PickActionScript(index)

This method is called when an item is selected from the picker list.

index The index of the item that was chosen from the popup
array.

If you don’t supply this method, the button is unhighlighted. If you do
supply this method, call the inherited method to unhighlight the button. For
example, inherited:PickActionScript(indes).

If no item is selected because the user taps outside the list, the
PickCancelledScript method is called instead.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the picker is cancelled by a tap outside it. If you
don’t supply this method, the button is unhighlighted. If you do supply this
method, call the inherited method to unhighlight the button. For example,
inherited:PickCancelledScript().

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-8 General Pickers

protoLabelPicker 5

This proto is a label that displays a picker when it is tapped. The picker list
can consist of simple strings, icons with strings, bit maps, or a
two-dimensional grid (see “Specifying the List of Items for a Popup”
(page 6-37) in Newton Programmer�s Guide). If the items are simple strings, the
currently selected item is shown with a check mark next to it. The user can
select a different item from the picker and that choice appears next to the
label. Figure 5-3 shows an example.

Figure 5-3 A ProtoLabelPicker

The following methods are defined internally: ViewSetupFormScript,
ViewHiliteScript, ViewClickScript, PickActionScript, and
PickCancelledScript. If you need to use one of these methods, be sure
to call the inherited method also (for example,

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-9

inherited:ViewSetupFormScript()), otherwise the proto may not
work as expected.

Note that inking is automatically turned off when the view based on this
proto is tapped.

The protoLabelPicker uses protoStaticText as its proto;
protoStaticText is based on a view of the clParagraphView class. The
protoLabelPicker itself implements the label portion of the proto. It has
one child view, also a protoStaticText view, that implements the text
value portion of the proto. This child view is named entryLine.

Here is an example of a template using protoLabelPicker:

myPicker := {...

_proto: protoLabelPicker,

viewBounds: RelBounds(10, 60, screenWidth-100, 16),

text: "Folder or file:",

lastchoice: nil,

labelCommands: [

{item:"Serendipity", icon:folder, indent:25},

{item:"Surreptitious", icon:folder},

'pickSeparator,

{item:"Subterranean", icon:doc},

{item:"Sunny", icon:doc},

{item:"Surly", icon:doc}],

textSetup: func()

lastChoice.item, // retrieve the last choice

iconSetup: func()

lastChoice.icon,

LabelActionScript: func(index)

lastchoice:=labelCommands[index].item,//store choice

...}

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-10 General Pickers

Slot descriptions

viewBounds Set to the size and location where you want the label
with its item to appear. Note that if you use horizontal
sibling-relative justification, you normally would
specify relative values for the left and right bounds. For
this proto, however, you must specify left and right
bounds values whose difference equals the actual view
width. The bounds values are used to calculate the
width of the view that holds the text item.

text A string that is the text label. The label is drawn with a
diamond to its left, to indicate to the user that this is a
picker.

labelCommands An array of items that are the choices to be displayed in
the picker. You can specify an array of strings, or you
can specify an array of frames if you want the list items
to appear as icons with strings. In the latter case, each
frame represents one list item. See “Specifying the List
of Items for a Popup” (page 6-37) in Newton
Programmer�s Guide for more information on specifying
this list.
When labelCommands is an array of frames, you may
want to provide the methods TextSetup and
IconSetup. If labelCommands is an array of strings,
you need only provide TextSetup.
To include a thin gray separator line, specify the symbol
'pickSeparator. For a thicker black line, specify the
symbol 'pickSolidSeparator.

iconBounds Optional. Provide this bounds frame if you want the
icon to appear next to the chosen item when the picker
is not popped up (as in Figure 5-3). Specify the bounds
of the largest icon in the list.

iconIndent Optional. The distance between the icon and the text
when an icon/string item is shown next to the label. If
you don’t specify this slot, the default is 3 pixels.

checkCurrentItem
Optional. If non-nil, the currently selected item in the
list, if there is one, is marked with a check mark to its

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-11

left. If nil, check marks are not shown. Note that check
marks are not shown for list items that are icons with
strings.

indent Optional. The distance, in pixels, to indent the picker
from the beginning of the line (the beginning of the text
label). If you don’t include this slot, the picker is placed
6 pixels to the right of the text label by default.

textIndent The distance from the left side of the view to the text in
the picker list. This is set in the
ViewSetupChildrenScript method of the proto.

viewFont Optional. The font for the text label. The default is
ROM_fontSystem9Bold.

entryLine.viewFont
Optional. This is the viewFont slot in the entryLine
child of the protoLabelPicker. It sets the font for the
text field to the right of the label. The default font is
editFont10. This value is valid only at runtime, so if
you want to change it, you need to do so in the
ViewSetupFormScript.

LabelActionScript 5

picker:LabelActionScript(index)

When the user chooses an item from the picker, the new item is displayed
next to the label and this method is called to allow additional processing.

index The index of the item that was chosen from the
labelCommands array.

TextSetup 5

picker:TextSetup()

This method is called to get the initial choice that should be shown next to
the label when the view is being created. This method is passed no
parameters and must return a text string (not a frame). It you don’t include
this method, the first item from the labelCommands array is used as the
initial item.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-12 General Pickers

IconSetup 5

picker:IconSetup()

This method is called to get the initial icon to display next to the label when
the view is being created. This method is passed no parameters and must
return an icon (not a frame). It you don’t include this method, the icon
associated with the first item from the labelCommands array is displayed.

TextChanged 5

picker:TextChanged()

This method is called whenever the value of the item is changed. If you don’t
supply this method, no default action occurs.

UpdateText 5

picker:UpdateText(newItem)

You can call this method to programmatically change the value of the text
item. Note that you don’t normally need to call this method; the text item is
updated automatically when the user makes a selection from the picker.

newItem A string that is the new value for the text item.

UpdateIcon 5

picker:UpdateIcon(newIcon)

You can call this method to programmatically change the icon. Note that you
don’t normally need to call this method; the icon is updated automatically
when the user makes a selection from the picker.

newIcon A bitmap for the new icon.

PickerSetup 5

picker:PickerSetup()

This method is called when the user taps the label; it gives you a chance to
do your own processing, including setting up the labelCommands array.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-13

This method should return non-nil if you want the default action to occur;
that is, for the picker to pop up. If you return nil, the picker is not popped
up. You must use this method or something else on your own. If you omit
this method, non-nil is returned and the default action occurs.

PopIt 5

picker:PopIt(position)

You can send this message to programmatically pop up the picker.

position The horizontal position of the picker; you should pass
(indent–2) for this parameter.

protoPicker 5

The picker is a list of items (simple strings, bitmaps, two-dimensional grids,
icons with strings, and separator lines) from which the user can choose one
item by tapping it. Figure 5-4 illustrates different kinds of objects displayed
in a picker.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-14 General Pickers

Figure 5-4 Selection of items to choose

The ViewSetupDoneScript method is defined internally. If you need to
use this method, be sure to call the inherited method also (for example,
inherited:?ViewSetupDoneScript()), otherwise the proto may not
work as expected.

The protoPicker is based on a view of the clPickView class.

Here is an example of a template using protoPicker:

picker := {...

_proto: protoPicker,

bounds: {left:34, top:66, right:96, bottom:96},

viewFlags: vFloating+vReadOnly+vClickable,

viewFormat: vfPen(2)+vfRound(4)+vfFrameBlack+

vfFillWhite,

pickItems: ["one",

"two",

'pickseparator,

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-15

"three",

'picksolidseparator,

{bits:punctpict.bits, bounds:punctpict.bounds,

width:3,height:3,cellFrame:1,outerFrame:2},

'picksolidSeparator,

{item:"four", icon:icon1, indent:15},

{item:"five", icon:icon2},

{item:keys}],

PickActionScript: func(item)

begin ...end,

PickCancelledScript: func()

Print("PickCancelledScript");

...}

Slot descriptions

bounds Must contain a viewBounds-like frame specifying a
rectangle. The picker view is created so that one of its
corners corresponds to one of the corners of the
rectangle you specify. However, the system figures out
exactly where to position the view, depending on how
large it is and how much space is available around it.
For example, it would normally be positioned so that its
top-left corner corresponds to the top-left corner of the
rectangle you specify. However, if you specify a location
in the lower-right corner of the screen, where there
won’t be enough room for the picker, it will be
positioned with its lower-right corner corresponding to
the lower-right corner of the rectangle you specify.
Generally, a picker view appears as a result of tapping a
button, word, or some other visible element. In most
cases, simply specify the viewBounds slot of that
element as the value of the bounds slot.

viewBounds This slot is ignored. Any value you place here is
overwritten by the system, which calculates the value of
this slot when the view is opened. The bounds slot
controls the position of the view. The size of the view is

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-16 General Pickers

determined by the width of the widest item and the
total height of all items.

viewFlags The default is vFloating + vReadOnly +
vClickable.

viewFormat Optional. The default setting is vfFrameBlack +
vfPen(2) + vfRound(4).

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

viewFont Optional. The default font for text items in the list is
ROM_fontSystem10Bold.

viewEffect Optional. The default view effect is fxPopDownEffect.
pickItems An array of items to be displayed in the picker list.

There are many options, as described in “Specifying the
List of Items for a Popup” (page 6-37) in Newton
Programmer�s Guide.

pickTextItemHeight
Optional. The height in pixels that should be reserved
for each text item in the picker list. Note that each text
item may actually occupy a height that is less than this
amount. In this case, the item is vertically centered
within the space. The default setting is 13 pixels.

pickLeftMargin Optional. The margin of blank space, in pixels, between
the list entries and the view boundary on the left side.
The default is 4.

pickRightMargin
Optional. The margin of blank space, in pixels, between
the list entries and the view boundary on the right side.
The default is 5.

pickTopMargin Optional. The margin of blank space, in pixels, above
each bitmap item in the list. The default is 2.

pickBottomMargin
Optional. The margin of blank space, in pixels, below
each bitmap item in the list. The default is 2.

pickAutoClose Optional. If the value of this slot is non-nil (the
default), the picker is automatically hidden after the
user selects an item by tapping it. If this slot is nil, the

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-17

picker is not hidden after a selection is made. If you
want to hide the view in this case, you must explicitly
send it the Hide message. Regardless of the setting of
this slot, the picker is automatically closed if the user
cancels the list by clicking outside it.

pickItemsMarkable
Optional. If the value of this slot is non-nil, space for
marks is reserved at the left side of the list. If this slot is
nil (the default), no space for marks is reserved. Note
that space is reserved for marks if any of the list items
has a mark specified, regardless of the setting of this slot.

pickMarkWidth Optional. The number of pixels of space to reserve for
marks at the left side of the list. If you don’t specify this
value and marks are used, the space defaults to 10
pixels. All items are indented this amount.

callbackContext
Optional. The view containing the PickActionScript
and PickCancelledScript methods. If this slot is
omitted, the picker view looks in itself for these
methods.

PickActionScript 5

picker:PickActionScript(itemPicked)

This method is called when an item is selected from the picker list. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the PickCancelledScript method
is called instead. Note that the PickActionScript method can be in the
picker view itself or in a different view. If this method is in a different view,
that view should be stored in the callbackContext slot.

itemPicked For a simple list, an integer that is the index of the
selected item in the pickItems array is passed as a
parameter to this method. For two-dimensional grids, a
frame with three slots:

index The index of the grid item in the
pickItems array.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-18 General Pickers

x The column index (zero-based) of the
selected cell in the grid.

y The row index (zero-based) of the selected
cell in the grid.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the picker is cancelled by a tap outside it and
pickAutoClose is set to non-nil. If you don’t supply this method, there is
no default action. Note that the PickCancelledScript method can be in
the picker view itself or in a different view. If this method is in a different
view, that view should be stored in the callbackContext slot.

SetItemMark 5

picker:SetItemMark(index, mark)

You can call this method to set the mark character for an item in the list.

index The integer index of the item whose mark you want to
set.

mark The character you want to set as the mark. Do not
specify a string; you must specify a character (for
example, $>). To set no mark for an item, specify nil
for the character.

GetItemMark 5

picker:GetItemMark(index)

You can call this method to get the mark character for an item in the list. This
method returns the character, or nil if the item has no mark character set.

index The index of the item whose mark you want to get.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-19

protoGeneralPopup 5

This proto provides a way to display a pop-up view that has a close box. You
add your own custom children that also appear in the view. The pop-up
view goes away (cancels) if a user taps outside of or taps the close box.

The protoGeneralPopup must have a viewBounds frame that is set to 0
width and 0 height. In addition, the protoGeneralPopup can have an
Affirmative method that’s called if the pop-up view is closed but not
cancelled. The script takes no arguments.

Figure 5-5 shows an example of protoGeneralPopup. Notice that the close
box is included by protoGeneralPopup.

ViewQuitScript is called by protoGeneralPopup and you should not
override it.

Figure 5-5 Example of a pop-up view with a close box

Slot descriptions

viewFlags The default value is vClickable + vFloating +
vClipping.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-20 General Pickers

cancelled Don’t modify this slot. A Boolean indicating whether
the user has cancelled the pop-up view; the default
value is non-nil.

context Don’t modify this slot. The callback context. You do not
need to change this slot; instead let inherited?:New
handle the call back.

Affirmative 5

popup:Affirmative()

This method is called when the user closes the pop-up view without
cancelling it, that is, using the close box, which accepts the changes.

New 5

popup:New(bbox, callbackContext)

You call this method to open the pop-up view.

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the initiating pop-up view.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled by tapping outside it.
Take care when accessing your data.

protoTextList 5

This proto creates a scrollable list of items from which the user can choose
one or more items by tapping. The selected items are highlighted in the list.
The user scrolls the list by tapping the optional scroll arrows or tapping and
dragging the pen either above or below the list.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-21

You can specify an array of strings as shown in Figure 5-6.

Figure 5-6 Scrollable list of items

Alternatively, you can specify an array of shapes that include both shapes
and text as shown in Figure 5-7.

Figure 5-7 Scrollable list of shapes and text

The following methods are defined internally: ViewClickScript,
ViewSetupChildrenScript, ViewScrollDownScript,
ViewScrollUpScript, DoScrollScript, HiliteLine, DrawHilite,
SetChild, GetTotalLines, GetVisibleLines, GetViewHeight,
GetViewWidth, GetLineHeight, ShowScrollers, SetViewHeight,

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-22 General Pickers

SetupList, InvertLine, and ButtonClickScript. If you need to use
one of these methods, be sure to call the inherited method (for example,
inherited:?ViewClickScript()) to retain full functionality.

The protoTextList is based on a view of the clView class. The
protoTextList has a single child view (or more if scrollers are on), based
on a view of the clTextView class (or clPictureView if shapes are
shown), that displays the items in the list.

You can add or remove items from the list during run time by adding or
removing items from the listItems array and then sending the view the
SetupList and RedoChildren messages, in that order.

Slot descriptions

viewBounds Set to the size and location where you want the list to
appear. The value you set for the bottom bound is
ignored. The bottom bound setting is calculated based
on viewLines and viewFont unless viewLines is 0.

viewFont Optional. The default font is ROM_fontSystem9.
viewFormat Optional. The default setting is vfFillWhite +

vfFrameBlack + vfPen(1).
viewLines The number of lines to show in the list. This controls the

height of the list view. If you don’t specify viewLines,
or if you specify 0, the number of lines that will fit in the
bounds rectangle are calculated for you.

selection Optional. This slot controls what is highlighted when
the list is first displayed. On input, if you set selection
to nil or -1, nothing is highlighted. You can set
selection to the index of an item in the listItems
array to highlight that item. The default setting is zero,
highlighting the first item. On output, and while the
protoTextList is displayed, selection contains the
current selection. If the user doesn’t select anything,
selection is left as whatever the default was.

selectedItems Optional. An array of selected items if multiple selection
is enabled. Also contains the selected items when the
user finishes making the selection.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-23

listItems An array of strings or an array of shapes that are the list
items. Each item in the array corresponds to one line in
the list. If you specify an array of shapes, each shape
must be the same size. For shapes, the size of the
selection highlight is based on the height of the shape.
For text, the size of the selection highlight is based on
the line height of the text. See “Specifying the List of
Items for a Popup” (page 6-37) in Newton Programmer�s
Guide for more information.

lineHeight The height of each line in pixels. Set by setupList.
isShapeList Optional. Default is nil. Set to non-nil if using picts

instead of text.
useMultipleSelections

Optional. Default is nil. Set to non-nil to allow
multiple selections.

useScrollers Optional. Default is nil. Set to non-nil to include
scrollers.

scrollAmounts If useScrollers is non-nil, you can specify an array
of three integers representing lines, pages, and
double-clicks. Default is nil.

The protoTextList scrolls using the SetOrigin method. Therefore, the
slot viewOriginY contains the number of pixels the view is scrolled (and
viewOriginY DIV lineHeight specifies the line number of the top
displayed line). In addition, the DoScrollScript method scrolls the list by
a specified offset.

DoScrollScript 5

list:DoScrollScript(offset)

This method scrolls the list by the specified offset.

offset The offset, in pixels, by which to scroll.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-24 General Pickers

ViewSetupFormScript 5

list:ViewSetupFormScript()

In this method, you must do two things: set the value of the listItems slot
and call the internal method SetupList.

ButtonClickScript 5

list:ButtonClickScript(index)

This method is called after the pen is placed down and then lifted within the
list. It is not called if the pen is lifted outside the bounds of the list.

index The index of the selected item in the listItems array.

Note that the selected item is kept in the selection slot. If
multipleSelection is enabled, the selected items are stored in the
selectedItems slot. In that case, you may not need to supply a
ButtonClickScript.

protoTable 5

This proto is used to create a simple one-column table of text. Each of the
table items can be selected (highlighted) by tapping it. Figure 5-8 shows an
example:

Figure 5-8 One-column table of text

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-25

The following methods are defined internally:
ViewSetupChildrenScript, ViewScrollDownScript,
ViewScrollUpScript, and UpdateSelection. If you need to use one of
these methods, be sure to call the inherited method also (for example,
inherited:?ViewSetupChildrenScript()), otherwise the proto may
not work as expected.

The protoTable includes ViewScrollUpScript and
ViewScrollDownScript methods to handle scrolling. However, a view
based on protoTable won’t receive these system messages directly. To
support scrolling, your application base view (which typically receives these
messages from the system) should pass them along to the protoTable view.

Slot descriptions

viewBounds Set to the size and location where you want the table to
appear.

def The table definition frame. Initially, you should set this
to protoTableDef, which is the proto frame. Then in
the ViewSetupFormScript method, you can change
individual items. An example of the protoTableDef
frame is shown in “protoTableDef” (page 5-27).

scrollAmount Optional. The table scrolls one row at a time when the
user taps a scroll button. If you want it to scroll more
rows at a time, specify the number of rows here.

viewFormat Optional. The default setting is vfFillWhite +
vfPen(1) + vfFrameBlack.

currentSelection
Contains a string that is the text of the currently selected
cell. If multiple selections are allowed, this string is the
text of the last cell selected.

selectedCells An array of indexes of selected cells. These are indexes
into the def.tabValues array.

declareSelf Do not change. This slot is set by default to 'base. This
symbol identifies the view for scrolling and other
internal purposes.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-26 General Pickers

ViewSetupFormScript 5

table:ViewSetupFormScript()

Use this method to clone the table definition frame, def, if you want to
change any of the values in the frame at run time.

For example:

ViewSetupFormScript: func()

begin

def := Clone (def);

def.tabValues := ["foo", "bar", "baz", "qux", "4",

 "5", "6", "7", "8", "9"];

// tabWidths must be =< the view width-2

def.tabWidths := self; LocalBox() .right -2;

def.tabDown := 10;

end,

SelectThisCell 5

table:SelectThisCell(cell)

This method is defined internally and is called when the user taps a cell in
the table. If you want to be notified whenever the user taps a cell, you can
override this method. However, you must call the inherited method before
doing anything else in your own method. For example:

selectThisCell: func(viewTapped)

begin

// first you MUST call the inherited method

inherited:selectThisCell(viewTapped);

// here you can do your own things

...

end,

cell The child view representing the cell that was tapped.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-27

protoTableDef 5

This proto defines the format of the table. You use it by setting the
protoTable slot def to protoTableDef. You change individual items in
the ViewSetupFormScript method. See protoTable for details.

Here is an example of protoTableDef:

protoTableDef := {

tabAcross: 1,

tabDown: 0,

tabWidths: 50,

tabHeights: 0,

tabProtos: protoTableEntry,

tabValues: nil,

tabValueSlot: 'text,

tabSetup: func(childView, hIndex, vIndex)

begin

childView.hIndex := hIndex - 1;// Save for selection

childView.vIndex := vIndex - 1;

end,

tabUniqueSelection: true, //use false for mult. selection

indentX: 2,

}

Slot descriptions

tabAcross The number of columns in the table. This must be set to
one (1). Multicolumn tables are not supported by
protoTable.

tabDown The number of rows in the table.
tabWidths An integer giving the width of the single table column,

in pixels.
tabHeights An integer giving the height of a row, in pixels (constant

for all rows).

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-28 General Pickers

tabProtos Each row in the table is child view of the table. This slot
holds either a reference to a template used to create the
child views, or an array of references to templates. For
the slots for the default, see “protoTableEntry”
(page 5-29).

tabValues A value used as the value of each child view.
Alternately, an array of values mapped to table cells.

tabValueSlot A symbol naming the slot in each child view where that
child’s view value (specified in tabValues) is stored.
(Remember to quote the symbol, as in, 'text.) For
example, if the table consists of child views based on the
clParagraphView class (the default), you would
specify 'text for this slot, since the value of a
clParagraphView is stored in its text slot.

tabUniqueSelection
A Boolean value. Set to non-nil to select only a single
cell. Set to nil to select multiple cells.

indentX Reserved for internal use. Do not change.

IMPORTANT

If you allow multiple cell selection, your program will fail
unless you ensure that the selectedCells slot is in RAM,
since the proto attempts to add to this array. To make sure
the slot is in RAM, use the following code in the
ViewSetupFormScript method:
self.selectedCells:=Clone(selectedCells); ▲

TabSetup 5

table:TabSetup(view, column, row)

This method is called before each of the child views is instantiated. It allows
you to do special initialization operations to each child view before it is
instantiated. If you choose to override this method, call the inherited method
also: inherited:?TabSetup(childView, hIndex, vIndex).

view A reference to the child view.

column The column number of the child within the table.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers 5-29

row The row number of the child within the table.

protoTableEntry 5

This proto controls how the text in each row of the table appears; for
example text justification and type of text selection. You use it by setting the
tabProtos slot to protoTableEntry in protoTableDef. You change
individual items in the ViewSetupFormScript method. See protoTable
and protoTableDef for details.

Here is a list of the important slots in protoTableEntry:

Slot descriptions

viewClass clTextView is a read-only clParagraphView; it
supports no tabs or multistyled text.

viewFlags vVisible + vClickable + vReadOnly

viewJustify vjLeftH + vjCenterV + oneLineOnly

viewTransferMode
modeOr

text Holds the text shown in this view.

ViewClickScript 5

entry:ViewClickScript()

This method sets currentSelection in the parent view (the table) to the
value of the text slot. It also sends the SelectThisCell message.

ViewHiliteScript 5

entry:ViewHiliteScript()

This method highlights itself.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-30 Map Pickers

Map Pickers 5

These protos display various maps, let the user select a place, and return
information about the location selected.

protoCountryPicker 5

This proto displays a picker from which a user can select a country, as shown
in Figure 5-9.

Figure 5-9 Example of a country picker

You specify a viewBounds; the proto scales the picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby countries
pops up. If the user selects a country, the PickWorld message is sent to your
country picker view with one parameter, a frame containing information
about the country picked.

Slot descriptions

autoClose Optional. Set to non-nil to force the
protoCountryPicker view to close when the user

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Map Pickers 5-31

chooses an item from a picker on the map. Set to nil to
disable this autoclosing behavior. The default is nil.

listLimit Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

PickWorld 5

picker:PickWorld(info)

This message is sent when the user picks a country.

info A frame describing the country picked. The following
example shows the information returned (from the
Inspector output):

{name:"Guatemala", outgoing: s00, countryCode: 502,

latitude: 23363826, longitude: 401907529, continent:

'centralAmerica, currency: "Quetzal" },

protoProvincePicker 5

This proto is used to display a picker from which a user can select a
Canadian province, as shown in Figure 5-10.

Figure 5-10 Example of a province picker

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-32 Map Pickers

You specify a viewBounds, and the proto scales the picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby provinces
pops up; if the user selects one, the PickWorld message is sent to your
province picker view with one parameter, a frame containing information
about the province picked.

Slot descriptions

viewFlags Optional. Should you override this slot, you must set
vClipping because this proto draws outside of its
bounds.

autoClose Optional. Set to non-nil to force the
protoProvincePicker view to close when the user
chooses an item from a picker on the map. Set to nil to
disable this autoclosing behavior. The default is nil.

listLimit Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

PickWorld 5

picker:PickWorld(info)

This message is sent when the user picks a province.

info A frame describing the province picked. The following
is an example of the information returned (from the
Inspector output):

{name: "Nova Scotia", latitude: 67357415,

longitude:442918502},

protoStatePicker 5

This proto is used to display a picker from which a user can select a U.S.
state, as shown in Figure 5-11.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Map Pickers 5-33

Figure 5-11 Example of a state picker

You specify a viewBounds, and the proto scales the picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby states
pops up; if the user selects one, the PickWorld message is sent to your state
picker view with one parameter, a frame containing information about the
state picked.

Slot descriptions

viewFlags Optional. Should you override this slot, you must set
vClipping because this proto draws outside its
bounds.

autoClose Optional. Set to non-nil to force the
protoStatePicker view to close when the user
chooses an item from a picker on the map. Set to nil to
disable this autoclosing behavior. The default is nil.

listLimit Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-34 Map Pickers

PickWorld 5

picker:PickWorld(info)

This message is sent when the user picks a state.

info A frame describing the state picked. Here’s an example
of the information returned (from the Inspector output):

{name: "Florida", latitude: 42502280,

longitude: 414583648},

protoWorldPicker 5

This proto is used to display a picker from which a user can select a
continent, as shown in Figure 5-12.

Figure 5-12 Example of a world picker

You specify a viewBounds frame, and the proto scales the world map
picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby continents
pops up. If the user selects one, the PickWorld message is sent to your
world picker view with one parameter, a frame containing information about
the continent picked.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-35

Slot descriptions

autoClose Optional. Set to non-nil to force the
protoWorldPicker view to close when the user
chooses an item from a picker on the map. Set to nil to
disable this autoclosing behavior. The default is nil.

listLimit Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

PickWorld 5

picker:PickWorld(info)

This message is sent when the user picks a continent.

info A frame describing the continent picked. Here’s an
example of the information returned (from the
Inspector output):

{ name: "Europe", topLatitude: 104391566,

leftLongitude:499588209, bottomLatitude: 49213166,

rightLongitude: 59652323},

Text Pickers 5

These protos allow the user to specify various kinds of information by
picking text representations.

protoTextPicker 5

This proto displays a label picker with a text representation of an item. When
the user taps the picker, the PopIt method, which allows a customized
picker to be displayed, is executed. If the user picks an item, the
PickActionScript is called. If you provide a customized picker, you must
call PickActionScript with a correct itemSelected number.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-36 Text Pickers

Figure 5-13 shows an example of a slip that contains a protoTextPicker
with its label preceded by kPopChar.

Figure 5-13 Example of a text picker

Slot descriptions

label The constant kPopChar & is a string to be displayed as
the picker label.

indent You can specify an indent; otherwise, it’s calculated for
you.

labelFont Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

entryFont Optional. The font for the text picker line; the default
setting is editFont10.

PopIt 5

picker:PopIt(x)

This method is called when the user taps the picker.

x A value equal to (indent - 2).

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-37

PickActionScript 5

picker:PickActionScript(item)

This method is called after the user picks an item from the view displayed in
PopIt.

item The item passed by PopIt.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

TextSetup 5

picker:TextSetup()

This method returns a text string to be displayed in the entry part of the
picker display.

protoDateTextPicker 5

This proto displays a label picker with a text representation of a date; for
example “June 22, 1995”. When the user taps the picker, the
protoDatePopup is displayed, allowing the user to specify a different date.
When the user taps the close box of the pop-up view, the text next to the label
is updated with the new date. Figure 5-14 shows an example.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-38 Text Pickers

Figure 5-14 Example of a date text pop-up view

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoDateTextPicker uses the protoTextPicker as its proto;
protoTextPicker is based on a view of the clView class.

Slot descriptions

label A string to be displayed as the picker label.
labelFont Optional. The font for the label; the default setting is

tsSize(10) + tsBold.
entryFont Optional. The font for the text picker line; the default

setting is editFont10.
date An initial date to display (as returned by the Time

function). If you don’t specify a date, the current date
appears by default. This slot is also updated with the
new date when the user closes the pop-up view.

longFormat A symbol specifying the format in which to display the
date; the default is 'yearMonthDayStrSpec. See
Chapter 17, “Localizing Newton Applications

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-39

Reference,” Table 17-1 (page 17-4), for a complete list of
symbols for longFormat.

shortFormat A symbol specifying the format in which to display the
date. Use shortFormat only if you have a nil value
for longFormat. See Chapter 17, “Localizing Newton
Applications Reference,” Table 17-2 (page 17-6), for a
complete list of symbols for shortFormat.

Notes

Both longFormat and shortFormat must be present if
you plan to use shortFormat. If you use shortFormat,
longFormat must be set to nil.

If you implement PickActionScript, the parameter
newDate is an array containing a single element of integer;
it’s the selected date in terms of minutes passed since
midnight, 1/1/1904.

The slot date always contains the selected date (in terms of
minutes passed since midnight, 1/1/1904 12:00). ◆

PickActionScript 5

picker:PickActionScript(newDate)

This method is called when the user taps the close box of the pop-up view. If
you don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the PickCancelledScript method
is called instead.

newDate The new date selected by the user.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-40 Text Pickers

protoDateDurationTextPicker 5

This proto displays a label picker with a text representation of a date range;
for instance “January 5, 1974 – February 7, 1975”. When the user taps the
picker, the protoDateIntervalPopup is displayed, allowing the user to
specify a different range. When the user taps the close box of the pop-up
view, the text next to the label is updated with the new date range.

Figure 5-15 shows an example of a protoDateDurationTextPicker with
slot shortFormat = 'numericDateStrSpec. Notice the label is
proceeded by kPopChar.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-41

Figure 5-15 Example of date picker before and after it is tapped

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoDateDurationTextPicker uses the protoTextPicker as its
proto; protoTextPicker is based on a view of the clView class.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-42 Text Pickers

Slot descriptions

label A string to be displayed as the picker label.
labelFont Optional. Font used to display the label; the default is

ROM_fontsystem10bold.
entryFont Optional. Font used to display the picked entry; the

default is 10243 (= editFont10 ?).
indent Optional. If not supplied,

protoDateDurationTextPicker calculates the
indent based on the length of label.

startTime An initial start date to display (as returned by the Time
function).

stopTime An initial end date to display (as returned by the Time
function).

longFormat A symbol specifying the format in which to display the
time; the default is 'yearMonthDayStrSpec.

shortFormat A symbol specifying the format in which to display the
time; the default is nil.

Note

Both longFormat and shortFormat must be present if
you plan to use shortFormat. If you use shortFormat,
longFormat must be set to nil.

You can provide a value for either a longFormat slot or a
shortFormat slot, but not both, to specify the format in
which to display the date range. ◆

PickActionScript 5

picker:PickActionScript(startTime, stopTime)

This method is called when the user taps the pop-up’s close box. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the PickCancelledScript method
is called instead.

startTime The new starting time selected by the user.

stopTime The new ending time selected by the user.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-43

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

protoRepeatDateDurationTextPicker 5

This proto displays a label picker with a text representation of a date range;
for example, “January 5, 1974 - February 7, 1975”. When the user taps the
picker, the protoDateIntervalPopup is displayed, allowing the user to
specify a different range. When the user taps the close box, the text next to
the label is updated with the new date range. This looks essentially the same
as Figure 5-15 (page 5-41). Figure 5-16 shows how the popup for this picker
looks.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-44 Text Pickers

Figure 5-16 Example label picker with text representation

Unlike protoDateDurationTextPicker,
protoRepeatDateDurationTextPicker’s
protoDateIntervalPopup’s duration picker shows choices that are
appropriate for the repeatType slot, and the duration displayed when the
user taps a duration or stop date is given in units of the repeatType. For
example, if the repeatType slot specifies monthly, the duration picker
shows the choices for two months, three months, and so on, and the duration
value string is in units of months. In contrast, a

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-45

protoDateDurationTextPicker would always show choices for one
week, two weeks, and so on and would display the duration value in units of
weeks and days.

The ViewSetupFormScript, PopIt, TextSetup, and GetDuration
methods are defined internally; you shouldn’t need to override them. If you
do override them, make sure to call the inherited method.

The protoRepeatDateDurationTextPicker uses
protoDateDurationTextPicker as its proto;
protoDateDurationTextPicker is based on protoTextPicker, which
in turn is based on a view of the clView class.

Slot descriptions

label A string to be displayed as the picker label.
labelFont Optional. The font for the label; the default setting is

tsSize(10) + tsBold.
entryFont Optional. The font for the text picker line; the default

setting is editFont10.
startTime An initial start date to display (as returned by the Time

function).
stopTime An initial ending date to display (as returned by the

Time function).

You can provide a value for either a longFormat slot or a shortFormat
slot, but not both, to specify the format in which to display the date range.

longFormat A symbol specifying the format in which to display the
time; the default is nil.

shortFormat A symbol specifying the format in which to display the
time; the default is 'numericDateStrSpec.

repeatType The repeatType slot contains one of the following
constants that describe how often the meeting repeats:
kDayofWeek, kWeekInMonth (1), kDateInMonth
(2), kDateInYear(3), kPeriod(4), kNever(5),
kWeekInYear(7).

mtgInfo Used for repeating meetings and events. An immediate
value containing packed repeating meeting information.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-46 Text Pickers

This slot is interpreted differently, depending on the
value of the repeatType slot. For a complete list of
values, see the description of the mtgInfo slot in
Chapter 16, “Built-in Applications and System Data
Reference,” “Meeting Frames” (page 16-57).

PickActionScript 5

picker:PickActionScript(startTime, stopTime)

This method is called when the user taps the close box of the pop-up view. If
you don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the PickCancelledScript method
is called instead.

startTime The new starting time selected by the user.

stopTime The new ending time selected by the user.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

protoDateNTimeTextPicker 5

This proto displays a label picker with a text representation of a date and
time; for example, “6/22/95 2:11 pm”. When the user taps the picker, the
protoDateNTimePopup is displayed, allowing the user to specify a
different date and time. When the user taps the pop-up’s close box, the text
next to the label is updated with the new date and time.

Figure 5-17 shows an example of a date and time label picker before and
after it is tapped.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-47

Figure 5-17 Example of a date and time pop-up view

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoDateNTimeTextPicker uses the protoTextPicker as its
proto; protoTextPicker is based on a view of the clView class.

Slot descriptions

label Optional. A string to be displayed as the picker label.
labelFont Optional. The font for the label; the default setting is

tsSize(10) + tsBold.
entryFont Optional. The font for the text picker line; the default

setting is editFont10.
date Optional. An initial date/time to display (as returned by

the Time function). If you don’t specify a date, the
current date and time are used by default.

format Optional. A symbol specifying the format in which to
display the time; for example, “2:15 pm”. The default

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-48 Text Pickers

value is 'shortTimeStrSpec. See Chapter 17,
“Localizing Newton Applications Reference,” “Date and
Time Format Specifications” (page 17-11) for
information on specifying formats.

longFormat Optional. A symbol specifying the format in which to
display the date; for example, “September 27, 1995”.
The default is nil.

shortFormat Optional. A symbol specifying the format in which to
display the date; for example, “9/27/95”. The default is
'numericDateStrSpec.

increment Optional. An integer representing the increment by
which to change the time when the user taps the time
picker portion of the pop-up view; a value of 15, for
example, causes the time to change in 15 minute
increments.

Note

You can provide a value for either a longFormat slot or a
shortFormat slot, but not both, to specify the format in
which to display the date and time. Because the default
value of longFormat is nil, you can use shortFormat
without providing a longFormat slot. ◆

PickActionScript 5

picker:PickActionScript(newDate)

This method is called when the user taps the pop-up’s close box. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the PickCancelledScript method
is called instead.

startTime The new date and time selected by the user.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-49

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled if the user taps outside
it; if you don’t supply this method, there is no default action.

protoTimeTextPicker 5

This proto displays a label picker with a text representation of a time; for
example, “2:56 pm”. When the user taps the picker, the protoTimePopup is
displayed, allowing the user to specify a different time. When the user taps
the pop-up’s close box, the text next to the label is updated with the new
time.

Figure 5-18 shows an example of a protoTimeTextPicker before and after
it has been tapped.

Figure 5-18 Example of a label picker with a text representation of a time

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoTimeTextPicker uses the protoTextPicker as its proto;
protoTextPicker is based on a view of the clView class.

Slot descriptions

label A string to be displayed as the picker label.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-50 Text Pickers

labelFont Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

entryFont Optional. The font for the text picker line; the default
setting is editFont10.

indent Optional. If not supplied,
protoDateDurationTextPicker calculates the
indent based on the length of label.

time The initial time (in number of minutes since midnight,
1/1/1904). This value is updated by the picker as the
user picks a new value.

format Optional. A symbol specifying the format in which to
display the time; the default is 'shortTimeStrSpec.
See Chapter 17, “Localizing Newton Applications
Reference,” “Date and Time Format Specifications”
(page 17-11) for information on specifying formats.

increment Optional. An integer representing the increment by
which to change the time when the user taps the pop-up
view; the default value is 12, meaning that the time
changes twelve minutes for each tap.

PickActionScript 5

picker:PickActionScript(newTime)

This method is called when the user taps the pop-up’s close box. If you don’t
supply this method, there is no default action. If no item is selected because
the user taps outside the pop-up view, the PickCancelledScript method
is called instead.

newTime The new time selected by the user.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-51

protoDurationTextPicker 5

This proto displays a label picker with a text representation of a time range;
for example, “2:33 pm – 5:54 am”. When the user taps the picker, the
protoTimeIntervalPopup is displayed, allowing the user to specify a
different range. When the user taps the pop-up’s close box, the text next to
the label is updated with the new time range.

Figure 5-19 shows an example protoDurationTextPicker before and
after the user taps the picker.

Figure 5-19 Example label picker with a text representation of a time range

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoDurationTextPicker uses the protoTextPicker as its proto;
protoTextPicker is based on a view of the clView class.

Slot descriptions

label A string to be displayed as the picker label.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-52 Text Pickers

labelFont Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

entryFont Optional. The font for the text picker line; the default
setting is editFont10.

startTime An initial start time to display (as returned by the Time
function).

stopTime An initial ending time to display (as returned by the
Time function).

format A symbol specifying the format in which to display the
time; the default is 'shortTimeStrSpec. See
Chapter 17, “Localizing Newton Applications
Reference,” “Date and Time Format Specifications”
(page 17-11) for information on specifying formats.

increment An integer representing the increment by which to
change the time when the user taps the pop-up view;
the default value is 1, meaning that the time changes
one minute for each tap.

PickActionScript 5

picker:PickActionScript(startTime, stopTime)

This method is called when the user taps the pop-up’s close box. If you don’t
supply this method, there is no default action. If no item is selected because
the user taps outside the pop-up view, the PickCancelledScript method
is called instead.

startTime The start time selected by the user.

stopTime The end time selected by the user.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled if a user taps outside it;
if you don’t supply this method, there is no default action.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-53

protoTimeDeltaTextPicker 5

This proto displays a label picker with a text representation of a time delta.
When the user taps the picker, the protoTimeDeltaPopup is displayed,
allowing the user to specify a new time delta. When the user taps the
pop-up’s close box, the text next to the label is updated with the new time
delta.

Figure 5-20 shows an example of a protoTimeDeltaTextPicker before
and after it is tapped.

Figure 5-20 Example of a label picker with a text representation of a time delta

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoTimeDeltaTextPicker uses the protoTextPicker as its
proto; protoTextPicker is based on a view of the clView class.

Slot descriptions

label The constant kPopChar & is a string to be displayed
as the picker label.

time An initial time (in number of minutes), which is then
updated by the picker as a new value has been picked.

labelFont Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

entryFont Optional. The font for the text picker line; the default
setting is editFont10.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-54 Text Pickers

indent Optional. If not supplied,
protoDateDurationTextPicker calculates the
indent based on the length of label.

minValue Optional. An integer specifying a minimum delta value.

PickActionScript 5

picker:PickActionScript(newDuration)

This method is called when the user taps the pop-up’s close box. If you don’t
supply this method, there is no default action. If no item is selected because
the user taps outside the list, the PickCancelledScript method is called
instead.

newDuration The number of minutes the user picked.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up is cancelled by a tap outside it; if you
don’t supply this method, there is no default action.

protoMapTextPicker 5

This proto displays a label picker with a text representation of a country; for
example, “Afghanistan”. When the user taps the picker, a popup displays
that allows the user to select a new country from an alphabetical list. When
the user taps the pop-ups close box, the text next to the label is updated with
the new country name.

Figure 5-21 shows an example of a protoMapTextPicker before and after
it is tapped.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-55

Figure 5-21 Example of a map text label picker

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoMapTextPicker uses the protoTextPicker as its proto;
protoTextPicker is based on a view of the clView class.

Slot descriptions

label A string to be displayed as the picker label.
labelFont Optional. The font for the label; the default setting is

tsSize(10) + tsBold.
entryFont Optional. The font for the text picker line; the default

setting is editFont10.
indent Optional. If not supplied, the proto calculates it based

on the length of label.

PickActionScript 5

picker:PickActionScript(newName)

This method is called when the user taps the pop-up’s close box. If you don’t
supply this method, there is no default action. If no item is selected because

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-56 Text Pickers

the user taps outside the list, the PickCancelledScript method is called
instead.

newName The new country name selected by the user.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

protoCountryTextPicker 5

The protoCountryTextPicker is the same as protoMapTextPicker
(which it uses as its proto).

protoUSstatesTextPicker 5

This proto displays a label picker with a text representation of a U.S. state; for
example, “Ohio”. When the user taps the picker, a popup displays that allows
the user to select a new state from an alphabetical list. When the user taps the
pop-up’s close box, the text next to the label is updated with the new state
name.

Figure 5-22 shows an example of protoUSstatesTextPicker before and
after it has been tapped.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-57

Figure 5-22 Example of a label picker with a text representation of a U.S. state

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoUSstatesTextPicker uses the protoMapTextPicker as its
proto.

Slot descriptions

label A string to be displayed as the picker label.
labelFont Optional. The font for the label; the default setting is

tsSize(10) + tsBold.
entryFont Optional. The font for the text picker line; the default

setting is editFont10.
indent Optional. If not supplied,

protoDateDurationTextPicker calculates the
indent based on the length of label.

params A frame with the following slot:
result The default value is 'name. You can

change it to 'abbrev in your
ViewSetupFormScript if you want to
get an abbreviated form of the name. For

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-58 Text Pickers

example, give your
protoUSStatesTextPicker the
following ViewSetupFormScript:

func()

begin

 self.params := Clone(params) ;

 params.result := 'abbrev ;

 inherited:?viewSetupFormScript();

end

That will make the result an abbreviation
and will change the picker label to an
abbreviation as well.

PickActionScript 5

picker:PickActionScript(newName)

This method is called when the user taps the pop-up’s close box. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the PickCancelledScript method
is called instead.

newName The new state name selected by the user.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up is cancelled by a tap outside it; if you
don’t supply this method, there is no default action.

protoCitiesTextPicker 5

This proto displays a label picker with a text representation of a city; for
example, “Albany”. When the user taps the picker, a popup displays that
allows the user to select a new city from an alphabetical list. When the user
taps the pop-up’s close box, the text next to the label is updated with the new
city name.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-59

Figure 5-23 shows an example of a protoCitiesTextPicker before and
after a tap is made.

Figure 5-23 Example of a city picker

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoCitiesTextPicker uses the protoMapTextPicker as its
proto.

Slot descriptions

label A string to be displayed as the picker label.
labelFont Optional. The font for the label; the default setting is

tsSize(10) + tsBold.
entryFont Optional. The font for the text picker line; the default

setting is editFont10.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-60 Text Pickers

indent Optional. If not supplied, protoCitiesTextPicker
calculates it based on the length of label.

params A frame with slots that are used internally.
In order to choose a default city specify a default slot in
the params frame of the form:
default Optional. Specifies a default city with a

value of the form:
[country-symbol, city-name]

For example:

['Canada, "Calgary"]

You can find the appropriate symbol and
name by using GetCityEntry to find
the entry for the appropriate city, then
using the country slot for the country
symbol and the name slot for the city
name. For example:

local c := GetCityEntry("Calgary")[0] ;

params.default := [c.countr, c.name] ;

PickActionScript 5

picker:PickActionScript(newName)

This method is called when the user taps the pop-up’s close box. If you don’t
supply this method, there is no default action. If no item is selected because
the user taps outside the list, the PickCancelledScript method is called
instead.

newName The new city name selected by the user.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up is cancelled when the user taps outside it;
if you don’t supply this method, there is no default action.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Text Pickers 5-61

protoLongLatTextPicker 5

This proto displays a label picker with a text representation of longitude and
latitude values. When the user taps the picker, the longLatPicker is
displayed, allowing the user to select new values for longitude and latitude.
When the user taps the pop-up’s close box, the text next to the label is
updated with the new values.

Figure 5-24 shows an example of protoLongLatTextPicker before and
after it has been tapped.

Figure 5-24 Example of a text representation of longitude and latitude values

The PopIt and TextSetup methods are defined internally; you shouldn’t
need to override them.

The protoLongLatTextPicker uses the protoTextPicker as its proto;
protoTextPicker is based on a view of the clView class.

Slot descriptions

label The constant kPopChar followed by a string to be
displayed as the picker label; “Where” is the default.

latitude An integer specifying the latitude to display initially.
See Chapter 19, “Built-in Applications and
System Data,”“Using Longitude and Latitude Values”

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-62 Text Pickers

(page 19-30) in Newton Programmer�s Guide for
information calculating this value.

longitude An integer specifying the longitude to display initially.
labelFont Optional. The font for the label; the default setting is

tsSize(10) + tsBold.
entryFont Optional. The font for the text picker line; the default

setting is editFont10.
indent Optional. The distance, in pixels, to indent the picker

from the beginning of the line (the beginning of the text
label). If you don’t include this slot, the picker is placed
6 pixels to the right of the text label by default.

worldClock A Boolean, must be non-nil.

PickActionScript 5

picker:PickActionScript(long, lat)

This method is called when an item is selected from the pop-up view. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the pop-up view, the PickCancelledScript
method is called instead.

long The new longitude selected by the user.

lat The new latitude selected by the user.

When the user picks new longitude or latitude value, the slots longitude
and latitude are automatically updated.

PickCancelledScript 5

picker:PickCancelledScript()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-63

Date, Time, and Location Pop-up Views 5

These protos let the user specify dates, times, and locations using graphical
pop-up views.

protoDatePopup 5

This proto lets the user choose a single date. To provide selection of multiple
dates, use the protoMultiDatePopup proto. The user confirms the selected
date by tapping the close box; tapping outside the pop-up view cancels the
pop-up view.

Figure 5-25 shows the result of a single-date selection.

Figure 5-25 Example of a single date selection

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-64 Date, Time, and Location Pop-up Views

New 5

popup:New(initialDate, bbox, callbackContext)

This method is called to open the pop-up view.

initialDate An array containing one element, an integer
representing the initial date to display as selected (as
returned by the Time function).

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view

PickActionScript 5

callbackContext:PickActionScript(selectedDate)

This method is called when the user taps the close box.

selectedDate An array containing a single date.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled by tapping outside it.

protoDatePicker 5

This proto facilitates the selection of a date. Use this proto when the desired
date is likely to be relatively close to the current date, because it’s not easy to
change the year quickly. Figure 5-26 shows a date picker.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-65

Figure 5-26 Example of a date picker

Tapping either arrow scrolls to the prior/next month; tapping a day selects
the day; tapping the spaces before the first or after the last day of a month
selects the appropriate day in the prior/next month; and tapping the month/
year banner at the top displays a pop-up menu to change the month. The
pop-up menu appears in Figure 5-27.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-66 Date, Time, and Location Pop-up Views

Figure 5-27 Example of a pop-up menu

The following slots and methods are used internally:

MonthChangedScript, SetTitle, ViewSetupDoneScript

These are listed so that you don’t inadvertently override them.

Slot description

selectedDates An array containing one element, an integer
representing the selected date (as returned by the Time
function). You can supply an initial date to display here
as well; if you don’t, the current date is used.
To change the selected date programmatically, supply
the new date in this slot and call the Refresh method.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-67

DateChanged 5

picker:DateChanged(array)

This method is called when a date is selected, to give you a chance to take
some action. The return value is ignored.

array An array containing a single element, the selected date.

Refresh 5

picker:Refresh()

To change the selected date programmatically, supply a new date in the
selectedDates slot and call this method to update the view.

protoDateNTimePopup 5

This proto lets the user choose a single date and time. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels
it.

Figure 5-28 shows the result of a date and time selection.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-68 Date, Time, and Location Pop-up Views

Figure 5-28 Example of a single date and time selection

New 5

popup:New(dateNTime, increment, bbox, callbackContext)

This method is called to open the pop-up view.

dateNTime An array containing one element, an integer,
representing the initial date and time to display as
selected (as returned by the Time function).

increment An increment value that determines the granularity for
the pop-up view. The value “1” specifies one minute; try
“15”, “30”, and “60”.

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-69

NewTime 5

callbackContext:NewTime(dateNTime)

This method is called whenever the time is changed.

dateNTime The new date and time.

PickActionScript 5

callbackContext:PickActionScript(dateNTime)

This method is called when the user taps the close box.

dateNTime The selected date and time.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

protoDateIntervalPopup 5

This proto lets the user specify an interval of dates by selecting a start and
stop date. The user confirms the selection by tapping the close box; tapping
outside the pop-up view cancels it.

Figure 5-29 shows the result of selecting a start and stop date.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-70 Date, Time, and Location Pop-up Views

Figure 5-29 Example of a date interval pop-up view

The protoDateIntervalPopup is based on the protoGeneralPopup
proto. It has the following two child views declared in itself:

■ start uses the protoDatePicker proto and implements the starting
date section of the pop-up view.

■ stop uses the protoDatePicker proto and implements the ending date
section of the pop-up view.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-71

New 5

popup:New(initialDates, bbox, callbackContext)

This method is called to open the pop-up view.

initialDates An array with two values (as returned by the Time
function) specifying the initial range of dates to display
as selected.

bbox A bounding box for the pop-up view. This box is only
suggested; generally you would use:GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

NewTime 5

callbackContext:NewTime(startDate, stopOrMax)

This method is called each time the user changes the selection.

startDate The new start date.

stopOrMax The new stop date, or the maximum time if ongoing.
Note that the maximum time is defined as the constant
kMaximumTime := 0x1FFFFFFF.

PickActionScript 5

callbackContext:PickActionScript(startDate, stopOrMax)

This method is called when the user taps the close box.

startDate The new start date.

stopOrMax The new stop date, or the maximum time if ongoing.
Note that the maximum time is defined as the constant
kMaximumTime := 0x1FFFFFFF.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-72 Date, Time, and Location Pop-up Views

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled by tapping outside it.

protoMultiDatePopup 5

This proto lets the user specify a range of dates. To select a single date, use
the protoDatePopup. The user confirms the selected range by tapping the
close box; tapping outside the pop-up view cancels it.

Figure 5-30 shows the result of selecting a range of dates.

Figure 5-30 Example of a multidate pop-up view

New 5

popup:New(initialDates, bbox, callbackContext)

This method is called to open the pop-up view.

initialDates An array specifying a range of dates to display as
selected. These dates have to be in sequence. For

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-73

example, one day after another (for example, Tuesday,
Wednesday, and Thursday) or the same day of the week
(for example, first, second, and third Tuesday of the
month).

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

PickActionScript 5

callbackContext:PickActionScript(selectedDates)

This method is called when the user taps the close box.

selectedDates An array containing the selected range of dates.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

protoYearPopup 5

This proto lets the user specify a year. The user confirms the selected range
by tapping the close box; tapping outside the pop-up view cancels it.

Figure 5-31 shows the result of selecting a year.

Figure 5-31 Example of a year pop-up view

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-74 Date, Time, and Location Pop-up Views

New 5

popup:New(initialYear, bbox, callbackContext)

This method is called to open the pop-up view.

initialYear The year to display initially, specified as an integer (for
example, “1995”).

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

NewYear 5

callbackContext:NewYear(year)

This method is called each time the user changes the selection.

year The new year, specified as a year.

DoneYear 5

callbackContext:DoneYear(year)

This method is called when the user taps the close box.

year The selected year, specified as a year.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled when the user taps
outside of it; if you don’t supply this method, there is no default action.

protoTimePopup 5

This proto permits setting a time with a digital clock. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels
it.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-75

Figure 5-32 shows how the digital clock appears.

Figure 5-32 Example of a time pop-up view

New 5

popup:New(time, increment, bbox, callbackContext)

This method is called to open the pop-up view.

time An array containing one element, an integer
representing the initial time to display as selected (as
returned by the Time function).

increment An increment for the pop-up view that determines the
granularity for the pop-up view. The value “1” specifies
one minute; try “15”, “30”, and “60”.

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

NewTime 5

callbackContext:NewTime(time)

This method is called whenever the time is changed.

time The new time.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-76 Date, Time, and Location Pop-up Views

PickActionScript 5

callbackContext:PickActionScript(time)

This method is called when the user taps the close box.

time The selected time.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled by tapping outside
it.This method is called if the pop-up view is cancelled by tapping outside it.

protoAnalogTimePopup 5

This proto permits setting a time with an analog clock. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels
it.

Figure 5-33 shows how the analog clock appears.

Figure 5-33 Example of an analog time pop-up view

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-77

New 5

popup:New(time, increment, bbox, callbackContext)

This method is called to open the pop-up view.

time An array containing one element, an integer representing
the initial time to display as selected (as returned by the
Time function).

increment An increment for the pop-up view that determines the
granularity for it. The value “1” specifies one minute;
try “15”, “30”, and “60”.

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

NewTime 5

callbackContext:NewTime(time)

This method is called whenever the time is changed.

time The new time.

PickActionScript 5

callbackContext:PickActionScript(time)

This method is called when the user taps the close box.

time The selected time.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-78 Date, Time, and Location Pop-up Views

protoTimeDeltaPopup 5

This proto lets the user choose a time period, or delta. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels
it.

Figure 5-34 illustrates this time choice option.

Figure 5-34 Example of a time delta pop-up view

New 5

popup:New(initialDelta, params, bbox, callbackContext)

This method is called to open the pop-up view.

initialDelta An integer representing the initial delta time. A value of
“1” specifies one minute, and the sign of the value
specifies whether the delta is positive (+) or negative (–).

params A frame containing the following slots:

increment An increment value that determines the
granularity for the pop-up view. The
value “1” specifies one minute; try “15”,
“30”, and “60”.

minValue Optional. A minimum delta value.
maxValue Optional. A maximum delta value.

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views 5-79

PickActionScript 5

callbackContext:PickActionScript(delta)

This method is called when the user taps the close box.

delta The selected delta time.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled by tapping outside it.

protoTimeIntervalPopup 5

This proto lets the user choose a time interval by specifying a start and stop
time. The user confirms the selection by tapping the close box; tapping
outside the pop-up view cancels it.

Figure 5-35 illustrates a time interval selection.

Figure 5-35 Example of a time interval pop-up view

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-80 Date, Time, and Location Pop-up Views

New 5

popup:New(initialTimes, increment, bbox, callbackContext)

This method is called to open the pop-up view.

initialTimes An array with two values (as returned by the Time
function) specifying the initial range of start and stop
times.

increment An increment value that determines the granularity for
the pop-up view. The value “1” specifies one minute; try
“15”, “30”, and “60”.

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use :GlobalBox().

callbackContext The name of the view to which callback messages
should be sent. Specify self if you define these
methods in the pop-up view.

PickActionScript 5

callbackContext:PickActionScript(startTime, stopTime)

This method is called when the user taps the close box.

startTime The selected start time.

stopTime The selected stop time.

PickCancelledScript 5

callbackContext:PickCancelledScript()

This method is called if the pop-up view is cancelled by tapping outside it.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Number Pickers 5-81

Number Pickers 5

This section describes the protos used to display pickers with numbers.

protoNumberPicker 5

This proto is used to display a picker from which the user can select a
number. Figure 5-36 shows an example.

Figure 5-36 Example of a number picker

The following slots are of interest:

Slot descriptions

minValue Required. The minimum value in the list.
maxValue Required. The maximum value in the list.
value Required. The initial and currently selected value.
showLeadingZeros

Optional. Set this slot to non-nil to show leading zeros;
for example, to show “007” with the two leading zeros.

This proto is based on a view of the clPictureView class. It has one child
view, for each digit in the number; these views implement the picker
functionality of the proto.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-82 Picture Picker

PrepareForClick 5

picker:PrepareForClick()

This method is called before a click on an individual digit is processed. The
value slot is updated accordingly.

ClickDone 5

picker:ClickDone()

This method is called after a click on an individual digit is processed. The
value slot is updated accordingly. You can override this method and check
the value slot to determine the selected value.

Picture Picker 5

This section describes the protos used to create a picture as a picker.

protoPictIndexer 5

This proto is used to create a view with a horizontal array of pictures, one of
which the user can tap. When the user taps a picture, it is highlighted, and
the system sends the IndexClickScript to signal which picture was
selected. Figure 5-37 shows a typical array of pictures from which a user
might make a selection.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Picture Picker 5-83

Figure 5-37 Example of an indexed array of pictures

The following methods are defined internally: ViewSetupDoneScript,
ViewDrawScript, ViewClickScript, Hilite, Unhilite, and
TrackPictHilite. If you need to use one of these methods, be sure to call
the inherited method also; for example,

inherited:?ViewSetupDoneScript()

or the proto may not work as expected.

The protoPictIndexer is based on a view of the clPictureView class.

Slot descriptions

viewBounds Set to the size and location in which you want the view
to appear.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV + vjParentFullH +
vjParentBottomV.

viewFormat Optional. The default setting is vfFillWhite.
icon The bitmap serving as the picture. This picture should

be a single bitmap containing multiple objects or
symbols that are all of the same width and arranged
next to each other in a vertical row.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-84 Picture Picker

iconBBox A bounds frame giving the bounds of the bitmap within
the view. (The view can be bigger than the bitmap.) The
width is the only important dimension calculated from
the bounds frame. The width is used to calculate the
size of the active rectangle; that is, the rectangle used to
differentiate and highlight each of the objects in the
bitmap. The width of the bitmap is divided into equal
rectangles (width÷numIndices) that extend the full
height of the view.

numIndices The number of objects or symbols in the bitmap.
curIndex This slot is set to the index of the currently selected item

in the bitmap. Note that the first item has an index of
zero. This slot must initially be set to an integer.

IndexClickScript 5

picker:IndexClickScript(index)

This method is called whenever the user taps the bitmap.

index The index of the item that was chosen from the pop-up
array. Note that the first item has an index of zero.

Here is an example of a template using IndexClickScript:

indexView := {...

_proto: protopictindexer,

viewBounds: {top: -25, left: 0, right: 0, bottom: 0},

viewJustify: vjCenterH+vjCenterV+vjParentFullH+

 vjParentBottomV,

viewFormat: vfFillWhite+vfPen(1)+vfFrameBlack,

icon: shapesBitmap, //square, roundrect, circle, triangle

iconBBox: {top: 0, left: 0, right: 100, bottom: 0},

numIndices: 4,

IndexClickScript: func(currIndex)

begin

SetValue(theText, 'text, shapeNameArray[currIndex]);

end,

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-85

// set highlight to first item on entry

curIndex: 0,

shapeNameArray: ‘["Square", "Oval", "Circle", "Triangle"]

...}

Overview Protos 5

The protos in this section are used to create overviews of data; they include
some protos specifically designed to display names from the Names soup.

protoOverview 5

This proto provides a framework for doing an overview view of data in an
application. Each item in the overview has one line; the user can scroll the
list and pick individual items or multiple items in the list.

Each entry in the list is a set of shapes is created by the client application.
Figure 5-38 is an example of a protoOverview list.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-86 Overview Protos

Figure 5-38 Example of an overview list

Note that the ViewClickScript and ViewDrawScript methods are used
internally in the protoOverview and should not be overridden.

Slot descriptions

autoDeselect Optional. If you set this to true, the item the user picks
in the overview does not remain highlighted when the
pen leaves it. Otherwise, when the pen leaves the item,
it remains highlighted.

viewBounds Set to the size and location where you want the
overview to appear.

viewFlags The default is vVisible + vApplication +
vClickable.

cursor Optional. You probably need this if you want to use
protoOverview directly, rather than using
protoSoupOverview. This contains a cursor-like
object that performs the same functions as a soup
cursor. See “Using protoOverview” (page 6-24) in
Newton Programmer�s Guide for details.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-87

lineHeight Optional. The default is 32, which specifies the height in
pixels of each item in the overview.

selectIndent Optional. Specifies the left margin within which
selection highlighting and behavior occur. If an item is
tapped within this margin, the default HitItem
method calls the SelectItem method with the item
index. The default, if you don’t supply this slot, is 18.

viewFont Optional. The default setting is systemFont10Bold.
nothingCheckable

Optional. If you don’t want checkboxes at all, set this
slot to non-nil. None of the list items will be indented
and the vertical line down the left side of the list will be
removed.

SetupAbstracts 5

overview:SetupAbstracts(cursor)

A method that should be called from the ViewSetupChildrenScript as
the instantiator.

cursor A cursor or cursor-like object.

Abstract 5

overview:Abstract(item, bounds)

This method should return a shape or shape list representing an item in the
overview. It is passed two parameters, the first an item obtained from the
cursor-like object passed to SetupAbstracts, the second a bounds frame
within which the returned shape should be placed.

The bounds value is not automatically offset by the selectIndent value.
Therefore, you should use selectIndent rather than bounds.left to make
certain that the shape returned fits in the frame.

item The item returned from the cursor-like object that was
passed to the SetupAbstracts method.

bounds A bounds frame within which the returned shape
should be placed.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-88 Overview Protos

CheckState 5

overview:CheckState(entry)

If the nothingCheckable slot is set to nil, the SetUpAbstracts method
calls CheckState for each entry. You can override CheckState to return
one of the following values:

CheckState returns nil by default (checkable, but not checked). If
checkboxes are specified, they are centered vertically based on the value in
the lineHeight slot.

entry A soup entry.

HitItem 5

overview:HitItem(hitIndex, xcoord, ycoord)

A method that is called when an item is tapped. The default method returns
non-nil if it handled the tap; that is, if it determined it should select the item
(if the tap was within the selectIndent margin). In general, you should
first call inherited:?HitItem, and handle the tap yourself only if the
inherited method returns nil.

hitIndex The index to the item in the list (the first one being zero).

xcoord The X coordinate of the tap, relative to the left edge of
the item that was tapped.

ycoord The Y coordinate of the tap, relative to the top edge of
the item that was tapped.

Note that hitIndex is relative to the displayed items, not the total items. You
need to track what the real “top” index is, as shown in the following example:

Value Meaning

'notCheckable Cannot be checked; don’t put a checkbox here.

nil Can be checked, but isn’t.

true Can be checked, and is.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-89

func(hitIndex, xcoord, ycoord)

begin

if xcoord < selectIndent then

inherited:HitItem(hitIndex, xcoord, ycoord) ;

else begin

hitIndex := hitIndex + saveIndex;

print("hit item: " & hitIndex) ;

:Dirty(); // refresh the view

end ;

end

Notice that this code assumes you have a value saveIndex that can be
added to the the hitIndex to find the index of the actual item.

IsSelected 5

overview:IsSelected(item)

item The entry that the user tapped.

Return true if the item is selected (the checkbox is checked in the overview).
Note that selected is different from highlighted or hit.

Scroller 5

overview:Scroller(numItems)

Scrolls the contents of the overview. The default method does nothing. If
overridden, Scroller should cause the SetupAbstracts method to be
called again, for example, by calling RedoChildren.

numItems The number of items to scroll; a negative value means
“scroll upwards.”

SelectItem 5

overview:SelectItem(hitIndex)

SelectItem is called each time the checkbox for an item is tapped. You
must provide this method if SelectIndent is greater than 0. It should

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-90 Overview Protos

implement a way of remembering selected items, so the user can file or route
the selected items at a later time and also perform whatever record keeping
is required to toggle the selected state of the item at hitIndex. The hitIndex is
relative to the displayed items, not the total items; you need to track what the
real “top” index is.

hitIndex An integer identifying an item relative to top of
displayed items.

ViewSetupChildrenScript 5

overview:ViewSetupChildrenScript()

You must provide this method. You must send the SetupAbstracts
message from this script. Note that SetupAbstracts is expecting a cursor
or cursor-like object. See “Using protoOverview” (page 6-24) in Newton
Programmer�s Guide, for a discussion of how to create a cursor-like object.

protoSoupOverview 5

This proto is similar to protoOverview, but is designed to work with data
that consists of soup entries. It expects each overview item to be a soup entry
whether or not the cursor itself is an ordinary soup cursor. Figure 5-39 shows
an example of this proto.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-91

Figure 5-39 Example of a soup entry proto

A default ViewSetupChildrenScript method calls SetupAbstracts,
passing the cursor in the cursor slot. If you override this method, you
should call the inherited method once you’ve set up the cursor slot.

Slot descriptions

cursor Required. Set this slot to a cursor describing your
entries. Initialized in ViewSetupFormScript.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-92 Overview Protos

All other slots in protoSoupOverview are the same as in protoOverview.

Scroller 5

overview:Scroller(numItems)

This optional method scrolls the overview, with respect to the specified
cursor (in the cursor slot). The default is to take an integer and move the
cursor forward (positive) or backward (negative). If you try to move the
cursor forward past the end, the last item is returned. If you try to move the
cursor backward before the first item, the first item is returned.

numItems The number of items to scroll; a negative value means to
scroll upwards.

SelectItem 5

overview:SelectItem(index)

This method remembers selected items, doing the right thing with respect to
the specified cursor (in the cursor slot). It keeps a list of the selected items
by getting entry aliases for them, hence the need for the items to be real soup
entries.

index The index of an item in the overview. The first item is 0.

Abstract 5

overview:Abstract(entry, bounds)

This required method should return a shape or shape list representing an
item in the overview.

entry The entry returned from the cursor that was passed to
the SetupAbstracts method.

bounds A bounds frame within which the returned shape
should be placed.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-93

IsSelected 5

overview:IsSelected(entry)

This method returns non-nil if the specified entry is currently selected.

entry An entry from the cursor.

ForEachSelected 5

overview:ForEachSelected(function)

This method calls the specified function once for each entry that is currently
selected. The function is passed one argument, the entry.

function A function object.

protoListPicker 5

This proto provides a scrollable list of items, from either a soup or an array
(or both), from which one or many items may be chosen. The list is built from
a soup, using a cursor. By default, this proto queries the “Names” soup, but
you can change it to query a different soup.

The selections are intended to be persistent, so enough information from
soup entries is maintained to allow the selection to be displayed even if the
soup is removed.

The protoListPicker proto is based on a view of the clView class.

The viewFlags, viewBounds, viewJustify, and viewFormat slots can
be overridden at will. The ViewScrollUpScript and
ViewScrollDownScript methods are provided for the developer to
invoke.

The following slots and methods are used internally:
ViewSetupChildrenScript, ViewDrawScript, ViewQuitScript,
fOpenEditView, nowShowing, fBorder, cursor, myQuerySpec,
fCurrentKey, MarkCursorPosition, filterLabels,
SetupFiltering, SetupCursor, RedoCursor, GetTargetInfo,
FilterChanged, folderTabs, AZtabs, and listBase.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-94 Overview Protos

See “Using protoListPicker” (page 6-26) in Newton Programmer�s Guide for an
example of this proto and a discussion of using it.

Slot descriptions

declareSelf Set to 'pickBase.
defaultJustification

The default is vjParentFullH + vjParentTopV
viewFlags The default is vVisible + vApplication

+vClickable.
viewBounds Set to the size and location where you want the list of

scrollable items to appear.
lineHeight Optional. Set to the height, in pixels, of each line in the

list. The default setting is the maximum of the font
height and the checkmark height.

listFormat Optional. Specify viewFormat flags to be used for the
viewFormat slot of the list child view. The default
setting is vfFrameGray + vfPen(1).

pickerDef Required. A frame used to determine the overall
behavior of the list picker. This frame should be based
on protoNameRefDataDef or
protoPeopleDataDef. For an example, see “Using
the Data Definitions Frame in a List Picker” (page 6-29)
in Newton Programmer�s Guide

selected Required. An array of references. Set this slot in the
ViewSetupFormScript method if you want the list to
be displayed with one or more items preselected.
Note that the name reference data definition contains
the _unselected slot, which can be used to override
the preselection of individual items (even though they
are in the selected array).
While the list picker is open, the selected list is not valid
until the picker’s ViewQuitScript has run. Any
operations on the data should be postponed, either by
using the 'postQuit deferral mechanism, or by calling
the inherited ViewQuitScript method before your
own operations.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-95

soupToQuery Optional. A string specifying the union soup to query,
or a function that returns a soup. This slot overrides any
soup specified in the data definition. By default, no
soup is queried.

querySpec Passed to the query routine. The tagSpec slot is
replaced internally, and the validTest may be
enhanced internally to allow the checkbox filtering and
folder support. This slot overrides any querySpec
specified in the data definition.

suppressNew Optional. If this slot is present and its value is non-nil,
the New button is not drawn.

suppressScrollers
Optional. If this slot is present and its value is non-nil,
the up and down scroll arrows are not drawn.

suppressAZTabs Optional. If this slot is present and its value is non-nil,
the a-z tabs are not drawn.

suppressFolderTabs
Optional. If this slot is present and its value is non-nil,
the folder tabs are not drawn.

suppressSelOnlyCheckbox
Optional. If this slot is present and its value is non-nil,
the Selected Only checkbox is not drawn.

suppressCloseBox
Optional. If this slot is present and its value is non-nil,
the close box is not drawn.

suppressCounter
Optional. Suppresses the text at the bottom right
indicating how many items are selected

reviewSelections
Optional. If present and non-nil, and if
singleSelect is nil, when the picker is opened with
preselected items, the Selected Only checkbox is
checked.

readOnly Optional. If present and non-nil, constrains the
interface so that the currently selected list can be
viewed but not changed. All taps in the body of the

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-96 Overview Protos

picker are ignored, the New button and Selected Only
checkbox are hidden, and the checkboxes are
suppressed.

dontPurge Optional. If present and non-nil, prevents unselected
name references from being stripped out of the selected
array when the picker is closed. You may also specify
this slot in the data definition.

soupChangeSymbol
The symbol to use in the RegSoupChange message; by
default, its 'listpicker.

The list picker automatically registers notification of soup change in the soup
it will query. By default, only the SoupEnters and SoupLeaves messages
are handled. To handle any other messages, or to override the default
behavior for the SoupEnters or SoupLeaves change types, add a slot
whose name is the changeType you wish to support, and make its value a
function of a soupName and the changeData. This function will be called
when the soup notification is received with that changeType.See Table 9-1
(page 9-15) for a list of available changeType values.

SoupEnters 5

picker:SoupEnters(soupName, changeData)

Called when the list picker is notified that the soup has changed and the
changeType is 'soupEnters. This means that the soup has become available.
By default, redisplays the cursor contents.

soupName The name of the soup that has become available.

changeData The soup itself.

SoupLeaves 5

picker:SoupLeaves(soupName, changeData)

Called when a soup becomes unavailable. This method synchronizes the
cursor in case it was pointing to an entry removed with a soup and then
refreshes the list.

soupName The name of the soup that has become unavailable.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-97

changeData The soup itself. Note that you shouldn’t use this soup,
since this message means it is no longer available.

SetNowShowing 5

picker:SetNowShowing(value)

Sending this message is equivalent to tapping the Selected Only button.

value A symbol, where 'all means show all entries and
'selected means show only selected entries.

GetSelected 5

picker:GetSelected(activeOnly)

This method returns a clone of the selected array.

activeOnly A Boolean which, if non-nil, returns an array that is
stripped of any _unselected name references.

protoNameRefDataDef 5

The protoListPicker proto is driven in large part by the data definition
specified in the pickerDef slot. The protoNameRefDataDef proto is
provided for creating your own data definitions.

Figure 5-40 (page 5-106) shows an example of a protoListPicker whose
data definition is based on protoPeopleDataDef.

All calls to methods in the pickerDef slot are handled by sending the
message to the frame itself, so the methods described below can use
inherited functions and store data in the frame as needed.

Slot descriptions

name The name that appears in the top-left corner of the
picker. The default value in Newton devices with
English ROMs is “Names”.

class A symbol specifying the class to which all name
references should be set; the default value is 'nameRef.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-98 Overview Protos

entryType When a soup entry is created, its class should be set to
this type. The makeNameRef routine should respect
this slot.

columns An array of column specifications; for details, see
“Column Specifications” (page 5-3); for an example, see
“Specifying Columns” (page 6-29) in Newton
Programmer�s Guide. The default is a single, full-width
column whose fieldPath is 'name.

singleSelect Optional. If this slot is present and its value is non-nil,
only a single item at a time can be selected from the list.
(Selecting additional items deselects the original.)
Do not pre-load the selected slot with multiple
selected name references and then specify
singleSelect.

soupToQuery A string specifying the union soup to query or a
function returning a soup. All data displayed is
retrieved from this soup.

querySpec Passed to the query routine. The tagSpec slot is
replaced internally, and the validTest may be
enhanced internally to allow the checkbox filtering and
folder support. By default all Names entries are
displayed.

validationFrame
A validation frame acceptable to the ValidityCheck
system global function. Used by the default
ValidityCheck method. The default value is nil.

MakeCanonicalNameRef 5

dataDef:MakeCanonicalNameRef(object, dataClass)

Creates and returns a name reference with no application-specific slots. This
method should not be overridden, but can be called if needed.

object An entry, an alias, a name reference, a frame, or nil.

dataClass Optional. The class of the entry.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-99

MakeNameRef 5

dataDef:MakeNameRef(object, dataClass)

Creates a name reference with one additional slot name (by calling
MakeCanonicalNameRef). Overrides of this method should generally call
MakeCanonicalNameRef and fill in the slots that are needed.

If you are using protoListPicker to browse an array, this method should
be overridden to add the slots returned by MakeCanonicalNameRef to the
items in the array. To remove these slots, use the PrepareToAdd method.

object An entry, an alias, a name reference, a frame, or nil.

dataClass Optional. The class of the entry. If this is not specified,
it’s taken from the data definition.

Get 5

dataDef:Get(object, fieldPath, format)

Returns a value from the specified object, retrieved from the column
specification.

object An entry, an alias, a name reference, a frame, or nil.

fieldPath A symbol uniquely identifying the field that should be
displayed in this column. This symbol is used by the list
picker to retrieve the data, and (in most cases and
certainly the default case) is the actual path in the entry
to the data field desired. However, it is possible to use
the symbol purely as a marker—for example if the
particular data required is a calculated aggregate of a
number of data fields—as long as all the routines in the
data definition that use this symbol are overridden to
recognize this usage.

format Determines the value returned; possible values are
'text, 'sortText, or nil. If nil, the actual field is
desired. If 'text, a text representation is requested. The
value'sortText should be used only for the first

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-100 Overview Protos

column in the columns array. For example, assume the
following is defined:

local aName := '{first: "Cindy", last: "Peters"};

The result of calling the default Get method

[:Get(aName, 'name, format)]

depends on the value of the format parameter:

'text "Cindy Peters"
'sortText "Peters, Cindy"
nil {first: "Cindy", last: "Peters"}

If the first column specification has fieldPath = 'fruitType, the
overridden Get function should support 'sortText for 'fruitType, but
all other fields need only support nil and 'text.

GetPrimaryValue 5

dataDef:GetPrimaryValue(object, format)

Called by the default Get method to retrieve the data. The default method
returns nil.

object An entry, an alias, a name reference, a frame, or nil.

format Determines the value returned; see Get method for
details.

HitItem 5

dataDef:HitItem(tapInfo, context)

Called when the user taps in the picker. This method should return either a
reference to a view opened as a result of the tap, or nil. If a view is opened,
all tap processing by the list picker is suppressed until the data definition
passes control back to the list picker by calling context:Tapped(action);
described on page 5-102.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-101

tapInfo A frame containing the following slots:

nameRef The name reference that was tapped.
tapIndex The visible index of the name reference, or

nil for “new.”
bbox The bounding box for the cell that was

tapped.
fieldPath The fieldPath for the column tapped,

or 'new if it was the New button.
editPaths All columns for this list.
popup Used in pop-up processing.

context The view handling the tap.

MakePopup 5

dataDef:MakePopup(object, fieldPath)

Returns nil or an array suitable for passing to the PopupMenu method. If
the value of an item in the pop-up view is different from the item slot, the
slot value should hold the proper value. If the item is to open the editor, the
value slot should be the symbol 'openeditor. This method is called by
the list picker to determine when to precede a column with a diamond
character. If you override the default HitItem method, this method should
return non-nil to get the diamond character.

If an array is returned, it is popped up by PopupMenu. If nil is returned, the
HandleTap method is called.

object An entry, alias, a name reference, a frame, or nil.

fieldPath A symbol uniquely identifying the field that should be
displayed in this column. This symbol is used by the list
picker to retrieve the data, and (in most cases and
certainly the default case) is the actual path in the entry
to the data field desired.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-102 Overview Protos

Tapped 5

context:Tapped(action)

Call this method from the HitItem method to indicate that a tap has been
handled.

action A symbol indicating what action to take in response to a
tap. The following values can be specified:

'select Select the item.
'toggle Toggle between selected and unselected

state.
nil Do nothing.

New 5

dataDef:New(tapInfo, context)

Called when the user taps the New button. This method should return either
a reference to a view opened as a result of the tap, or nil. If a view is
opened, all tap processing by the list picker is suppressed until the data
definition passes control back to the list picker by calling
context:Tapped(action).

If a validationFrame slot is provided, the default New method opens a
label input line slip (as in the default editing for an item) allowing editing of
a new entry with one child view for each column in the picker.

tapInfo A frame containing the following slots:

nameRef The name reference that was tapped.
tapIndex The visible index of the name reference, or

nil for “new.”
bbox The bounding box for the cell that was

tapped.
fieldPath The field path for the column tapped, or

'new if it was the New button.
editPaths All columns for this list.
popup Used in pop-up processing.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-103

context The view handling the tap.

DefaultOpenEditor 5

dataDef:DefaultOpenEditor(tapInfo, context, why)

You can call this method to open an edit view, for editing an existing record
or in response to a tap on the New button.

The DefaultOpenEditor method causes a call to either
DefaultEditDone or DefaultNewDone when the edit slip is closed.

tapInfo A frame containing the following slots:

nameRef The name reference that was tapped.
tapIndex The visible index of the name reference, or

nil for 'new.
bbox The bounding box for the cell that was

tapped.
fieldPath The field path for the column tapped,

or'new if it was the New button.
editPaths All columns for this list.
popup Used in pop-up processing.

context The view handling the tap.

why A symbol that can be either 'edit or 'new.

OpenEditor 5

dataDef:OpenEditor(tapInfo, context, why)

You can add this method and call it instead of DefaultOpenEditor if you
need more flexibility than is provided by DefaultOpenEditor. You also
need to draw the layout for each editor you need.

The arguments and return value are as per DefaultOpenEditor. See
“Validation and Editing in protoListPicker” (page 6-31) in Newton
Programmer�s Guide for an example.

tapInfo A frame containing the following slots:

nameRef The name reference that was tapped.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-104 Overview Protos

tapIndex The visible index of the name reference, or
nil for “new.”

bbox The bounding box for the cell that was
tapped.

fieldPath The field path for the column tapped,
or'new if it was the New button.

editPaths All columns for this list.
popup Used in pop-up processing.

context The view handling the tap.

why A symbol that can be either 'edit or 'new.

NewEntry 5

dataDef:NewEntry(nameRef, label)

Returns a new soup entry, filled in as much as possible from the name
reference passed in, and with the tags slot set appropriately so that the entry
is in the current folder. The new entry’s class slot is given the value specified
by the cardType slot in the data definition.

nameRef Holds the new soup information.

context The view handling the tap.

Note

If the soup doesn’t exist, this method fails silently. ◆

ModifyEntry 5

dataDef:ModifyEntry(nameRef, fieldPath)

Returns the modified entry. Sets the field named by ÞeldPath in the
underlying soup entry for the name reference. It then calls
EntryChangeXmit on the entry.

nameRef The name reference for the entry that underwent the
modifications.

fieldPath The array of the paths into the nameRef that changed.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-105

Validate 5

dataDef:Validate(nameRef, pathArray)

You can add this method if you want to deal with nested soups or otherwise
need more flexibility than you get when you use the ValidateFrame slot.
This should return an array of paths that failed, or an empty array.

nameRef Name reference to validate.

pathArray Array of paths to validate in the name reference.

Validate each path in pathArray in the given nameRef. Accumulate a list of
paths that are not valid and return them. See “Validation and Editing in
protoListPicker” (page 6-31) in Newton Programmer�s Guide for an example.

protoPeopleDataDef 5

The protoPeopleDataDef, which is based on the
protoNameRefDataDef, is the basis of the built-in data definitions used by
protoPeoplePicker and protoMeetingplacePicker.

Figure 5-40 shows an example of a protoListPicker whose data
definition is based on protoPeopleDataDef.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-106 Overview Protos

Figure 5-40 A protoListPicker based on protoPeopleDataDef

Slot descriptions

entryType When a soup entry is created, its class should be set to
this type. The makeNameRef routine should respect this
slot. The default value is 'person.

soupToQuery A string specifying the union soup to query or a
function returning a soup. All data displayed is

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-107

retrieved from this soup. By default the Names soup is
queried.

primaryPath Optional. Symbol used to indicate that a specific column
is the primary path. The primary path is treated
specially in that the data displayed can be retrieved
from multiple source slots; that is, the primary path for
a card is the name, but for a company card the name
data comes from the company slot. The mapping of
where the data comes from is specified by the
primaryPathMapper.

primaryPathMapper
Optional. A frame where each slot maps an entry class
to the slot from which the data for the primary path
should be retrieved. So, for example, the
primaryPathMapper for the cardfile is
{person: name,
owner: name,
company: company,
group: group,
worksite: place,}

superSymbol (Used exclusively to support routing.) Used as usual for
dataDefs. However, if the superSymbol is
'groupTransport, the list picker type defined by this
nameRef is available as one of the routing choices in the
group card in the Names application. The name
displayed in that application is the value of the name
slot in the data definition.

routePath (Used exclusively to support routing.) Used by the
GetRoutingInfo function to determine which
nameRef slot contains the routing information.

The protoPeopleDataDef uses the methods described in the following
sections. The additional methods GetRoutingInfo,
GetItemRoutingFrame, GetRoutingTitle, and PrepareForRouting
are used exclusively to support routing. They can be ignored if the data
definition is not intended for routing or can be overridden if necessary.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-108 Overview Protos

Equivalent 5

dataDef:Equivalent(nameRef1, nameRef2, pathArray)

This method compares the data in two name references and returns an array
of all paths that contain nonequivalent (in terms of what is displayed) values.

The default method handles strings and immediates; anything more
sophisticated should be overridden here.

nameRef1 A name reference.

nameRef2 A name reference.

pathArray An array of paths.

If you are using the default editing methods with a slot containing a frame,
you need to override this method as well as provide a validationFrame
(or override the Validate method). The ModifyEntry method is not
responsible for deciding if an entry should be modified; when it is called, all
the paths specified in the fieldPath parameters have been changed and
should be entered properly in the appropriate Names soup entry.

Validate 5

dataDef:Validate(nameRef, pathArray)

This method returns an array of invalid paths.

nameRef A name reference.

pathArray An array of paths.

ModifyEntryPath 5

dataDef:ModifyEntryPath(nameRef, entry, path)

This method handles the modification of currently defined Names soup
entries. For nonprimary paths, it sets
entry.(path) := nameRef.(path). For the primary path (phone
numbers, e-mail addresses and so on), it sets the sortOn and class slots
correctly.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-109

In other words, you should override ModifyEntry as appropriate, iterate
across the paths, write through those for which entry.(path) :=
nameRef.(path) isn’t sufficient (other than the primary path), and call the
inherited ModifyEntryPath for all the others.

nameRef A name reference.

entry A Names soup entry.

nameRef A field path.

GetRoutingInfo 5

dataDef:GetRoutingInfo(object)

This method retrieves all the routing information for an item. By default, this
method just calls GetRoutingFrame on the item. However, if the item is a
group, this method iterates across each member, as returned by Get(item,
routePath, nil), and recursively calls GetRoutingInfo for each member.

object An entry, alias, name reference, frame, or nil.

GetItemRoutingFrame 5

dataDef:GetItemRoutingFrame(item)

This method is required for transport name references. It is called by the
GetRoutingInfo method to convert the specific routing information into a
form acceptable by the transport.

entry The name reference of the entry from which to get the
routing information.

GetRoutingTitle 5

dataDef:GetRoutingTitle(objects, width, font)

Similar to the GetRoutingInfo method, GetRoutingTitle is called by
the transport code to create a string to display as the target of the transport.
The string that is displayed is retrieved from the primaryPath slot.

objects A name reference, an array of name references, or nil.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-110 Overview Protos

width The maximum length of the string, as specified in
number of pixels.

font The font in which the string is rendered.

PrepareForRouting 5

dataDef:PrepareForRouting(nameRef, fieldPath, format)

This method is called to strip any information that is context specific (aliases,
for instance) from the specified name reference.

object A name reference.

protoPeoplePicker 5

This proto implements a picker showing names from the Names application,
along with associated phone numbers, fax numbers, or email addresses. In
cases where several choices are possible, the picker allows selection using a
pop-up selector. The proto also allows the user to add new entries, or
additional information for existing entries.

This proto works with the data definition registry, using predefined data
definitions to implement the picker behavior.

Slot descriptions

class A symbol specifying the type of data to display, and the
data definition used to display it. You can specify the
following values:
|nameRef.people| names
|nameRef.phone| phone numbers
|nameRef.fax| fax numbers
|nameRef.email| e-mail addresses

selected This slot is inherited by protoListPicker and
contains an array of name references for selected items.
These items may have been selected from the picker or
added by the user. Note that some clean-up is
conducted when the ViewQuitScript of
protoListPicker is called, so the selected array

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Overview Protos 5-111

should be used only after this executes (in other words,
in a deferred send).
An array of name references may be passed in to the
picker when it is first opened to establish defaults for
the current item selections.

All other behavior is provided by the data definition; see
protoNameRefDataDef for details.

protoPeoplePopup 5

This proto is similar to protoPeoplePicker, but opens a pop-up view
containing the picker (instead of having the picker embedded in the
application).

Slot descriptions

class A symbol specifying the type of data to display, and the
data definition used to display it. You can specify the
following values:
|nameRef.people| names
|nameRef.phone| phone numbers
|nameRef.fax| fax numbers
|nameRef.email| e-mail addresses

selected This slot is inherited by protoListPicker and
contains an array of name references for selected items.
These items may have been selected from the picker, or
added by the user. Note that some cleanup is conducted
when the ViewQuitScript of protoListPicker is
called, so the selected array should only be used after
this executes (in other words, in a deferred send or
'postQuit operation).
An array of name references may be passed into the
picker when it is first opened to establish defaults for
the current item selections.

context Optional. The name of the view containing the
PickActionScript method.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-112 Roll Protos

options All slots in this frame are copied to the
protoListPicker view, so anything that can be
specified to protoListPicker can be specified in the
options slot. You can override any slot in the pop-up
view; for instance, the suppressNew slot.

PickActionScript 5

picker:PickActionScript(selected)

This method is called when the pop-up view is closed.

selected The selected array.

All other behavior is provided by the data definition; see
protoNameRefDataDef for details.

Roll Protos 5

These protos are used to implement roll views. A roll view consists of several
discrete subviews, arranged vertically, one above the other. The roll can be
viewed in overview mode, where each subview is represented by a
single-line description. Any single view or all views can be expanded to full
size.

protoRoll 5

This proto is used to create a roll-like view that includes a series of
individual items (other views) that the user can see either as a collapsed list
of one-line overview descriptions or as full-size views. When an overview
line is tapped, all the full-size views are displayed, with the one that was
tapped shown at the top of the protoRoll view. Each view occupies the full
width of the protoRoll and the views are arranged one above the other.

The user can then scroll through all the expanded views by using the
universal scrollers (up and down arrows). The user can also tap the

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Roll Protos 5-113

Overview button (the dot between the up and down arrows) to get back to
the overview list to select another item.

In the collapsed view, the items in the overview list are preceded by bullets.
Figure 5-41 shows an example of this type of view.

Figure 5-41 Example of a rolled list of items

The following protoRoll methods are defined internally:
ViewSetupChildrenScript, ViewScrollUpScript,
ViewScrollDownScript, ViewOverviewScript, GetOverview, and
ShowItem. If you need to use one of these methods, be sure to call the
inherited method also (for example,
inherited:?ViewSetupChildrenScript()), otherwise the proto may
not work as expected.

The protoRoll is based on a view of the clView class. It has no predefined
child views, though they are dynamically created at run time from the view
templates you place in the items slot.

Slot descriptions

viewFlags The default setting is vApplication + vClipping.
viewBounds By default, the bounds are set to the entire screen,

beginning 16 pixel lines down from the top. This would
leave room for a title at the top if the protoRoll was
placed inside a protoApp.

items An array of templates that correspond to the items in
the list. Each of these should use protoRollItem as

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-114 Roll Protos

its proto. For details, see “protoRollItem” (page 5-119).
Because this slot cannot usually be set until run time,
you should set it in the ViewSetupFormScript
method.

allCollapsed Optional. If this slot is set to a non-nil value, the roll is
initially displayed in a collapsed state; that is, only the
list of one-line overviews is displayed. If this slot is nil,
the roll is initially displayed in an expanded state. The
default is nil.

index This slot is used only when allCollapsed is set to
nil; that is, when the roll is initially displayed in an
expanded state. Items from the items array are
displayed in the roll beginning with the item at this
index.

declareSelf Must be set to 'roll. This identifies the view that
should receive scroll and overview events. This view
must also be immediately enclosed by a parent view
that has the vApplication view flag set, in order for
scrolling and overview handling to operate properly.

Here is an example of a template using protoRoll:

myRoll := {...

_proto: protoRoll,

declareSelf: 'roll,

allCollapsed: true,

index: 0,

items: [

{_proto:protoRollItem,

height:50,

overview:"Overview of item 1",

viewBounds:{left:0,top:0,right:0,bottom:50},

stepChildren:[{_proto:protoStaticText,

text:"This is the first test roll item",

viewJustify: vjParentFullH + vjParentFullV,

viewBounds:{left:0,top:0,right:0,bottom:0},

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Roll Protos 5-115

viewfont:ROM_fontSystem12 }],

},

{_proto:protoRollItem,

height:200,

overview:"Overview of item 2",

viewBounds:{left:0,top:0,right:0,bottom:200},

stepChildren:[{_proto:protoStaticText,

text:"This is the second test roll item",

viewBounds:{left:0,top:0,right:0,bottom:0}

}],

},

{_proto:protoRollItem,

height:200,

overview:"Overview of item 3",

viewBounds:{left:0,top:0,right:0,bottom:200},

stepChildren:[{_proto:protoStaticText,

text:"This is the third test roll item",

viewBounds:{left:0,top:0,right:0,bottom:0}

}],

},

{_proto:protoRollItem,

height:50,

overview:"Overview of item 4",

viewBounds:{left:0,top:0,right:0,bottom:50},

stepChildren:[{_proto:protoStaticText,

text:"This is the fourth test roll item",

viewBounds:{left:0,top:0,right:0,bottom:0}

}],

}],

...};

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-116 Roll Protos

protoRollBrowser 5

This proto is similar to protoRoll, except that the protoRollBrowser is
an entirely self-contained application. It is based on the protoApp proto, so
it has a title and a status bar. Also, it need not be contained in another view.

The protoRollBrowser works exactly like the protoRoll in other
respects. Figure 5-42 shows an example of a protoRollBrowser view in its
collapsed and expanded states:

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Roll Protos 5-117

Figure 5-42 Example of a collapsed and expanded rolled list of items

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-118 Roll Protos

The protoRollBrowser uses the protoApp proto. A protoRollBrowser
has the following three child views:

■ A roll view, based on protoRoll. This view occupies most of the parent
view, except for the title and status bar areas.

■ A title, based on protoTitle.

■ A status bar, based on protoStatus.

Slot descriptions

viewBounds Set to the size and location where you want the roll to
appear. By default it is centered horizontally within its
parent view.

viewJustify Optional. The default setting is vjParentCenterH.
viewFormat Optional. The default setting is vfFillWhite +

vfFrameBlack + vfPen(1) + vfInset(1) +
vfShadow(1).

title A string that is the title. This title appears in a title bar
at the top of the roll. (It uses protoTitle to create the
title.)

rollItems An array of templates that correspond to the items in
the list. Each of these should use protoRollItem as its
proto. Because this slot cannot usually be set until run
time, you should set it in the ViewSetupFormScript
method.

rollCollapsed Optional. If this slot is set to a non-nil value, the roll is
initially displayed in a collapsed state; that is, only the
list of one-line overviews is displayed. If this slot is nil,
the roll is initially displayed in an expanded state. The
default is non-nil.

rollIndex This slot is used only when rollCollapsed is set to
nil; that is, when the roll is initially displayed in an
expanded state. Items from the items array are
displayed in the roll beginning with the item at this
index.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Roll Protos 5-119

declareSelf Do not change. This slot is set by default to 'base. This
identifies the view to be closed when the user taps the
close box.

Here is an example of a template using protoRollBrowser:

myRollBrowser := {...

_proto: protoRollBrowser,

title: "My RollBrowser",

rollCollapsed: true,

declareSelf: 'base,

rollitems: [

{_proto:protoRollItem,

height:50,

overview:"Overview of item 1",

viewBounds:{left:0,top:0,right:0,bottom:50},

stepChildren:[{_proto:protoStaticText,

text:"This is the first test roll item",

viewJustify: vjParentFullH + vjParentFullV,

viewBounds:{left:0,top:0,right:0,bottom:0},

viewfont:ROM_fontSystem12 }],

}, // ... and so on

],

...};

protoRollItem 5

This proto is used for one of the views in a roll (based on protoRoll or
protoRollBrowser). You should specify an array containing one or more
views based on protoRollItem. Each item in the array represents one of
the views in the roll.

The protoRollItem is based on a view of the class clView.

Note that the protoRollItem proto is not used by picking it from the view
palette in NTK. You use this proto by writing a textual description of your
template, referring to this proto in the _proto slot of your template frame.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-120 Roll Protos

You write one template frame for each item to be shown in the roll, and
place them all in an array in the items slot of the roll. See protoRoll for an
example.

Slot descriptions

viewBounds Typically, you set the bounds to 0, 0, 0, height. The
first three bounds parameters are not needed because
the view is positioned below the previous child and
fully horizontally justified within the roll. However,
you can specify values other than zero to indent the
view from the sides of its parent or to separate it from
its preceding sibling, but keep in mind how the
viewJustify setting affects the interpretation of the
viewBounds values. For more information on the
viewJustify slot, see “View Alignment” (page 3-13)
in Newton Programmer�s Guide.

viewFormat Optional. The default setting is vfFillWhite +
vfFrameBlack + vfPen(1).

viewJustify Optional. The default setting is vjSiblingBottomV
+ vjParentFullH.

overview A string that is the one-line overview to be displayed
for this view when the roll is collapsed and only the
overview list is shown.

height Set to the height of the view, in pixels.
stepChildren An array containing one or more child views that

belong to the view that is this particular roll item. These
are shown when this item is expanded (tapped by the
user, or scrolled to after the roll has already been
expanded). Typically, each child view uses a proto and
can include whatever slots are important for use with its
particular proto.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

View Classes 5-121

View Classes 5

The following view class is used to display an expandable text outline.

Outline View (clOutline) 5

The clOutline view class is used to display an expandable text outline.
Figure 5-43 shows an example.

Figure 5-43 Example of an expandable text outline

The clOutline view class includes these features:

■ Multilevel outline (up to 15 levels), with each outline level indented from
the previous one.

■ Headings that can be expanded (those that contain subheadings) are
shown in bold automatically.

■ Headings the user can expand to show subheadings by tapping the
heading. Another tap on the heading collapses it, hiding its subheadings.

■ Only one main heading can be expanded at a time. If the user taps a
different heading, any other expanded heading is automatically collapsed,
and the new heading is expanded.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-122 View Classes

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

browsers An array containing one frame item, List, which is
itself an array of the items to be shown in the outline.
Each outline item is a frame containing these slots:
level The outline level of this item. “1” specifies

a top-level heading, “2” specifies a
second-level heading, and so on. This slot
can be omitted for top-level items; it
defaults to level 1. You can use up to 15
levels.

name A string that is the text to be shown in the
outline. Tabs are not allowed in the text.

viewFont Specify the font to be used for the text in the outline. It’s
best not to specify a bold font since bold is added
automatically for headings that have subheadings. If
you specify bold, all the text will be bold. The default
font is ROM_fontSystem10.

viewFlags The default setting is vVisible + vClickable +
vReadOnly.

viewFormat Optional. The default setting is nil.
clickSound Optional. Specify a sound frame. This sound is played

when the user taps any item in the outline.

OutlineClickScript 5

outline:OutlineClickScript(index, unused)

This method is called whenever the user taps an item in the outline. This
function must return non-nil.

index The index of the outline item in the List array (inside
the browsers slot).

unused Unused.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

View Classes 5-123

Here is an example of a view definition of the clOutline class:

myOutline := {...

viewclass: clOutline,

viewFlags: vVisible+vClickable+vReadOnly,

viewBounds: {left: 25, top: 56, right: 220,

bottom: 232},

viewFont: ROM_fontsystem12,

clickSound: ROM_flip,

browsers: [{list: [

{level:1, name:"My First Heading"},

{level:2, name:"First level 2 head"},

{level:2, name:"Another level 2 head"},

{level:3, name:"Wow—a third level!"},

{level:1, name:"Second main heading"},

{level:2, name:"Section 2 subhead 1"},

{level:2, name:"Section 2 subhead1"},

{level:1, name:"Third main heading"},

{level:2, name:"Last subhead"},

] }],

OutlineClickScript: func(index, dummy)

begin

Print("You picked browser item " & index);

true;

end,

...};

Monthly Calendar View (clMonthView) 5
The clMonthView view class is used to display a monthly calendar.
Figure 5-44 shows an example of a monthly calendar view.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-124 View Classes

Figure 5-44 Monthly calendar view

Selected days are highlighted with an inverted rounded rectangle. The
current day is shown in bold, if it appears in the month that is displayed.

Here is an example of a view definition of the clMonthView class:

theMonth := {...

viewclass: clMonthView,

viewBounds: {left: 58, top: 82, right: 186,

bottom: 178},

viewflags: vVisible+vClickable,

labelFont: ROM_fontSystem9Bold,

datesFont: ROM_fontSystem9,

selectedDates: nil,

ViewSetupFormScript: func()

begin

self.selectedDates := [Time()];

end,

...}

These slots are of interest for a view of the clMonthView class:

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

selectedDates Required. Initially, this slot must be set to an array
containing a single element that is a time value. (For

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

View Classes 5-125

example, you can use the Time function to return the
current time.) The month displayed is the month in
which this time value occurs. If the user makes a
selection of days in the month, this slot holds an array
of time values, one for each of the days selected. All
time values are represented as the number of minutes
passed since midnight, January 1, 1904.

year A read-only slot that holds an integer that is the year of
the month shown.

month A read-only slot that holds an integer that is the number
of the month shown (January=1, . . . , December=12).

viewFlags The default setting is vVisible+vClickable.
viewFormat Optional. The default setting is nil.
datesFont Optional. The font used for the day numbers. The

current day’s date is shown in bold. The default font is
ROM_fontSystem9.

labelFont Optional. The font used to label the days above the
dates. If you omit this slot or set it to nil, the day
labels are not shown. The default font from NTK is
ROM_fontSystem9Bold.

noSelection Optional. You should set this slot to true if you do not
want the initial date highlighted (selected) when the
month view is first displayed. The default is nil.

singleDay Optional. You should set this slot to true to force
single-day selection only (in which the user cannot
select multiple days). The default is nil, meaning that
multiple day selection is allowed.

Typically, the selectedDates slot resides in the parent view of the month
view and is found through inheritance when the month view is instantiated.
This allows the parent and its other child views to have access to the date
selection from the month view.

The following methods are of interest in clMonthView.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-126 Pop-up Functions and Methods

MonthChangedScript 5

monthView:MonthChangedScript()

Called when the date selection changes.

This method lets you take an action when the date selection changes. The
new selected dates are stored in an array in the selectedDates slot.

The return value of this method is ignored.

ViewSetupFormScript 5

monthView:ViewSetupFormScript()

Called before the month view is opened.

This method is set by default in NTK to the following line of code:

self.selectedDates := [Time()];

This code causes the view to display the current month when it is opened.

Pop-up Functions and Methods 5

The following functions and methods are used in creating pop-up views.

PopupMenu 5

view:PopupMenu(pickItems, options)

Creates a dynamic pop-up list view, or picker, from which one item can be
selected.

PopupMenu returns the picker view that it creates.

pickItems An array of items that you want to appear in the picker
list. The elements in the array appear with the first item
at the top of the list, continuing down to the last item. If
the list contains more items than can be shown on the
screen at one time, the user can scroll it to see more

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Pop-up Functions and Methods 5-127

items. For more details on the items you can specify in
the picker list, see the section “Specifying the List of
Items for a Popup” (page 6-37) in Newton Programmer�s
Guide.
Often this is simply an array of strings to appear in the
list.
If you list items that include icons, be aware that
PopupMenu scales the items to the maximum of the icon
height and text height. You can force this to a desired
value (for all items, except separators) by adding this
option slot to the Þrst item:

view:PopupMenu([{item: "first one", fixedheight:

22}...)

If you use icons in a list that can become large enough to
scroll, you should specify the fixedHeight slot for
every item.
If you find the indentation and placement of your icons
and text are ragged, you can provide an indent slot for
the first item, which forces every item to be indented
correctly; for example:

view:PopupMenu([{item: "first one", indent: 28}...)

To insert a light or dark separator line between two
items, place 'pickseparator or
'picksolidseparator in the item list.
To add a nonpickable item or place a mark next to an
item, specify the item as a frame containing the
following slots:
item The item string.
pickable Specify non-nil if you want the item to

be pickable, or nil for not pickable.
Nonpickable items appear in the list but
are not highlighted and can’t be selected.

mark A character to be displayed next to the
item. You can specify a character with

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-128 Pop-up Functions and Methods

either a dollar sign followed by the
character code ($\uFC0B, for example,
produces the check mark symbol in the
Espy font) or one of the character
constants (kCheckMarkChar, for
example).

options A value that specifies where the pop-up menu appears.

There are a number of possible options. For button
pop-up views, specify nil; the pop-up view is placed
adjoining the view to which the PopupMenu message is
sent (not obscuring the button).

You can also specify a frame with two slots—left and
top—which define the top-left corner of the pop-up
view. The new view is placed relative to the view from
which PopupMenu is called (the parent). The left edge
of the new rectangle is inset left pixels from the left
side of the parent, and the top edge is inset top pixels
from the top edge of the parent.

You can also provide a 'bounds slot that is a bounds
frame that specifies, in local coordinates, the rectangle
next to which the pop-up view should appear.

When an item in a picker is selected, the system sends the
PickActionScript message to the view identified by self (the view
from which PopupMenu was called). You must define PickActionScript
as a method that accepts one parameter. The parameter passed to
PickActionScript is the array index of the item number selected in the
list (the first item has an index of zero).

If no item is selected—that is, if the user taps outside the picker to close it—
the PickCancelledScript message is sent to the view identified by self.
If you want to handle this message, define a method that accepts no
parameters, since none is passed.

SetItemMark and GetItemMark are two methods provided for picker
views. You can use them within the PickActionScript method (or

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

Pop-up Functions and Methods 5-129

elsewhere) to set and get the mark for an item. You call these methods as
follows:

popupView:SetItemMark()
popupView:GetItemMark()

where popupView is the view returned by the PopupMenu method. For
details on these methods, see protoPicker.

The picker view created by PopupMenu is automatically closed after the user
selects an item or taps outside the view.

Name Reference Functions 5

The following global routines are provided for working with name
references.

IsNameRef 5

IsNameRef(item)

This function returns non-nil if the specified item is a name reference (as
determined by the presence of an _alias slot).

AliasFromObj 5

AliasFromObj(item)

This function returns an alias, if possible. If the item is an alias, it is simply
returned. If the item is a soup entry, an alias to it is created and returned. If
the entry is a name reference, the alias to its entry is returned. In all other
cases, nil is returned.

EntryFromObj 5

EntryFromObj(item)

This function returns an entry if possible. Basically, it looks for an entry alias
and then tries to resolve the entry from it.

C H A P T E R 5

Pickers, Pop-up Views, and Overviews Reference

5-130 Pop-up Functions and Methods

ObjEntryClass 5

ObjEntryClass(item)

This function returns the class of the entry returned by the EntryFromObj
function.

6-1

C H A P T E R 6

Controls Reference 6

This chapter provides reference information for the control protos that you
can use in your applications. You use the control protos to provide various
user interface and view enhancement features in your applications. This
chapter describes the following controls and other protos:

■ horizontal and vertical scrollers

■ boxes and buttons

■ alphabetical selection tabs

■ gauges and sliders

■ time-setting displays

■ special views

■ view appearance enhancements

■ status bars

Figure 6-0
Table 6-0

C H A P T E R 6

Controls Reference

6-2 Scroller Protos

Scroller Protos 6

Scrollers allow the user to move vertically or horizontally through a display
that is bigger than the view. The Newton System Software provides a
number of scrollers that allow users to scroll their views.

For an overview of using the scroller protos in your applications and a
description of how to implement a simple scroller, see “Scroller Protos”
(page 7-2) in Newton Programmer�s Guide.

protoHorizontal2DScroller 6
This proto is used to include both left/right and up/down scrollers, centered
at the bottom of a view. Note that most units are expressed in terms of
scrollable items (cells, lines, and so on) rather than pixels. The following
figure shows the possible scrolling directions.

The viewBounds and viewJustify slots of
protoHorizontal2DScroller are set up to center the scroller in its
parent view. Change these slots only if you want the scroller in a different
location.

Slot descriptions

scrollView Optional. Messages are sent to this view; the default is
the template. You usually set this slot in the
ViewSetupForm script.

scrollRect Optional. Extent of scrollable area, in units to scroll
(lines, pixels, and so on).

dataRect Optional. Extent of data in the view. This is often the
same value as scrollRect.

viewRect Optional. Extent of visible area.

C H A P T E R 6

Controls Reference

Scroller Protos 6-3

scrollAmounts Optional. An array of three numbers passed to you for
scrolling: [line, page, double-tap]. The default is [1, 1, 1].

pageThreshold Optional. The number of lines scrolled before scrolling
in pages; the default is 5.

The following slots represent the current offset from the scrollable area. For
example, if you scroll to the right, xPos is a positive value.

xPos Current horizontal coordinate in the scrollRect.
yPos Current vertical coordinate in the scrollRect.

The protoHorizontal2DScroller scroll arrows are handled for you,
provided you specify scrollRect, dataRect, and viewRect correctly. If
you want to get and set the arrows state, though, you can use the GetArrow
and SetArrow methods, described on page 6-4.

ViewScroll2DScript 6

ScrollView:ViewScroll2DScript(direction, extras)

Is called when the user taps the scroll arrows. This method is required.

direction A symbol indicating the direction to scroll. Use one of
the following values: 'left , 'right,'up, or 'down.

extras A frame with the following slots:

count The number of calls to this method.
amount The amount scrolled in scrollRect.
axis The axis of scrolling, which is either

'horizontal or 'vertical.
unit The units in which to scroll.
While the pen is held down, the extras frame
information is reused. This lets you attach state-specific
slots to the extras frame, which you can reference in
subsequent calls to this method.

Note

You usually call RefreshViews in your
ViewScroll2DScript, which forces the view
to redraw while the user has the pen down. ◆

C H A P T E R 6

Controls Reference

6-4 Scroller Protos

ViewScrollDoneScript 6

scroller:ViewScrollDoneScript()

Is called after the user lifts the pen.

SetArrow 6

scroller:SetArrow(direction, state)

Is called when the user taps the scroll arrows. Sets the feedback state of an
arrow.

direction A symbol indicating the arrow to change. Use one of the
following values: 'left , 'right,'up, or 'down.

state A symbol indicating the state of the arrow; use one of
the following values: 'normal, 'more, or 'hilite.

▲ W A R N I N G

Do not set the scrollRect, viewRect, or dataRect slots
in your SetArrow method. If you do, your changes can
conflict with changes that the scroller proto is making. ▲

GetArrow 6

scroller:GetArrow(direction)

Returns the current state of the arrow direction.

direction A symbol indicating the direction to scroll. Use one of
the following: 'left, 'right, 'up, or 'down.

▲ W A R N I N G

Do not set the scrollRect, viewRect, or dataRect slots
in your GetArrow method. If you do, your changes can
conflict with changes that the scroller proto is making. ▲

C H A P T E R 6

Controls Reference

Scroller Protos 6-5

protoLeftRightScroller 6
This proto is used to include left/right scrollers, which are centered at the
bottom of a view. The following is an example of a
protoLeftRightScroller view:

The viewBounds and viewJustify slots of protoLeftRightScroller
are set up to center the scroller on the bottom edge of its parent view. Change
these slots only if you want the scroller in a different location.

The slots and methods of protoLeftRightScroller are the same as those
of protoHorizontal2DScroller. For their descriptions, see
“protoHorizontal2DScroller” (page 6-2).

protoUpDownScroller 6
This proto is used to include up/down scrollers, centered at the right side of
a view. The following is an example of a protoUpDownScroller view:

The viewBounds and viewJustify slots of protoUpDownScroller are
automatically computed to center the scroller at the right of the view.

The slots and methods of protoUpDownScroller are the same as those of
protoHorizontal2DScroller. For their descriptions, see
“protoHorizontal2DScroller” (page 6-2).

C H A P T E R 6

Controls Reference

6-6 Button and Box Protos

protoHorizontalUpDownScroller 6
This proto is used to include horizontal up/down scrollers, centered at the
right side of a view. The following is an example of a
protoHorizontalUpDownScroller view:

The protoHorizontalUpDownScroller automatically centers itself at the
bottom of the view; the viewBounds and viewJustify slots are set up for
you.

The slots and methods of protoHorizontalUpDownScroller are the
same as those of protoHorizontal2DScroller. For their descriptions,
see “protoHorizontal2DScroller” (page 6-2).

Button and Box Protos 6

You use the protos described in this section to display text and picture
buttons, checkboxes, and radio buttons. The Newton System Software
provides a variety of button and box types for use in your applications. Each
of these protos uses specific methods to control its behavior, as described in
the description of each proto in this section.

For an overview of using the button and box protos in your applications and
a description of how to implement a simple button, see “Button and Box
Protos” (page 7-6) in Newton Programmer�s Guide.

C H A P T E R 6

Controls Reference

Button and Box Protos 6-7

protoTextButton 6
This proto is used to create a rounded rectangle button with text inside it.
The text is centered vertically and horizontally within the rectangle. The
following is an example of a protoTextButton view:

The ViewClickScript method is used internally in the
protoTextButton and should not be overridden. To handle a tap event,
use the ButtonClickScript method; the ViewClickScript method
sends the ButtonClickScript message to allow you to handle the event.

Note

Inking is automatically turned off when the button
is tapped. ◆

The protoTextButton is based on a lightweight paragraph view, as
described in “Lightweight Paragraph Views” (page 8-11) in Newton
Programmer�s Guide.

Slot descriptions

viewBounds Set to the size and location where you want the button
to appear.

viewFlags The default setting is vVisible + vReadOnly +
vClickable.

text A string that is the text inside the button.
viewFont Optional. The default font for the text is

ROM_fontSystem9Bold.
viewFormat Optional. The default setting is vfFillWhite +

vfFrameBlack + vfPen(2) + vfRound(4).
viewJustify Optional. The default setting is vjCenterH +

vjCenterV + oneLineOnly. To make a button with

C H A P T E R 6

Controls Reference

6-8 Button and Box Protos

multiple text lines, instead of oneLineOnly, use the
noLineLimits flag.

viewTransferMode
Optional. The default transfer mode is modeOr.

The following is an example of a template that uses protoTextButton.
This example prints “ouch” in the Inspector window when the user taps the
button:

aButton := {...

_proto: protoTextButton,

text: "My Button",

ButtonClickScript: func()

Print("ouch!");

// a handy way to fit a button around a string

ViewSetupFormScript: func()

viewbounds := RelBounds(150, 60,

StdButtonWidth(self.text), 13);

...}

ButtonClickScript 6

button:ButtonClickScript()

Is called when the button is tapped. The value returned by
ButtonClickScript is ignored.

ButtonPressedScript 6

button:ButtonPressedScript()

Is called repeatedly as long as the button is pressed (while the pen is held
down within it). The value returned by ButtonPressedScript is ignored.

C H A P T E R 6

Controls Reference

Button and Box Protos 6-9

protoPictureButton 6
This proto is used to create a picture that is a button; that is, the user can tap
the picture to cause an action to occur. The following is an example of a
protoPictureButton view:

The ViewClickScript method is used internally in the
protoPictureButton and should not be overridden. To handle a tap
event, use the ButtonClickScript method; the ViewClickScript
method sends the ButtonClickScript message to allow you to handle the
event.

Note

Inking is automatically turned off when the button
is tapped. ◆

The protoPictureButton is based on a view of the clPictureView
class.

Slot descriptions

viewBounds Set to the size and location where you want the button
to appear.

viewFlags The default is vVisible + vReadOnly +
vClickable.

icon The bitmap to be used as the button.
viewFormat Optional. The default setting is vfFillWhite +

vfFrameBlack + vfPen(2) + vfRound(4). (The
examples in the picture above have viewFormat set to
zero.)

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

The following is an example of a template that uses protoPictureButton:

C H A P T E R 6

Controls Reference

6-10 Button and Box Protos

pictButton := {...

_proto: protoPictureButton,

icon: namesBitmap,

viewBounds: SetBounds(2, 8, 34, 40),

ButtonClickScript: func()

cardfile:Toggle()

...}

ButtonClickScript 6

button:ButtonClickScript()

Is called when the button is tapped. The value returned by
ButtonClickScript is ignored.

ButtonPressedScript 6

button:ButtonPressedScript()

Is called repeatedly as long as the button is pressed (while the pen is held
down within it). The value returned by ButtonPressedScript is ignored.

protoInfoButton 6
This proto is used to include the information button in a view. Tapping the
information button displays a picker containing information items, which
include About, Help, and Prefs. The user can tap one of these items to see
more information.

The following views show the information button with and without its
picker view displayed:

C H A P T E R 6

Controls Reference

Button and Box Protos 6-11

The ViewClickScript, ViewQuitScript, PickActionScript, and
PickCancelledScript methods are used internally in the
protoInfoButton and should not be overridden.

The protoInfoButton uses the protoPictureButton as its proto.

Slot descriptions

viewFlags The default is vVisible + vReadOnly +
vClickable.

viewBounds Optional. Set to the size and location where you want
the information button to appear. If you do not set this
slot, the information button appears five pixels to the
right of its sibling in a 13x13 view. It is designed to be
placed next to another button, for example in the status
bar.

viewJustify Optional. The default setting is vjParentLeftH +
vjParentTopV + vjSiblingRightH +
vjSiblingTopV + vjCenterH + vjCenterV.

DoInfoAbout 6

button:DoInfoAbout()

Is sent to the information button view if the user selects the About menu
item. The value returned by DoInfoAbout is ignored.

Note

The information button picker only displays the About item
if you provide the DoInfoAbout method. ◆

DoInfoHelp 6

button:DoInfoHelp()

Is sent to the information button view if the user selects the Help menu item.
The value returned by DoInfoHelp is ignored.

C H A P T E R 6

Controls Reference

6-12 Button and Box Protos

Note

The information button picker only displays the Help item if
you provide the DoInfoHelp method. ◆

The Newton System Software also provides a number of functions for
displaying help books. The ShowManual function, which is described in
Chapter 26, “Utility Functions,” displays the system Help book. The
OpenHelpTo, OpenHelpBook, and OpenHelpBookTo display help books;
these functions are described in the Newton Book Maker User's Guide.

DoInfoPrefs 6

button:DoInfoPrefs()

Is sent to the information button view if the user selects the Prefs menu item.
The value returned by DoInfoPrefs is ignored.

Note

The information button picker only displays the Prefs item if
you provide the DoInfoPrefs method. ◆

GenInfoAuxItems 6

button:GenInfoAuxItems()

Returns an array of items to display in the information button picker. You
override this method to define the items you want to appear in the
information button picker (the auxilliary items). For more information about
the array that you return from this method, see “protoPicker” (page 5-13).

DoInfoAux 6

button:DoInfoAux(items, index)

Is sent to the information button view if the user selects one of the auxiliary
items defined by your GenInfoAuxItems method.

items The array of auxiliary items returned by the
GenInfoAuxItems method.

index The index of the selected item in the items array.

C H A P T E R 6

Controls Reference

Button and Box Protos 6-13

protoOrientation 6
This proto is available on Newton platforms that support changing the
screen orientation so that data on the screen can be displayed facing different
ways.

The appearance and operation of this proto varies depending on the type of
Newton ROM. On Newton devices with two available orientations—
landscape and portrait—this proto presents a protoTextButton with the
label “Rotate,” which lets the user change between the two modes. On other
devices it presents a protoPopupButton offering a list of possible
orientations.

If you override the default viewBounds or viewJustify values, you
should check the protoOrientation.viewBounds value in your
ViewSetupFormScript method to ensure that the height and width are
correct.

When the user changes the orientation, the screenOrientation slot of the
user configuration that is maintained by the Newton System Software is
updated with the selected orientation. In addition, the ReOrientToScreen
message is sent to all children of the root view; this message is described in
“Views” (page 3-1).

Note that the ButtonClickScript method is used internally in the
protoOrientation and should not be overridden.

The protoOrientation uses the protoTextButton (page 6-7) as its
proto.

Slot descriptions

viewFlags The default is vVisible + vReadOnly +
vClickable.

viewBounds Set to the size and location where you want the
orientation button to appear.

viewJustify Optional. The default setting is vjCenterH +
vjParentBottomV + vjParentCenterH.

C H A P T E R 6

Controls Reference

6-14 Button and Box Protos

protoRadioCluster 6
This proto is used to group a series of radio buttons into a cluster where only
one can be “on” at a time. You must add the individual radio buttons as child
views to the radio cluster view.

There is no visual representation of a protoRadioCluster view by itself. It
serves only as a container for child views based on protoRadioButton or
protoPictRadioButton. See protoRadioButton (page 6-16) for an
example of what this proto looks like.

The protoRadioCluster is based on a view of the clView class. The
proto itself has no child views; instead, you add individual buttons to the
cluster as child views. You can add these buttons, which use either
protoRadioButton (page 6-16) or protoPictRadioButton (page 6-18),
by moving the buttons into the cluster.

Slot descriptions

viewBounds Set to the size and location where you want the radio
button cluster to appear.

clusterValue Optional. You can specify which button is initially
selected by storing its buttonValue in this slot. During
execution, this slot holds the current value of the radio
button cluster by storing the buttonValue of the
selected radio button. The default initial value is nil
(no button selected).

The following is an example of a template that uses protoRadioCluster
and three radio buttons based on protoRadioButton (page 6-16):

textFaceCluster := {...

_proto: protoRadioCluster,

viewBounds: SetBounds(70, 17, 130, 77),

ViewSetupFormScript: func()

fontFrame := GetUserConfig('userFont);

clusterValue := fontFrame.face;

ClusterChanged: func()

fontFrame.face := clusterValue;

C H A P T E R 6

Controls Reference

Button and Box Protos 6-15

SetUserConfig('userFontFace, fontFrame),

...}

child1 :={

_proto: protoRadioButton,

viewBounds: SetBounds(0, 0, 60, 20),

text: "Bold",

buttonValue:'bold

...}

child2 := {...

_proto: protoRadioButton,

viewBounds: SetBounds(0, 20, 60, 40),

text: "Underline",

buttonValue:'underline

...}

child3 := {...

_proto: protoRadioButton,

viewBounds: SetBounds(0, 40, 60, 60),

text: "Plain",

buttonValue:'plain

...}

InitClusterValue 6

cluster:InitClusterValue(buttonValue)

Initializes a radio button cluster. You can pass a button value to set a
particular button, or nil to initialize the cluster with no buttons set. This
method does not send the ClusterChanged method.

buttonValue The button value, or nil for no buttons set.

C H A P T E R 6

Controls Reference

6-16 Button and Box Protos

ViewSetupFormScript 6

cluster:ViewSetupFormScript()

Sets an initially selected item, the value of which has been calculated at run
time. You calculate the value and then set clusterValue from within this
method.

ClusterChanged 6

cluster:ClusterChanged()

Is called whenever the value of the radio cluster changes (that is, when a
different radio button is “turned on”) to allow you to perform any necessary
processing. The value returned by ClusterChanged is ignored.

SetClusterValue 6

cluster:SetClusterValue(buttonValue)

Programmatically changes the selected radio button in a cluster. This
method performs several tasks, including giving the user “undo” capability
for the change, updating the screen appropriately, and calling the
ClusterChanged method.

buttonValue The button value of the button you want to change.

protoRadioButton 6
This proto creates a radio button child view of a radio button cluster. Radio
button clusters are described in “protoRadioCluster” (page 6-14). A radio
button is a small oval bitmap that is either empty or contains a solid

C H A P T E R 6

Controls Reference

Button and Box Protos 6-17

bull’s-eye when it is selected. It is labeled to the right with a text label, as
shown in the following view:

The following methods are defined internally: ViewSetupDoneScript,
ViewClickScript, and RadioClickScript. If you need to use one of
these methods, you must call the inherited method also (for example,
inherited:?ViewSetupDoneScript()).

Note

Inking is automatically turned off when the button
is tapped. ◆

The protoRadioButton uses protoCheckbox as its proto. For more
information, see “protoCheckbox” (page 6-24).

IMPORTANT

A radio button based on protoRadioButton must be a
child view of a view based on protoRadioCluster. You
cannot create stand-alone buttons with this proto. ▲

Slot descriptions

viewBounds Set to the size and location where you want the radio
button to appear.

viewFormat Optional. The default setting is vfNone. You usually do
not want any frame or fill because the radio button
provides all the required visual information.

text A string that is the radio button text label.
buttonValue The value of the cluster view when this radio button is

selected. Each button in the cluster should have a
unique buttonValue. When this button is selected,

C H A P T E R 6

Controls Reference

6-18 Button and Box Protos

this value is stored in the clusterValue slot of the
parent radio button cluster.
You should use a symbol or immediate for this value,
since strings and other structured objects may fail the
equivalence test (because internal comparisons are
based on pointer equality, not content equality).

viewValue The current value of the radio button. When the button
is unselected, this is set to nil. When the button is
selected, this is set to the value in buttonValue.
This slot is initialized to nil. If you want this button to
be initially selected, set viewValue to buttonValue.

protoPictRadioButton 6
This proto is used to create a picture radio button child view of a radio
button cluster. Radio button clusters are described in “protoRadioCluster”
(page 6-14). A picture radio button is a small boxed view that contains a
picture. You typically place several of these in a horizontal or vertical row,
from which the user chooses one. The following is an example of a vertical
picture radio button cluster view:

The following methods are defined internally: ViewClickScript and
UpdateBitmap. If you need to use one of these methods, you must call the
inherited method also (for example, inherited:?ViewClickScript()).

The protoPictRadioButton uses protoPictureButton as its proto.
For more information, see “protoPictureButton” (page 6-9).

C H A P T E R 6

Controls Reference

Button and Box Protos 6-19

IMPORTANT

A radio button based on protoPictRadioButton must be
a child view of a view based on protoRadioCluster. You
cannot create standalone picture buttons with this proto. ▲

Slot descriptions

viewBounds Set to the size and location where you want the picture
radio button to appear.

viewFormat Optional. The default setting is vfFillWhite +
vfFrameBlack + vfPen(2) + vfRound(4). To
simply frame the view, as shown in the example
illustration, use this setting: vfFillWhite +
vfFrameBlack + vfPen(1).

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

icon The bitmap to be used as the button picture.
buttonValue The value of the cluster view when this picture radio

button is selected. Each button in the cluster should
have a unique buttonValue. When this button is
selected, this value is stored in the clusterValue slot
of the parent radio button cluster.
You should use a symbol for this value, since strings
and other structured objects may fail the equivalence
test (because internal comparisons are based on pointer
equality, not content equality).

viewValue The current value of the radio button. When the button
is unselected, this is set to nil. When the button is
selected, this is set to the value in buttonValue.
This slot is initialized to nil. If you want this button to
be initially selected, set viewValue to buttonValue.

C H A P T E R 6

Controls Reference

6-20 Button and Box Protos

ViewDrawScript 6

button:ViewDrawScript()

Highlights the radio button when the button is selected. You must supply
this method. One style of highlighting is to draw an inner black border, as
shown in the following example:

pictRadio := {...

_proto: protoPictRadioButton,

// override frame

viewFormat: vfFillWhite+vfFrameBlack+vfPen(1),

icon: myPict,

buttonValue:3,

ViewDrawScript: func()

begin // if button is selected then highlight it

if viewValue then

:DrawShape(MakeRect(0,0,15,15), nil);

end,

...}

protoCloseBox 6
This proto allows the user to close the view. This is the close box that you
commonly see in views on the Newton screen. When the user taps the close
box, the view is closed. The following is an example of a protoCloseBox:

Note

The protoCloseBox and protoLargeCloseBox are
similar, with two differences: 1) protoCloseBox is a
slightly smaller icon, and 2) the frame for protoCloseBox
is part of the bitmap. ◆

C H A P T E R 6

Controls Reference

Button and Box Protos 6-21

The protoCloseBox uses protoPictureButton as its proto. For more
information, see “protoPictureButton” (page 6-9).

Slot descriptions

viewFlags The default is vVisible + vReadOnly +
vClickable.

viewBounds Set to the size and location where you want the close
box to appear. If you do not set this slot, the close box
defaults to the lower-right corner of its instantiator’s
view. (The bitmap is placed at -14, -14 from the lower-
right corner.)

viewJustify Optional. The default setting is vjParentBottomV +
vjParentRightH.

viewFormat Optional. The default setting is vfNone. Typically you
don’t use any frame or fill since the close box picture
provides the visual content.

IMPORTANT

The view that is to be closed by the close box must contain
the following slot:

declareSelf: 'base

This is usually the application base view. ▲

The following is an example of a template that uses protoCloseBox:

printerPicker := {...

declareSelf: 'base,

...}

child := {... // child of printPicker
_proto: protoCloseBox,

ButtonClickScript: func()
begin
:closeNetwork();
inherited:?ButtonClickScript();

C H A P T E R 6

Controls Reference

6-22 Button and Box Protos

end,
...}

ButtonClickScript 6

box:ButtonClickScript()

Sends the Close message to the view identified as base. You need to
redefine this method if you want to perform additional operations before the
view is closed. For example, you might need to close down a
communications connection when the view is closed.

If you do redefine this method, you must call the inherited method by
sending the message inherited:?ButtonClickScript().

protoLargeCloseBox 6
This proto is a picture button that contains an “X” icon that allows the user to
close the view. When the user taps the icon, the view is closed. The following
is an example of a protoLargeCloseBox view:

Note

The protoLargeCloseBox and protoCloseBox
(page 6-20) are very similar, with two differences: 1)
protoLargeCloseBox is a slightly larger icon, and 2) the
frame for protoLargeCloseBox is not part of the bitmap,
but is controlled by the viewFormat flags. ◆

The protoLargeCloseBox uses protoPictureButton as its proto. For
more information, see “protoPictureButton” (page 6-9).

C H A P T E R 6

Controls Reference

Button and Box Protos 6-23

Slot descriptions

viewFlags The default is vVisible + vReadOnly +
vClickable.

viewBounds Set to the size and location where you want the close
button to appear. If you do not set this slot, the close
button defaults to the lower-right corner of its
instantiator’s view. (The bitmap is placed at -18, -18
from the lower-right corner.)

viewJustify Optional. The default setting is vjParentBottomV +
vjParentRightH + vjCenterH + vjCenterV.

viewFormat Optional. The default setting is vfFillWhite +
vfFrameBlack + vfPen(2) + vfRound(4).

IMPORTANT

The view that is to be closed by the close box must contain
the following slot:

declareSelf: 'base

This is usually the application base view. ▲

The following is an example of a template that uses protoLargeCloseBox:

closer := {...

_proto: protoLargeCloseBox,

// no need to define anything else

...}

ButtonClickScript 6

box:ButtonClickScript()

Sends the Close message to the view identified as base. You need to
redefine this method if you want to perform additional operations before the
view is closed. For example, you might need to close down a
communications connection when the view is closed.

If you do redefine this method, you must call the inherited method by
sending the message inherited:?ButtonClickScript().

C H A P T E R 6

Controls Reference

6-24 Button and Box Protos

protoCheckbox 6
This proto is used to create a checkbox, which is a small dotted box that can
include a check mark. Each checkbox is labeled to the right with a text label.
When the user taps the checkbox, a check is drawn in it. If the user taps a
checked box, the check is removed. The following is an example of a
checkbox view:

The following methods are defined internally: ViewSetupDoneScript,
ViewClickScript, ViewChangedScript, and UpdateBitmap. If you
need to use one of these methods, you must call the inherited method also
(for example, inherited:?ViewSetupDoneScript()).

Note

Inking is automatically turned off when the checkbox
is tapped. ◆

The protoCheckbox implements the checkbox icon portion of the proto. It
has one child view, a lightweight paragraph view that implements the text
label portion of the proto. Lightweight paragraph views are described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer�s Guide.

The protoCheckbox is based on the protoCheckBoxIcon internal proto,
which is based on a view of the clPictureView class. The
protoCheckBoxIcon identifies itself as the base view (declareSelf:
'base).

C H A P T E R 6

Controls Reference

Button and Box Protos 6-25

Slot descriptions

viewBounds Set to the size and location where you want the
checkbox to appear.

viewFormat Optional. The default setting is vfNone. You don’t
typically use any frame or fill since the checkbox
provides all the necessary visual content.

viewFont Optional. The default font for the text label is
ROM_fontSystem9.

text A string that is the checkbox text label.
buttonValue Optional. The value that you want for the view when

the checkbox is checked. The default value is non-nil.
You should use a symbol or immediate value for this
value, since strings and other structured objects may fail
the equivalence test (because internal comparisons are
based on pointer equality, not content equality).

viewValue The current value of the checkbox. When the button is
unchecked, this is set to nil. When the button is
selected, this is set to the value in buttonValue.

The following is an example of a template that uses protoCheckBox:

notifier :={
_proto: protoCheckBox,
viewBounds: SetBounds(40, 30, 200, 45),
buttonValue: true,
text: "Play Notify Sound"
...}

ValueChanged 6

checkBox:ValueChanged()

Is called whenever the value of the checkbox changes, to allow you to do
additional processing. The value returned by ValueChanged is ignored.

C H A P T E R 6

Controls Reference

6-26 Button and Box Protos

ToggleCheck 6

checkBox:ToggleCheck()

Programmatically toggles the check mark in the checkbox: if the check mark
was displayed, it is erased; if it was not shown, it is displayed. The checkbox
is redrawn appropriately. The ToggleCheck method always returns
non-nil.

protoRCheckbox 6
This proto creates a checkbox with label text to its left. This is exactly like
protoCheckbox, except that the protoRCheckbox places the checkbox to
the right of the text, and protoCheckbox places the checkbox to the left of
the text. The following is an example of a protoRCheckbox view:

The following methods are defined internally: ViewSetupDoneScript,
ViewClickScript, ViewChangedScript, and UpdateBitmap. If you
need to use one of these methods, you must call the inherited method also
(for example, inherited:?ViewSetupDoneScript()).

Note

Inking is automatically turned off when the checkbox
is tapped. ◆

The protoRCheckbox implements the checkbox icon portion of the proto. It
has one child view, a lightweight paragraph view that implements the text
label portion of the proto. Lightweight paragraph views are described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer�s Guide.

The protoRCheckbox is based on the protoCheckBoxIcon internal
proto, which is based on a view of the clPictureView class. The
protoCheckBoxIcon identifies itself as the base view (declareSelf:
'base).

The following is an example of a template that uses protoRCheckBox:

C H A P T E R 6

Controls Reference

Button and Box Protos 6-27

rightCheckView :={

_proto: protoRCheckBox,

viewBounds: SetBounds(40, 30, 200, 45),

buttonValue: true,

text: "Right Checkbox"

...}

Slot descriptions

viewBounds Set to the size and location where you want the
checkbox to appear.

viewFormat Optional. The default setting is vfNone. You don’t
typically use any frame or fill since the checkbox
provides all the necessary visual content.

viewFont Optional. The default font for the text label is
ROM_fontSystem9.

text A string that is the checkbox text label.
indent Optional. The number of pixels to indent the checkbox

to the right of the text. The default indent is 16.
buttonValue Optional. The value that you want for the view when

the checkbox is checked. The default value is non-nil.
You should use a symbol or immediate value for this
value, since strings and other structured objects may fail
the equivalence test (because internal comparisons are
based on pointer equality, not content equality).

viewValue The current value of the checkbox. When the button is
unchecked, this is set to nil. When the button is
selected, this is set to the value in buttonValue.

ValueChanged 6

checkBox:ValueChanged()

Is called whenever the value of the checkbox changes, to allow you to do
additional processing. The value returned by ValueChanged is ignored.

C H A P T E R 6

Controls Reference

6-28 Selection Tab Protos

ToggleCheck 6

checkBox:ToggleCheck()

Programmatically toggles the check mark in the checkbox. If the check mark
was displayed, it is erased; if it was not shown, it is displayed. The checkbox
is redrawn appropriately. The ToggleCheck method always returns
non-nil.

Selection Tab Protos 6

You can use the protos described in this section to display alphabetic
selection tabs on the screen.

For an overview of using the selection tab protos in your applications, see
“Selection Tab Protos” (page 7-11) in Newton Programmer�s Guide.

protoAZTabs 6

This proto is used to include alphabetical tabs, arranged horizontally, in a
view. The following is an example of a protoAZTabs view:

PickLetterScript 6

tabs:PickLetterScript(letter)

Is called when the user taps a tab.

letter The letter that was tapped.

The following example shows a pickLetterScript method:

C H A P T E R 6

Controls Reference

Selection Tab Protos 6-29

pickLetterScript: func(theLetter)

begin

setValue(theText,'text);

end

SetLetter 6

tabs:SetLetter(newLetter, val)

Sets which letter is the currently selected letter and updates the highlighting.

newLetter The letter to select and highlight.

val Must be nil. Reserved for future use.

The following example shows a use of the SetLetter method:

// set myProtoAZTabs to the letter "C"

myProtoAZTabs:SetLetter($c, nil);

protoAZVertTabs 6
This proto is used to include alphabetical tabs, arranged vertically, in a view.
The following is an example of a protoAZVertTabs view:

C H A P T E R 6

Controls Reference

6-30 Gauges and Slider Protos

PickLetterScript 6

tabs:PickLetterScript(letter)

Is called when the user taps a tab.

letter The letter that was tapped.

SetLetter 6

tabs:SetLetter(newLetter, val)

Sets which letter is the currently selected letter and updates the highlighting.

newLetter The letter to select and highlight.

val Must be nil. Reserved for future use.

Gauges and Slider Protos 6

You can use the slider protos described in this section to present a gauge
view that indicates the current progress in relation to the entire operation.

For an overview of using the slider protos in your applications and a
description of how to implement a simple slider, see “Gauge and Slider
Protos” (page 7-12) in Newton Programmer�s Guide.

clGaugeView 6
The clGaugeView class is used to display objects that look like analog bar
gauges.

Note

Although the clGaugeView class remains available for
compatibility purposes, you should use the protoGauge
instead. See “protoGauge” (page 6-35) for more information
about protoGauge. ◆

C H A P T E R 6

Controls Reference

Gauges and Slider Protos 6-31

The following is an example of a clGaugeView view:

On interactive gauges, the end of the gauge indicator bar contains a small
diamond-shaped active area called a knob. The user can drag the knob to
move the indicator bar to a new position.

The following example is a view definition of the clGaugeView class:

soundGauge := {...

viewClass: clGaugeView,

viewBounds: {left:80, top:20, right:180, bottom:28},

viewFlags: vVisible+vClickable,

gaugeDrawLimits: true,

minValue: 0, // must be an integer

maxValue: 11 // must be an integer

viewSetupFormScript: func()

self.viewvalue := GetVolume(),

viewChangedScript: func(slot, context)

begin

SetVolume(viewValue);

:SysBeep(); //play it so they can hear new level

end,

...}

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

viewValue Set this slot to give the gauge an initial value. If you
need to calculate the initial value at run time, set this
slot in your ViewSetupFormScript. This value must
be an integer between minValue and maxValue,
inclusive. During execution, the viewValue slot stores

C H A P T E R 6

Controls Reference

6-32 Gauges and Slider Protos

the current gauge setting by interpolating between
minValue and maxValue.

viewFlags The default setting is vVisible + vClickable. To
make a gauge that is read-only, set the vReadOnly flag
(and not vClickable). For read-only gauges, the
diamond-shaped knob is not drawn on the gauge.

viewFormat Optional. The default setting is nil.
minValue Optional. The minimum gauge value. This is the value

of viewValue when the gauge reads fully to the left
side. The default is 0, which you can change if you wish.

maxValue Optional. The maximum gauge value. This is the value
of viewValue when the gauge reads fully to the right
side. The default is 100, which you can change if you
wish.

gaugeDrawLimits
Optional. The default is non-nil, which displays the
gray background. If you set this slot to nil, the gray
background is not displayed.

ViewChangedScript 6

view:ViewChangedScript(slot, view)

Is called whenever the value of the gauge view changes. This method is
called repeatedly as the gauge knob is dragged. You can dynamically track
the changes the user is making to the gauge indicator by examining the value
of the viewValue slot in this method. The value returned by
ViewChangedScript is ignored.

slot The name of the slot that changed.

view The view.

ViewFinalChangeScript 6

view:ViewFinalChangeScript(valueBefore, valueAfter)

Is called after the user lifts the pen from moving the gauge knob. If the user
moved the gauge but reset it to its original value, this method is not called.
The value returned by ViewFinalChangeScript is ignored.

C H A P T E R 6

Controls Reference

Gauges and Slider Protos 6-33

valueBefore The initial viewValue of the gauge before it was
changed.

valueAfter The final viewValue of the gauge after it was changed.

protoSlider 6
This proto is used to create a user-settable gauge view, which looks like an
analog bar gauge with a draggable diamond-shaped knob. The following is
an example of a protoSlider view:

If you want to have a read-only gauge, use the protoGauge instead of
protoSlider.

The following methods are defined internally: ViewChangedScript and
ViewFinalChangeScript. If you need to use one of these methods, be
sure to call the inherited method also (for example,
inherited:?ViewChangedScript()).

▲ W A R N I N G

You cannot dynamically change the value of the minValue
and maxValue slots at run time, except within the
ViewSetupFormScript method. If you need to change the
value of these slots, you must close the view, change the
values, then reopen the view. ▲

The protoSlider uses the protoGauge as its proto. For more information,
see “protoGauge” (page 6-35).

The following is an example of a template that uses protoSlider:

SoundSetter := {...

_proto: protoSlider,

viewBounds: RelBounds(12, -21, 65, 9),

viewJustify: vjParentBottomV,

C H A P T E R 6

Controls Reference

6-34 Gauges and Slider Protos

maxValue: 4, // must be an integer

ViewSetupFormScript: func()

self.viewValue := GetVolume(),

ChangedSlider: func()

begin

SetVolume(viewValue);

:SysBeep();

end,

...}

Slot descriptions

viewBounds Set to the size and location where you want the gauge to
appear.

viewValue Set this slot to give the gauge an initial value. If you
need to calculate the initial value at run time, set this
slot in your ViewSetupFormScript. This value must
be an integer between minValue and maxValue,
inclusive. During execution, the viewValue slot stores
the current gauge setting by interpolating between
minValue and maxValue.

minValue Optional. The minimum gauge value. This is the value
of viewValue when the gauge reads fully to the left
side. The default is 0, which you can change if you wish.

maxValue Optional. The maximum gauge value. This is the value
of viewValue when the gauge reads fully to the right
side. The default is 100, which you can change if you
wish.

gaugeDrawLimits
Optional. The default is non-nil, which displays the
gray background. If you set this slot to nil, the gray
background is not displayed.

C H A P T E R 6

Controls Reference

Gauges and Slider Protos 6-35

ViewSetupFormScript 6

slider:ViewSetupFormScript()

Allows you to perform any processing that is required before the view is
instantiated, including setting the initial value of the viewValue slot. This
method is required; however, you can simply define it as nil if you do not
need to perform any actions.

ChangedSlider 6

slider:ChangedSlider()

Is called after the user lifts the pen from moving the slider knob. You can
access the current gauge setting in the viewValue slot. If the user moved
the gauge but reset it to its original value, this method is not called. This
method is required; however, you can simply define it as nil if you do not
need to perform any actions. The value returned by ChangedSlider is
ignored.

TrackSlider 6

slider:TrackSlider()

Is called whenever the value of the viewValue slot changes. It is provided
so you can dynamically track the changes as the slider is moved and take
action based on the current value. The TrackSlider method is called
repeatedly as the gauge knob is dragged. The value returned by
TrackSlider is ignored.

protoGauge 6
You use this proto to create a read-only gauge view, which looks like an
analog bar gauge. The following is an example of a protoGauge view:

If you want to let the user set the gauge, use the protoSlider.

C H A P T E R 6

Controls Reference

6-36 Gauges and Slider Protos

Note that you cannot change the value of the minValue and maxValue slots
at run time, except within the ViewSetupFormScript method. If you need
to change the value of these slots, you must close the view, change the
values, then reopen the view.

The protoGauge is based on a view of the clGaugeView class, which is
described in “clGaugeView” (page 6-30).

The following is an example of a template that uses protoGauge:

PercentSolvedGauge := {...

_proto: protoGauge,

viewBounds: RelBounds(157, -21, 55, 9),

viewJustify: vjParentBottomV,

maxValue: problemsFrame.numberOfProblems,

viewvalue: problemsFrame.numberSolved,

ViewSetupFormScript: func()

nil,

...}

Slot descriptions

viewBounds Set to the size and location where you want the gauge to
appear.

viewValue Set this slot to give the gauge an initial value. If you
need to calculate the initial value at run time, set this
slot in your ViewSetupFormScript. This value must
be an integer between minValue and maxValue,
inclusive. During execution, the viewValue slot stores
the current gauge setting by interpolating between
minValue and maxValue.

minValue Optional. The minimum gauge value. This is the value
of viewValue when the gauge reads fully to the left
side. The default is 0, which you can change if you wish.

maxValue Optional. The maximum gauge value. This is the value
of viewValue when the gauge reads fully to the right

C H A P T E R 6

Controls Reference

Gauges and Slider Protos 6-37

side. The default is 100, which you can change if you
wish.

gaugeDrawLimits
Optional. The default is non-nil, which displays the
gray background. If you set this to nil, the gray
background is not displayed.

ViewSetupFormScript 6

gauge:ViewSetupFormScript()

Allows you to perform any processing that is required before the view is
instantiated, including setting the initial value of the viewValue slot. This
method is required; however, you can simply define it as nil if you do not
need to perform any actions.

protoLabeledBatteryGauge 6
This proto is used to create a read-only gauge view that graphically shows
the amount of power remaining in the system battery. The gauge is updated
every 10 seconds. If the Newton is plugged in and the battery is charging, a
charging symbol appears instead of the gauge. The following is an example
of a protoLabeledBatteryGauge view:

The following methods are defined internally: ViewSetupDoneScript,
ViewSetupChildrenScript, ViewIdleScript, and ReadBattery. If
you need to use one of these methods, you must call the inherited method
also (for example, inherited:?ViewSetupDoneScript()).

The protoLabeledBatteryGauge uses an internal proto,
protoBatteryGauge, as its prototype. The protoBatteryGauge is based
on a view of the clView class and has two children: the gauge or charging
symbol, and the label.

C H A P T E R 6

Controls Reference

6-38 Time Protos

The following is an example of a template that uses
protoLabeledBatteryGauge:

BatteryGauge := {

_proto: protolabeledbatterygauge,

viewBounds: {left: 58, top: 106, right: 186,

bottom: 130},

// no other slots needed

};

Slot description

viewBounds Set to the size and location where you want the gauge to
appear. The gauge fills the entire width of the view.

Time Protos 6

You can allow the user to specify dates and times with the protos described
in this section. For an overview of using the time protos in your applications
and a description of how to implement a simple time setter, see “Time
Protos” (page 7-14) in Newton Programmer�s Guide.

protoDigitalClock 6
This proto displays a digital clock that can be used to set the time. The user
can change the time by tapping each digit. Tapping on the upper part of the
digit increments it to the next number; tapping the lower part decrements it.
The following is an example of a protoDigitalClock view:

C H A P T E R 6

Controls Reference

Time Protos 6-39

Slot descriptions

viewFlags For future compatibility, you must set the vClickable
flag. (Note, however, that clicks are processed by the
children of this proto.)

viewBounds The clock size is fixed at 119x28 pixels.
viewJustify The default setting is vjParentLeftH +

vjParentTopV.
increment The amount to increment or decrement for each tap. The

default is 1.
time Required. The time to which the clock should be set,

expressed in the number of minutes elapsed since
midnight, January 1, 1904. When the time is changed,
this slot is updated with the currently set time.
Note that a time slot must be set, either here or
somewhere above this proto in the inheritance hierarchy.

wrapping Set to non-nil (the default value) to wrap around day
boundaries.

midnite Set to non-nil if the value 0 should indicate midnight
tomorrow (in other words, the end of the current day).
The default value is nil, which means that 0 indicates
midnight today (the beginning of the current day).

Refresh 6

clock:Refresh()

Updates the appearance of the clock. You can call this method when the
system time is changed by some external event. For example, if there are two
clocks present and the user changes the time in one clock, you should send
the Refresh message to the second clock.

TimeChanged 6

clock:TimeChanged()

Is called when the time is changed, to allow you to perform any required
actions in response to that event. The value returned by TimeChanged is
ignored.

C H A P T E R 6

Controls Reference

6-40 Time Protos

protoNewSetClock 6
This proto displays an analog clock that can be used to set the time. There are
four ways to change the time with this proto:

■ Either hand can be dragged around to the correct position.

■ Tapping the rim of the clock changes the minutes. However, if the tap is
within two degrees of the location pointed to by the minute hand, it is
interpreted as an attempt to drag the minute hand.

■ Tapping the inner circle of dots sets the hours. If the tap is within two
degrees of the hour hand, it is interpreted as an attempt to drag the hour
hand.

■ A line can be drawn from the center of the clock face to either the border
(to set the minutes) or the inner dial (to set the hours).

The following is an example of a protoNewSetClock view:

The following slots and methods are used internally:
ViewSetupFormScript, ViewSetupChildrenScript,
ViewSetupDoneScript, ViewDrawScript, ViewClickScript,
tickSound, tockSound, cuckooSound, tickTock, hours, minutes,
icon, fIconAsShape, DrawHand, diff, FastEnoughAtaN, atanTable,
sinTable, distance.

The protoNewSetClock is based on a view of the clView class.

C H A P T E R 6

Controls Reference

Time Protos 6-41

Slot descriptions

viewBounds Set to the size and location where you want the clock to
appear. By default, the bounds are {left: 30,
top: 30, right: 146, bottom: 146}. The
height and width should be equal and a multiple of 29
to make the clock face appear its best.

viewJustify The default setting is vjParentLeftH +
vjParentTopV.

time Optional. The time to which the clock should be set,
expressed in the number of minutes elapsed since
midnight, January 1, 1904. If you don’t include this slot,
the clock is set to the current time. When the time is
changed, this slot is updated with the currently set time.

annotations Optional. An array of four strings to be used as minute
annotations around the clock face, beginning with the
number at the top of the clock and proceeding
clockwise. For example, the strings ["N", "E", "S",
"W"] would decorate the clock like a compass. If you
don’t specify this slot, the following annotations are
used: ["12", "3", "6", "9"].

suppressAnnotations
Optional. If this slot exists (with any value), the four
minute annotations around the clock face are not drawn.

exactHour Optional. If non-nil, the hour hand clings exactly to the
hour markers. If nil, the hour hand adjusts between
the minutes appropriately, according to the minutes. By
default, this is nil. You rarely need to set this slot.

Refresh 6

clock:Refresh()

Updates the appearance of the clock. You can call this method when the
system time is changed by some external event. For example, if there are two
clocks present and the user changes the time in one clock, you should send
the Refresh message to the second clock.

C H A P T E R 6

Controls Reference

6-42 Time Protos

TimeChanged 6

clock:TimeChanged()

Is called when the time is changed, to allow you to perform any actions
required to respond to that event. The value returned by TimeChanged is
ignored.

protoSetClock 6
This proto creates an analog clock with which the user can set a time. The
user sets the hour by tapping the location in the inner circle where the hour
hand should be positioned and the location in the outer circle where the
minute hand should be positioned.

Note

The protoSetClock has been replaced by the
protoNewSetClock, which you should use instead. The
protoSetClock remains available for compatibility of
older applications. ◆

The following is an example of a protoSetClock view:

The following methods are defined internally: ViewDrawScript,
ViewStrokeScript, Diff, Distance, DrawHand, DrawHilite, and
FastEnoughAtan. If you need to use one of these methods, you must call
the inherited method also (for example,
inherited:?ViewDrawScript()).

The protoSetClock is based on a view of the clPictureView class.

The following is an example of a template that uses protoSetClock:

C H A P T E R 6

Controls Reference

Time Protos 6-43

clock := {...
_proto: protoSetClock,
hours: nil, // updated when a new time is set
minutes: nil, // updated when a new time is set

TimeChanged: func()
begin

// do this so the old hands are erased...
self:Dirty();

// insert your code in place of the following line
print("H:" && hours && "M:" && minutes);
end,

ViewSetupFormScript: func() // show the current time
begin
local t :=Time();
self.hours :=(t DIV 60) MOD 24;
self.minutes:=t MOD 60;
end,

...};

Slot descriptions

viewBounds The clock size is fixed at 64x64 pixels.
viewFlags The default setting is vVisible + vClickable +

vStrokesAllowed.

viewFormat Optional. The default setting is vfNone.
hours Initially set to nil. This slot is updated with the new

hour when the user sets the hour hand.
minutes Initially set to nil. This slot is updated with the new

minute time when the user sets the minute hand.

C H A P T E R 6

Controls Reference

6-44 Time Protos

TimeChanged 6

clock:TimeChanged()

Is sent to the view when the user changes the time on the clock. To ensure
that the clock redraws properly, you should at least include the following
code:

self:Dirty()

protoAMPMCluster 6
This proto is used to include A.M. and P.M. radio buttons in a view. The
following is an example of a protoAMPMCluster view:

The bounds must be 70 pixels wide and 15 pixels high. To use this proto,
define a parent (a clView, for instance), declare a protoNewSetClock to
the parent as 'setter, and add a protoAMPMCluster to the same parent.

The protoAMPMCluster uses protoRadioCluster as its proto;
protoRadioCluster is based on a view of the clView class.

The following is an example of a template that uses protoAMPMCluster:

picker := RDefChild(myTimePopup, 'setter, RDefTemplate({

_proto: protoNewSetClock,

// ...

}));

RDefChild(myTimePopup, 'ampmButtons, {

_proto: protoAMPMCluster,

viewBounds: SetBounds(0, 2, 70, 20),

viewJustify: vjCenterH

+ vjSiblingCenterH + vjSiblingBottomV,

});

C H A P T E R 6

Controls Reference

Special View Protos 6-45

Slot descriptions

time Required. This slot must be set, either here or
somewhere above this proto in the inheritance hierarchy.

Special View Protos 6

You can use the protos in this section to provide special-purpose views in
your applications. For an overview of using the special view protos in your
applications, see “Special View Protos” (page 7-16) in Newton Programmer�s
Guide.

protoDragger 6
This proto creates a view that the user can move around the screen by
dragging it with the pen. This view has a rounded matte frame with a small
control at the top-center of the frame. The user drags the view by “grabbing”
the small control. The view can be dragged only within the bounds of its
parent view. The following is an example of a protoDragger view:

The proto defines no contents for the draggable view. You need to add your
own contents by adding child templates to it.

By default, protoDragger does not support scrolling or overview. If you
want the view to support scrolling or overview (that is, to handle the scroll
arrows and overview button), set the vApplication bit in the viewFlags
slot, and provide the appropriate methods (ViewScrollUpScript,
ViewScrollDownScript, and ViewOverviewScript) to handle scroll
and overview messages.

C H A P T E R 6

Controls Reference

6-46 Special View Protos

The protoDragger is based on a view of the clView class and does not
have any child views.

The following example is a template using protoDragger:

dragger:= {...

_proto: protoDragger,

viewBounds: {left:-5, top:104, right:168, bottom:162},

viewJustify:vjParentCenterH,

viewflags: vVisible+vClickable,

...};

theText := {... // child of the draggable view

_proto: protostatictext,

text: "I'm draggable. . ",

viewBounds: {left:40, top:24, right:144, bottom:48},

viewfont: simpleFont12+tsBold,

...};

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

viewFlags The default setting is vClickable. Although you can
add other view flags, you must not remove
vClickable.

viewFormat Optional. The default setting is vfFillWhite +
vfFrameDragger + vfPen(7) + vfInset(1) +
vfRound(5).

noScroll Optional. This slot holds a message that is used in an
error alert if the scroll arrows are tapped and you have
not provided a ViewScrollUpScript or
ViewScrollDownScript method to handle the event.
This error occurs only if the vApplication flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application

C H A P T E R 6

Controls Reference

Special View Protos 6-47

does not support scrolling,” which you can change if
you want.

noOverview Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a ViewOverviewScript method to
handle the event. This error occurs only if the
vApplication flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

protoDragNGo 6
This proto is identical to protoDragger, except that it includes a close box
in the lower-right corner of the view. The following is an example of a
protoDragNGo view:

The proto defines no contents for the view. You can add your own contents
by adding child templates to it.

The protoDragNGo is based on the protoDragger, which is based on a
view of the clView class. It is provided with one child view: a close box
based on the protoCloseBox proto (page 6-20).

The following example is a template using protoDragNGo:

dragngoView:= {...

_proto: protoDragNGo,

viewBounds: {left:-2, top:98, right:158, bottom:170},

viewJustify:vjParentCenterH,

viewflags: vVisible+vClickable,

C H A P T E R 6

Controls Reference

6-48 Special View Protos

...};

theText := {... // child of the dragngo view

_proto: protostatictext,

text: "Drag'n Go view",

viewBounds: {left:22, top:30, right:134, bottom:54},

viewfont: simpleFont12+tsBold,

...};

Slot descriptions

viewBounds Set to the size and location where you want the floater
to appear.

viewFlags The default setting is vClickable. Although you can
add other view flags, you must not remove
vClickable.

viewFormat Optional. The default setting is vfFillWhite +
vfFrameDragger + vfPen(7) + vfInset(1) +
vfRound(5).

noScroll Optional. This slot holds a message that appears in an
error alert if the scroll arrows are tapped and you have
not provided a ViewScrollUpScript or
ViewScrollDownScript method to handle the event.
This error occurs only if the vApplication flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application
does not support scrolling,” which you can change if
you want.

noOverview Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a ViewOverviewScript method to
handle the event. This error occurs only if the
vApplication flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

C H A P T E R 6

Controls Reference

Special View Protos 6-49

protoDrawer 6
This proto creates a view that acts like the Extras Drawer. When the user
opens the drawer, the view slides up from the bottom and a drawer-opening
sound plays. When the user closes the drawer, a drawer-closing sound plays.

The protoDrawer has no content defined. You must add child views to it.
This proto is based on a view of the clView class.

The following is an example of a template that uses protoDrawer:

myDrawer := {...

_proto: protoDrawer} // nothing else needed for drawer

// add children to drawer

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

viewFlags The default setting is vFloating + vApplication.
viewFormat Optional. The default setting is vfPen(2) +

vfFrameBlack.
viewEffect Optional. The default setting is fxDrawerEffect.
showSound Optional. The default setting is ROM_draweropen.
hideSound Optional. The default setting is ROM_drawerclose.

protoFloater 6
This proto creates a draggable view that floats above all other nonfloating
sibling views within an application. This proto is identical to
protoDragger, except that protoFloater is horizontally centered within
its parent view, has an opening view effect, and has the vFloating flag set
in the viewFlags slot.

C H A P T E R 6

Controls Reference

6-50 Special View Protos

Note

For the base view of an application, it is recommended that
you use protoDragger instead of protoFloater. The
floating property interferes with some system services for
applications. ◆

The proto defines no contents for the floating view. You can add your own
contents to the floater by adding child templates to it.

By default, protoFloater does not support scrolling or overview. If you
want your floater to support scrolling or overview (that is, to handle the
scroll arrows and overview button), set the vApplication bit in the
viewFlags slot, and provide the appropriate methods
(ViewScrollUpScript, ViewScrollDownScript, and
ViewOverviewScript) to handle scroll and overview messages.

The protoFloater is based on the protoDragger (page 6-45).

Slot descriptions

viewBounds Set to the size and location where you want the floater
to appear.

viewFlags The default setting is vFloating + vClickable.
Although you can add other view flags, you must not
remove vFloating or vClickable.

viewJustify Optional. The default setting is vjParentCenterH.
viewFormat Optional. The default setting is vfFillWhite +

vfFrameDragger + vfPen(7) + vfInset(1) +
vfRound(5).

viewEffect Optional. The default effect is fxZoomOpenEffect.
noScroll Optional. This slot holds a message that appears in an

error alert if the scroll arrows are tapped and you have
not provided a ViewScrollUpScript or
ViewScrollDownScript method to handle the event.
This error occurs only if the vApplication flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application
does not support scrolling,” which you can change if
you want.

C H A P T E R 6

Controls Reference

Special View Protos 6-51

noOverview Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a ViewOverviewScript method to
handle the event. This error occurs only if the
vApplication flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

protoFloatNGo 6
This proto is identical to protoFloater, except that it includes a close box
in the lower-right corner of the floating view.

Note

For the base view of an application, it is recommended that
you use protoDragNGo instead of protoFloatNGo. The
floating property interferes with some system services for
applications. ◆

The proto defines one child, the close box, for the floating view. You can add
your own contents to the floater by adding child templates to it.

The protoFloatNGo is based on the protoFloater (page 6-49), which is
based on the protoDragger (page 6-45). It is provided with one child view
that is a close box based on the protoCloseBox (page 6-20).

Slot descriptions

viewBounds Set to the size and location where you want the floater
to appear.

viewFlags The default setting is vFloating + vClickable.
Although you can add other view flags, you must not
remove vFloating or vClickable.

viewJustify Optional. The default setting is vjParentCenterH.
viewFormat Optional. The default setting is vfFillWhite +

vfFrameDragger + vfPen(7) + vfInset(1) +
vfRound(5).

C H A P T E R 6

Controls Reference

6-52 Special View Protos

viewEffect Optional. The default effect is fxZoomOpenEffect.
noScroll Optional. This slot holds a message that appears in an

error alert if the scroll arrows are tapped and you have
not provided a ViewScrollUpScript or
ViewScrollDownScript method to handle the event.
This error occurs only if the vApplication flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application
does not support scrolling,” which you can change if
you want.

noOverview Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a ViewOverviewScript method to
handle the event. This error occurs only if the
vApplication flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

protoGlance 6
This proto creates a text view that closes itself automatically after it has been
shown for a brief period of time. The protoGlance view also closes
immediately if the user taps the view. The following is an example of a
protoGlance view:

The following methods are defined internally: ViewSetupDoneScript,
ViewClickScript, and ViewIdleScript. If you need to use one of these
methods, be sure to call the inherited method also (for example,
inherited:?ViewClickScript()).

The protoGlance is based on a lightweight paragraph view, as described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer�s Guide.

C H A P T E R 6

Controls Reference

Special View Protos 6-53

A protoGlance view is typically hidden until the user performs an action
such as tapping a button. After the button is tapped, the Open message is
sent to the protoGlance view to cause it to show itself.

The following example is a template using protoGlance (and the button
that opens the glance view):

myGlance := {...

_proto: protoglance,

text: "Just a glance...",

viewIdleFrequency:5000,

viewfont: ROM_fontSystem9Bold,

viewJustify: vjCenterV+vjCenterH,

...};

showGlance := {... // Button that opens the glance view

_proto: prototextbutton,

text: "Show it",

ButtonClickScript: func()

myGlance:Open(),

 };

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

viewJustify Optional. The default setting is vjCenterV +
vjLeftH.

viewFormat Optional. The default setting is vfFillWhite +
vfPen(2) + vfFrameBlack + vfInset(1).

viewFont Optional. The default font is ROM_fontSystem9Bold.
viewEffect Optional. The default effect is fxRight +

fxRevealLine.
viewIdleFrequency

Optional. The length of time that the view is to remain
open, in milliseconds. The default is 3000 milliseconds
(three seconds). Specify an integer greater than zero.

C H A P T E R 6

Controls Reference

6-54 Special View Protos

text The text string to display in the view.

protoStaticText 6
This proto is used for static text. It defines a one-line paragraph view that is
read-only and left-justified. The following is an example of a
protoStaticText view:

The protoStaticText is based on a view of the clParagraphView class.

The following is an example of a template that uses protoStaticText:

heading := {...
_proto: protoStaticText,
viewbounds: RelBounds(30, 15, 170, 50),
viewJustify: vjCenterH+vjTopV,
viewFont: ROM_fontSystem10,
text: "Pick your favorite color:",
...}

Slot descriptions

viewBounds Set to the location where you want the text to appear.
viewFlags The default setting is vVisible + vReadOnly. You

do not usually need to change this setting.
text A string that is the text you want to display.

C H A P T E R 6

Controls Reference

View Appearance Protos 6-55

viewFont Optional. The default font is ROM_fontSystem9Bold.
This slot is ignored if the styles slot is present.

viewJustify Optional. The default setting is vjLeftH +
oneLineOnly.

viewFormat Optional. The default is vfNone.
viewTransferMode

Optional. The default transfer mode is modeOr.
tabs Optional. An array of as many as eight tab-stop

positions, in pixels. For example: [10, 20, 30, 40].
styles Optional. If multiple font styles are used for the text,

this is an array of alternating run lengths and font
information. The first element is the run length (in
characters) of the first style run, and the second element
is the font style of that run. The third element is the run
length of the second style run, and so on. All the run
lengths must add up to the total text length. If the text is
all in a single font, the font in the viewFont slot
specifies the font style, and the styles slot is not
needed. For information on how to specify a font in the
styles array, see the section “Specifying a Font” in
Chapter 8, “Text and Ink Input and Display.”

View Appearance Protos 6

You can use the protos described in this section to add to the appearance of
your views in certain ways. For an overview of using the view appearance
protos in your applications, see “View Appearance Protos” (page 7-18) in
Newton Programmer�s Guide.

C H A P T E R 6

Controls Reference

6-56 View Appearance Protos

protoBorder 6
This is simply a view filled with black, to use as a border, a line, or a black
rectangle. The following is an example of a protoBorder view:

The protoBorder is based on a view of the clView class.

The following is an example of a template that uses protoBorder:

theBorder := {...

_proto: protoBorder,

viewBounds: SetBounds(0, 0, 0, 2), // 2-pixel high line

viewJustify:vjParentFullH,

...}

Slot descriptions

viewBounds Set to the size and location where you want the border
to appear.

viewFlags The default setting is vVisible.
viewFormat Optional. The default setting is vfFillBlack.

protoDivider 6
This proto is used to create a divider bar that extends the whole width of its
parent view. The divider bar consists of a text string near the left end of a
thick line, as shown in the view below:

The ViewSetupChildrenScript method is defined internally. If you need
to use this method, you must call the inherited method also (for example,
inherited:?ViewSetupChildrenScript()).

C H A P T E R 6

Controls Reference

View Appearance Protos 6-57

The protoDivider is based on a view of the clView class. It has the
following two child views declared in itself:

■ divider. This child view uses the protoBorder (page 6-56). It is used
for the solid black line.

■ dividerText. The text label on the divider bar. This child view is based
on a lightweight paragraph view, as described in “Lightweight Paragraph
Views” (page 8-11) in Newton Programmer�s Guide.

The following is an example of a template that uses protoDivider:

protoCoverBorder := {...

_proto: protoDivider,

viewFont: ROM_fontSystem18Bold,

title: "COVER SHEET",

}

Slot descriptions

viewBounds Set to the size and location where you want the divider
bar to appear. By default, the divider extends the entire
width of its parent view (see viewJustify).

viewFlags The default setting is vVisible + vReadOnly. You
do not usually need to change this setting.

viewFont Optional. The default font is ROM_fontSystem9Bold.
viewJustify Optional. The default setting is vjParentFullH.
viewFormat Optional. The default setting is vfNone. In most cases

you won’t need to change this.
title A string that is the text on the divider bar.
titleHeight Optional. The height of the divider view defaults to the

height of the font used. For a taller divider view, set this
slot to a greater value.

C H A P T E R 6

Controls Reference

6-58 View Appearance Protos

protoTitle 6
This proto is used to create a title centered at the top of a view. The following
view shows a protoTitle that has its titleIcon slot filled in:

The ViewSetupFormScript method is defined internally. If you need to
use this method, you must call the inherited method also (for example,
inherited:?ViewSetupFormScript()).

The protoTitle is based on a lightweight paragraph view, as described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer�s Guide.

The following is an example of a template that uses protoTitle:

myTitle := {...

_proto: protoTitle,

titleHeight: 18,

title: "Preferences"

...}

Slot descriptions

viewJustify Optional. The default setting is vjParentCenterH +
vjParentTopV + vjCenterV + vjCenterH.

viewFormat Optional. The default setting is vfFillBlack +
vfRound(3).

viewFont Optional. The default font is ROM_fontSystem10Bold.
title A string that is the title.

titleIcon Optional. A bitmap frame (like the frame returned from
GetPictAsBits). See Newton 2.0 User Interface
Guidelines for icon size guidelines.

titleHeight Optional. The height of the title view (black rectangle)
defaults to the height of the font used. If you want a
taller title view, set this slot to a greater value.

C H A P T E R 6

Controls Reference

Status Bar Protos 6-59

viewTransferMode
Optional. The default transfer mode is modeBic.

Status Bar Protos 6

You can use the protos described in this section to display a status bar at the
bottom of a view. For an overview of using the status bar protos in your
applications, see “Status Bar Protos” (page 7-19) in Newton Programmer�s
Guide.

protoStatus 6
This proto is used to create a status bar at the bottom of a view. The status
bar includes a large close button at the right side and an analog clock at the
left side. If the user taps the analog clock, a digital clock is displayed for
three seconds. The following is an example of a protoStatus view:

Note

The new status bar protos newtStatusBarNoClose and
newtStatusBar, are the preferred way to add a status bar
to your applications. These protos, which are described in
“NewtApp Reference” (page 3-1), simplify adding buttons
and automate hiding the close box when your application is
moved into the background. ◆

The viewJustify flags for this view are set so that the status bar always
appears at the bottom of its parent view and always occupies the full width
of the parent view. Instantiators are not required to set any slots. However,
the application base view in which the protoStatus view is included must
include the following slot:

declareSelf: 'base

C H A P T E R 6

Controls Reference

6-60 Status Bar Protos

This identifies the view that gets closed when the close box in the status bar
is tapped.

The protoStatus is based on another proto called protoStatusBar,
described in the next section, which contains two child views.

The protoStatus itself has one child view, the close button that appears at
the right side of the view. The close button is based on the
protoLargeCloseBox (page 6-22).

The following is an example of a template that uses protoStatus:

theStatus := {_proto: protostatus} // nothing else needed

// base app must include this slot:

declareSelf: 'base

protoStatusBar 6
This proto is used to create a status bar at the bottom of a view. It is identical
to protoStatus, except that it does not include a close button. The
following is an example of a protoStatusBar view:

Note

The new status bar protos newtStatusBarNoClose and
newtStatusBar, are the preferred way to add a status bar
to your applications. These protos, which are described in
“NewtApp Reference” (page 3-1), simplify adding buttons
and automate hiding the close box when your application is
moved into the background. ◆

The viewJustify flags for this view are set so that the status bar always
appears at the bottom of its parent view and always occupies the full width
of the parent view. Instantiators are not required to set any slots.

C H A P T E R 6

Controls Reference

Status Bar Protos 6-61

The protoStatusBar is based on a view of the clView class. The
protoStatusBar contains the following two child views:

■ A small round analog clock that appears at the left side of the view. The
clock is based on a view of the clView class.

■ A digital clock display that slides out from the analog clock when the user
taps the analog clock. This view is hidden automatically after three
seconds. This view is based on the protoGlance proto (page 6-52).

Text Constants and Data Structures 7-1

C H A P T E R 7

Text and Ink Input and
Display Reference 7

This chapter provides reference information for all the constants, data
structures, methods, and functions available for your working with text in
your applications.

Text Constants and Data Structures 7

This section describes the constants and data structures you can use in your
applications to work with text.

Figure 7-0
Table 7-0

C H A P T E R 7

Text and Ink Input and Display Reference

7-2 Text Constants and Data Structures

Text Flags 7
The text flags listed below are view flags you can use to specify information
about text in views.

Constant descriptions

vWidthIsParentWidth
The view’s width is the same as that of its parent view.

vNoSpaces Do not insert spaces between words.
vWidthGrowsWithText

Causes the right horizontal boundary of the view to
extend only as far as the widest line of text in the
paragraph. This flag can only be used for paragraph
views that are children of an edit view.

vFixedTextStyle
The font family, point size, and style of the viewFont
are applied to all recognized text in the paragraph.

vFixedInkTextSTyle
The font point size and style of the viewFont are
applied to all ink words in the paragraph.

vExpectingNumbers
Causes ink words to be scaled based on the assumption
that they represent numbers rather than lowercase
letters. Use for numeric fields in which the
vNumbersAllowed flag is not set.

Constant Value
vWidthIsParentWidth (1 << 0)

vNoSpaces (1 << 1)

vWidthGrowsWithText (1 << 2)

vFixedTextStyle (1 << 3)

vFixedInkTextSTyle (1 << 4)

vExpectingNumbers (1 << 9)

C H A P T E R 7

Text and Ink Input and Display Reference

Text Constants and Data Structures 7-3

Font Constants for Use in Frames 7
This section describes the constants you can use to specify fonts in font
frames.

Font Family Constants 7

Use these font family constants to specify the font family in NewtonScript
font frames.

Font Face Constants 7

Use these font face constants to specify the font face in NewtonScript font
frames.

Symbol Font Family
'espy Espy (system) font

'geneva Geneva font

'newYork New York font

'handwriting Casual (handwriting) font

Constant Value
kFaceNormal 0x000

kFaceBold 0x001

kFaceItalic 0x002

kFaceUnderline 0x004

kFaceOutline 0x008

kFaceSuperScript 0x080

kFaceSubScript 0x100

C H A P T E R 7

Text and Ink Input and Display Reference

7-4 Text Constants and Data Structures

Constant descriptions

kFaceNormal Plain font face
kFaceBold Bold font face
kFaceItalic Italic font face
kFaceUnderline Underlined font face
kFaceOutline Outlined font face
kFaceSuperScript Superscripted font face
kFaceSubScript Subscripted font face

Font Constants for Packed Font Integer Specifications 7
This section describes the constants you can use to specify font information
in packed font integer specifications.

Built-in Fonts 7

The built-in font constants allow you to use a single integer value to specify
one of the fonts built into the Newton system, including the font family, font
face, and font size.

Constant Value
ROM_fontsystem9 9216

ROM_fontsystem9bold 1057792

ROM_fontsystem9underline 4203520

ROM_fontsystem10 10240

ROM_fontsystem10bold 1058816

ROM_fontsystem10underline 4204544

ROM_fontsystem12 12288

ROM_fontsystem12bold 1060864

ROM_fontsystem12underline 4206592

ROM_fontsystem14 14336

ROM_fontsystem14bold 1062912

C H A P T E R 7

Text and Ink Input and Display Reference

Text Constants and Data Structures 7-5

Constant descriptions

ROM_fontsystem9
9-point, plain face, Espy font

ROM_fontsystem9bold
9-point, boldface, Espy font

ROM_fontsystem9underline
9-point, underline face, Espy font

ROM_fontsystem10
10-point, plain face, Espy font

ROM_fontsystem10bold
10-point, boldface, Espy font

ROM_fontsystem10underline
10-point, underline face, Espy font

ROM_fontsystem14underline 4208640

ROM_fontsystem18 18432

ROM_fontsystem18bold 1067008

ROM_fontsystem18underline 4212736

simpleFont9 9218

simpleFont10 10242

simpleFont12 12290

simpleFont18 18434

fancyFont9 or userFont9 9217

fancyFont10 or userFont10 10241

fancyFont12 or userFont12 12289

fancyFont18 or userFont18 18433

editFont10 10243

editFont12 12291

editFont18 18435

Constant Value

C H A P T E R 7

Text and Ink Input and Display Reference

7-6 Text Constants and Data Structures

ROM_fontsystem12
12-point, plain face, Espy font

ROM_fontsystem12bold
12-point, boldface, Espy font

ROM_fontsystem12underline
12-point, underline face, Espy font

ROM_fontsystem14
14-point, plain face, Espy font

ROM_fontsystem14bold
14-point, boldface, Espy font

ROM_fontsystem14underline
14-point, underline face, Espy font

ROM_fontsystem18
18-point, plain face, Espy font

ROM_fontsystem18bold
18-point, boldface, Espy font

ROM_fontsystem18underline
18-point, underline face, Espy font

simpleFont9 9-point, plain face, Geneva font
simpleFont10 10-point, plain face, Geneva font
simpleFont12 12-point, plain face, Geneva font
simpleFont18 18-point, plain face, Geneva font
fancyFont9 (userFont9)

9-point, plain face, New York font
fancyFont10 (userFont10)

10-point, plain face, New York font
fancyFont12 (userFont12)

12-point, plain face, New York font
fancyFont18 (userFont18)

18-point, plain face, New York font
editFont10 10-point, plain face, handwriting font
editFont12 12-point, plain face, handwriting font
editFont18 18-point, plain face, handwriting font

C H A P T E R 7

Text and Ink Input and Display Reference

Text Constants and Data Structures 7-7

Font Family Constants 7

Use these font family constants to specify the family ID in a packed integer
font specification.

Constant descriptions

(none) The Espy (system) font
tsFancy The New York font
tsSimple The Geneva font
tsHWFont The Casual (handwriting) font

Font Face Constants for Packed Integer Font Specifications 7

Use these font face constants to specify the font face in a packed integer font
specification.

Constant descriptions

tsPlain Plain font face
tsBold Bold font face
tsItalic Italic font face
tsUnderline Underlined font face
tsOutline Outlined font face
tsSuperScript Superscripted font face
tsSubScript Subscripted font face

Constant Value
tsPlain 0

tsBold 1048576

tsItalic 2097152

tsUnderline 4194304

tsOutline 8388608

tsSuperScript 134217728

tsSubScript 268435456

C H A P T E R 7

Text and Ink Input and Display Reference

7-8 Text Constants and Data Structures

Keyboard Constants 7
This section describes the constants you can use with keyboard views.

Keyboard Registration Constants 7

When you register a keyboard, you can specify these flags to define how the
keyboard is used.

Constant descriptions

kKbdUsesKeyCodes
The keyboard is key code–based, which means that the
system has to redraw the view whenever the Shift,
Option, or another modifier key is pressed on this or
any other key code–based view. This is because a single
key map is used for all keyboard views.

kKbdTracksCaret
The ViewCaretChangedScript method of the
keyboard view is called whenever the caret changes
position.

kKbdforInput The insertion caret is activated when this keyboard
opens, if the caret was not already active. Use this when
your keyboard provides input capabilities.

Constant Value
kKbdUsesKeyCodes 1

kKbdTracksCaret 2

kKbdforInput 4

C H A P T E R 7

Text and Ink Input and Display Reference

Text Constants and Data Structures 7-9

Key Descriptor Constants 7

The key descriptor constants specify the appearance of each key in a
keyboard.

Constant descriptions

keySpacer Nothing is drawn in this space; it is a spacer, not a key.
keyAutoHilite Highlight this key when it is pressed.
keyInsetUnit Inset this key’s frame a certain number of pixels within

its space. Multiply this constant by the number of pixels
you want to inset, from 0–7.

Constant Value
keySpacer (1 << 29)

keyAutoHilite (1 << 28)

keyInsetUnit (1 << 25)

keyFramed (1 << 23)

keyRoundingUnit (1 << 20)

keyLeftOpen (1 << 19)

keyTopOpen (1 << 18)

keyRightOpen (1 << 17)

keyBottomOpen (1 << 16)

keyHUnit (1 << 11)

keyHHalf (1 << 10)

keyHQuarter (1 << 9)

keyHEighth (1 << 8)

keyVUnit (1 << 3)

keyVHalf (1 << 2)

keyVQuarter (1 << 1)

keyVEighth (1 << 0)

C H A P T E R 7

Text and Ink Input and Display Reference

7-10 Text Constants and Data Structures

keyFramed The thickness of the frame around the key. Multiply this
constant by the number of pixels you want to use for the
frame thickness, a value in the range 0-3.

keyRoundingUnit
The roundedness of the frame corners. Multiply this
constant by the number of pixels you want to use for the
corner radius, from 0-15, zero being square.

keyLeftOpen No frame line is drawn along the left side of this key.
keyTopOpen No frame line is drawn along the top side of this key.
keyRightOpen No frame line is drawn along the right side of this key.
keyBottomOpen No frame line is drawn along the bottom side of this key.
keyHUnit Used in a key dimensions formula to specify horizontal

units.
keyHHalf Defines a number of half-units.
keyHQuarter Defines a number of quarter-units.
keyHEighth Defines a number of eighth-units.
keyVUnit Used in a key dimensions formula to specify vertical

units.
keyVHalf Defines a number of half-units.
keyVQuarter Defines a number of quarter-units.
keyVEighth Defines a number of eighth-units.

Note

See “Defining Keys in a Keyboard View” (page 8-30) in
Newton Programmer�s Guide for more information about the
keyHUnit, keyHHalf, keyHQuarter, keyHEighth,
keyVUnit, keyVHalf, keyVQuarter, and keyVEighth
constants. ◆

C H A P T E R 7

Text and Ink Input and Display Reference

Text Constants and Data Structures 7-11

Keyboard Modifier Keys 7

Use the keyboard modifier key constants to determine which modifier keys
have been pressed or when a character is “delivered” from a keyboard.

Constant descriptions

kIsSoftKeyboard
If true, the character was entered on a “soft” keyboard;
if not, the character was entered on an external
keyboard.

kCommandModifier
If true, the Command key was in effect.

kShiftModifier If true, the Shift key was in effect.
kCapsLockModifier

If true, the Caps Lock key was in effect.
kOptionsModifier

If true, the Option key was in effect.
kControlModifier

If true, the Control key was in effect.

Line Patterns 7
A line pattern, which you use for customizing the display of the ruling lines
in an edit or paragraph view, is an 8-byte binary data structure with the class
'pattern.

Constant Value
kIsSoftKeyboard (1 << 24)

kCommandModifier (1 << 25)

kShiftModifier (1 << 26)

kCapsLockModifier (1 << 27)

kOptionsModifier (1 << 28)

kControlModifier (1 << 29)

C H A P T E R 7

Text and Ink Input and Display Reference

7-12 Text Views and Protos

The bit pattern of the bytes defines which pixels are turned on in the line. A
typical line pattern is defined as shown here:

myPattern := SetClass(Clone("\uAAAAAAAAAAAAAAAA"),

'pattern);

This code clones a string, which is already a binary object, and changes its
class to 'pattern. The string is specified with hex character codes whose
binary representation creates the pattern. Each 2-digit hex code creates one
byte of the pattern.

When the line is drawn, the first bit of the pattern is aligned with the first
pixel of the line. The pattern is repeated as necessary.

The Rich String Format 7
The rich string format lets you embed ink data in a text string. The location
of each ink word in the string is indicated by a placeholder character
(0xF700 or 0xF701), and the data for each ink word is stored after the string
terminator character at the end of the string. The final 32 bits in a rich string
also have special meaning.

Text Views and Protos 7

This section describes the views and protos that you can use to display text
and receive text input.

General Input View (clEditView) 7
The clEditView class is used to accept text input. The clEditView class
contains no data. When it receives input it creates child views—a
clParagraphView to hold text or ink text and a clPolygonView to hold
graphics or raw ink.

C H A P T E R 7

Text and Ink Input and Display Reference

Text Views and Protos 7-13

You can also add pictures to clEditView views. To add a picture to a
clEditView, you need to create an appropriate template and add that
template to the view’s viewChildren.

For a list of the features provided by clEditView, see “General Input
Views” (page 8-6) in Newton Programmer�s Guide. The same section provides
an example of a template that defines a view of the clEditView class.

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

viewFlags The default setting is vVisible. You will most likely
want to set additional flags to control the recognition
behavior of the view.

viewFormat Optional. The default setting is:
vfFillWhite + vfFrameBlack + vfPen(1).

viewLineSpacing
Sets the spacing between the lines, in pixels.

viewLinePattern
Optional. Sets a custom pattern that is used to draw the
lines in the view. In the viewFormat slot editor in
NTK, you must also set the Lines item to Custom to
signal that you are using a custom pattern. (This sets the
vfCustom<<vfLinesShift flag in the viewFormat
slot.)
Patterns are binary data structures, which are described
in “Line Patterns” (page 7-11).

A view of this class can appear as a blank space. Normally, you want the
view to contain a series of horizontal dotted lines, like lined writing paper, to
show that the view accepts input. For information on how to create this
effect, see “Creating the Lined Paper Effect in a Text View” (page 8-8) in
Newton Programmer�s Guide.

Child views that are automatically created by a clEditView have the
vNoScripts flag set in their viewFlags slot, as described in “System

C H A P T E R 7

Text and Ink Input and Display Reference

7-14 Text Views and Protos

Messages in Automatically Created Views” (page 8-8) in Newton
Programmer�s Guide.

Functions and Methods for Edit Views 7
This section describes the messages that are sent to edit views. You can
define methods for these messages.

EditAddWordScript 7

view:EditAddWordScript(form, bounds)

Is sent to an edit view when a new paragraph is about to be added to the edit
view.

form The paragraph template that is about to be added to the
edit view.

bounds The bounds of the written ink or typewritten character
that has caused the new paragraph to be added.

You can use this script to modify the paragraph that is about to be added to
the edit view. Your method must return the template to be added.

If you do not provide this method, or if you return form unchanged, the
default action is taken: the system adds the paragraph view to the edit view
in the usual manner at the usual location.

NotesText 7

NotesText(childArray)

Returns a string that represents all of the text in an edit view.

childArray An array of child views of an edit view. You should use
the editView.viewChildren slot.

The NotesText function creates a string in which distinct paragraphs are
separated by carriage return characters. The NotesText function uses the
location of each child view within the edit view to determine the order in
which the strings are output.

C H A P T E R 7

Text and Ink Input and Display Reference

Text Views and Protos 7-15

If any of the child views contains ink, NotesText returns a rich string. If
none of the views contains ink, NotesText returns a plain string.

You can use the NotesText function to export edit view text to a
non-Newton computer or e-mail system.

Paragraph View (clParagraphView) 7
The clParagraphView class displays text or accepts text input. For a list of
the features provided by clParagraphView, see “Paragraph Views”
(page 8-10) in Newton Programmer�s Guide. The same section provides an
example of a template that defines a view of the clParagraphView class.

Slot descriptions

viewBounds Set to the size and location where you want the view to
appear.

text A string that is the text currently contained in the view.
viewFont Required, unless the styles slot is specified. The

viewFont slot sets the font used to display text in the
view. Note that if the view template itself does not
contain this slot, it is inherited through proto
inheritance only, not parent inheritance. See “Using
Fonts for Text and Ink Display” (page 8-17) in Newton
Programmer�s Guide for a detailed description of how to
specify a font. If the text in the view has multiple fonts,
the styles slot is used to specify the font, instead of
the viewFont slot.

viewFlags The default setting is vVisible. You will most likely
want to set additional flags to control the recognition
behavior of the view. See the discussion of recognition
flags in “Recognition” (page 9-1) in Newton
Programmer�s Guide.

viewFormat Optional. The default setting is vfFillWhite+
vfFrameBlack+vfPen(1)+vfLinesGray.

viewJustify Optional. The default setting is vjLeftH+vjTopV+
vjParentLeftH+vjParentTopV+noLineLimits.

C H A P T E R 7

Text and Ink Input and Display Reference

7-16 Text Views and Protos

Note that this view class does not support vertical
justification of the view text for multiline text views.
Therefore, the vertical justification flags (vjCenterV,
vjBottomV, and vjFullV) apply only if the
oneLineOnly flag is also set.

tabs Optional. An array of up to eight tab-stop positions, in
pixels. For example: [10, 20, 30, 40]. These positions are
pixel values, relative to the left boundary of the view.

styles Optional. An array of alternating run lengths and font
information, if multiple font styles are used. The first
element is the run length (in characters) of the first style
run, and the second element is the font style of the first
run. The third element is the run length of the second
style run, and so on. For ink words, the length value is
always 1, and the style specification is a binary object
that contains the ink data. All of the run lengths must
add up to the total text length. If the text is all in a single
font, the font in the viewFont slot specifies the font
style, and the styles slot is not needed. For
information on how to specify a font in the styles
array, see “Text and Styles” (page 8-25) in Newton
Programmer�s Guide.

textFlags Optional. Can contain one or more of the text flags
described in “Text Flags” (page 7-2).

copyProtection Specifies restrictions on copying the view by dragging it
into another view or by using the clipboard. This slot
applies only to views of the class clParagraphView. If
this slot is not present, there are no copy restrictions. In
this slot you can specify one or more copy protection
attributes, which are represented by constants defined
as bit flags. The copy protection attributes are listed and
described in Table 7-1.

C H A P T E R 7

Text and Ink Input and Display Reference

Text Views and Protos 7-17

Input Line Protos 7
An input line is just that, a single line in which the user can enter data. Protos
are provided for input lines with and without an identifying label, and for
regular and rich-text input. The use of input line protos is described in
“Using Input Line Protos” (page 8-12) in Newton Programmer�s Guide.

protoInputLine 7

This proto is used for a one-line input field that is indicated by a dotted line
to write on. It defines a simple paragraph view that accepts any kind of text
input and is left-justified, as described in “protoInputLine” (page 8-12) in
Newton Programmer�s Guide. The same section provides an example of a
template using protoInputLine.

Table 7-1 CopyProtection constants

Constant Value Description

cpNoCopies 1 The view cannot be copied.

cpReadOnlyCopies 2 The view can be copied, but the
copy cannot be modified.

cpOriginalOnlyCopies 4 The original view can be copied,
but copies of it cannot. When a
copy is made, the its
copyProtection slot is changed
to 1 (cpNoCopies) to prevent
further copying.

cpNewtonOnlyCopies 8 The view can be copied, but on one
Newton device only. Copies cannot
be exported to a different Newton
device.

C H A P T E R 7

Text and Ink Input and Display Reference

7-18 Text Views and Protos

Slot descriptions

viewBounds Set to the location where you want the input field to
appear.

viewFlags Set particular view flags to limit recognition, if desired.
The default setting is vVisible + vClickable +
vGesturesAllowed + vCharsAllowed +
vNumbersAllowed. For more information about the
recognition view flags, see “Recognition” (page 9-1) in
Newton Programmer�s Guide.

text Optional. Set to a string that is the initial text, if any, to
be shown in the input field. The default is no text.
During run time, this slot holds the current text that
exists in the input field.

viewFont Optional. This sets the font for text the user writes in the
input field. The default is editFont12.

viewJustify Optional. The default setting is vjLeftH +
oneLineOnly.

viewFormat Optional. The default setting is vfLinesGray.
viewTransferMode

Optional. The default mode is modeOr.
viewLineSpacing

Optional. The line spacing is the height of the input line
in pixels and it defaults to the setting of the parent view,
or to 20, if there is no parent setting.

viewLinePattern
Optional. Sets a custom pattern for drawing the line in
the view. A pattern is an 8-byte binary data structure
with the class 'pattern. For information about
specifying a line pattern, see “Defining a Line Pattern”
(page 8-9) in Newton Programmer�s Guide.

viewChangedScript
Optional. This method is called whenever the value of
the input field is changed.

memory Used to reference a list of the last n items chosen. The
value of this slot is a symbol that names the list. The
symbol must incorporate your developer signature, as

C H A P T E R 7

Text and Ink Input and Display Reference

Text Views and Protos 7-19

described in “protoLabelInputLine” (page 8-13) in
Newton Programmer�s Guide.

The following additional methods are defined internally:
ViewSetupFormScript and ViewSetupDoneScript. If you need to use
one of these methods, be sure to call the inherited method also (for example,
inherited:?ViewSetupFormScript()), otherwise the proto may not
work as expected.

protoRichInputLine 7

This proto is the text and ink equivalent of the protoInputLine. The slot
descriptions and discussion are exactly the same as for protoInputLine.

protoLabelInputLine 7

This proto is used for a one-line input field that includes a text label and can
optionally feature a pop-up menu. See “protoLabelInputLine” (page 8-13) in
Newton Programmer�s Guide for a description of how to use this proto.

Slot descriptions

viewBounds Set to the location where you want the view to appear.
Note that the view should have a height equal to or
greater than the value set for viewLineSpacing.

entryFlags Set particular flags to limit recognition, if desired. The
setting you specify in this slot is used for the
viewFlags slot of the input field. The default setting is
vVisible + vClickable + vGesturesAllowed
+ vCharsAllowed + vNumbersAllowed. For more
information about the recognition view flags, see
“Recognition” (page 9-1) in Newton Programmer�s Guide.

label Set to a string that is the label text.
labelFont Optional. Sets the font used for the label. The default is

ROM_fontSystem9Bold.
labelCommands Optional. If this slot is supplied, the picker feature is

activated and the label is shown with a diamond to its
left to indicate that it is a picker.

C H A P T E R 7

Text and Ink Input and Display Reference

7-20 Text Views and Protos

Specify an array of strings that should appear in a
picker when the user taps the label. To include a thin,
gray separator line, specify the symbol
'pickSeparator. For a thicker black line, specify the
symbol 'pickSolidSeparator.
The currently selected item in the list, if there is one, is
marked with a check mark to its left.

curLabelCommand
Optional. If the labelCommands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the labelCommands array. If you
omit this slot, no item is initially marked with a check
mark.

indent Optional. Set to the distance from the left edge of the
view where the dotted input line should begin. The
default is 4 pixels to the right of the label text. This slot
is useful if you are specifying several labeled input
fields in a column, and want all the dotted input lines to
line up beneath one another. If you specify this slot, be
sure to leave enough room for the label text.

viewLineSpacing
Optional. The line spacing is the height of the input line
in pixels and it defaults to the setting of the parent view,
or to 20, if there is no parent setting.

viewLinePattern
Optional. Sets a custom pattern that is used to draw the
line in the view. A pattern is an 8-byte binary data
structure with the class 'pattern. For information
about specifying a line pattern, see “Defining a Line
Pattern” (page 8-9) in Newton Programmer�s Guide.

textSetup Optional. This method is called when the view is
instantiated to set an initial value in the input field. This
method is passed no parameters and should return a
string, which is set as the initial value in the input field.

C H A P T E R 7

Text and Ink Input and Display Reference

Text Views and Protos 7-21

If you don’t supply this method, the input field is
initially empty.

updateText Optional. You can call this method to programmatically
change the value of the text in the input field. This
action is reversible by the user with the Undo button.
This method takes one parameter, a string that is the
new value of the input field. Note that you don’t
normally need to call this method; the input field is
updated automatically when the user writes in it.

textChanged Optional. This method is called whenever the value of
the input field is changed. It is passed no parameters. If
you don’t supply this method, no default action occurs.

setLabelText Optional. You can call this method to dynamically
change the label text after the view has already been
opened. This method takes one parameter, a string that
is the new label text.

setLabelCommands
Optional. You can call this method to dynamically set
the labelCommands array. This method takes one
parameter, an array of strings that should appear in the
picker.

labelClick Optional. This method is called when the user taps the
label. It is passed one parameter, the stroke unit that
was passed to the viewClickScript method of the
label. This message notifies the view, which gives you a
chance to handle the event when the label is tapped. If
you don’t supply this method or choose not to handle
the event, the default action is to display the picker, get
the user’s choice, enter the chosen text into the input
line, and dirty the input line to cause a redraw.
This function must return either true or nil. If it
returns true, the default action is not finished; the
assumption is that you have handled the event yourself.
If it returns nil, the default action is still performed
after this method returns.

labelActionScript
Optional. This method is called when an item is chosen

C H A P T E R 7

Text and Ink Input and Display Reference

7-22 Text and Ink Display Functions and Methods

from the picker. It is passed one parameter, which is the
index of the item selected from the labelCommands
array. This message notifies the view, which gives you a
chance to handle the event when an item is chosen from
the picker. If you don’t supply this method or choose
not to handle the event, the default action is to set the
text in the input line to the string that was chosen from
the picker.
This function must return either true or nil. If it
returns true, the default action is not finished; the
assumption is that you have handled the event yourself.
If it returns nil, the default action is still performed
after this method returns.

Note that inking is automatically turned off when the label is tapped.

The protoLabelInputLine is based on a view of the clView class, and
includes two child views: labelLine and entryLine. These views are
described in “protoLabelInputLine” (page 8-13) in Newton Programmer�s
Guide.

protoRichLabelInputLine 7

This proto is the text and ink equivalent of the protoLabelInputLine.
The slot descriptions and discussion are exactly the same as for
protoLabelInputLine.

Text and Ink Display Functions and Methods 7

This section describes the functions and methods you can use in applications
to display text and ink in views. For more information, see “Text and Ink in
Views” (page 8-14) in Newton Programmer�s Guide.

C H A P T E R 7

Text and Ink Input and Display Reference

Text and Ink Display Functions and Methods 7-23

Functions and Methods for Measuring Text Views 7
This section describes the functions you can use to measure or predict the
bounds of a text view.

There are two measurement functions: TextBounds and
TotalTextBounds. The TextBounds function is more efficient, but is
accurate only in limited circumstances. You can use the TextBounds
function if the view meets the following conditions:

■ it contains no tabs

■ it uses a single font

■ it uses fixed line spacing

If your view does not meet these conditions, use the TotalTextBounds
function for measuring the bounds of the view.

TextBounds 7

TextBounds(rStr, fontFrame, viewBounds)

Computes the bounds of a text string within a view.

rStr A string or rich string that does not contain any tabs or
line breaks.

fontFrame Either a standard font specification, or a frame that
contains the following two slots:

font A font specification.
justification

Optional. The text justification, which
must be : 'left, 'center, or 'right.
The default value is 'left.

viewBounds A bounds frame in which either the right or bottom
slot has a value of 0.

The TextBounds function computes the bounds frame for a text string that
is drawn using the supplied font specification. The TextBounds function
modifies the slots in viewBounds to specify the bounds for rStr.

C H A P T E R 7

Text and Ink Input and Display Reference

7-24 Text and Ink Display Functions and Methods

If the right value of the original bounds frame is 0, TextBounds computes
how wide the bounds box needs to be for the text to fit into a specified height
value, and stores that value into the right slot.

If the bottom value of the original bounds frame is 0, TextBounds
computes how tall the bounds box needs to be for the text to fit into a
specified width value, and stores that value into the bottom slot.

If both the right and bottom values of the original bounds frame are 0, the
width and height slots are modified based on the explicit line breaks in
rStr.

TotalTextBounds 7

TotalTextBounds(paraSpec, editSpec)

Predicts the bounds of a complex paragraph view, based on the text in the
view.

paraSpec A paragraph view template that must contain the
following slots: text, viewFont, and viewBounds.
The bottom slot in viewBounds should have a value
of 0.

editSpec A template for the edit view in which the paragraph is
to be enclosed. This can be nil.

You should include this parameter if you are going to
create a paragraph view as the child of a clEditView,
since the properties of the edit view affect the
computation.

The TotalTextBounds function returns a bounds frame for a
clParagraphView that encloses the specified text. The returned bounds
frame contains the same left, right, and top values as the viewBounds
slot of paraSpec. The bottom slot of the returned bounds frame is filled in
with the appropriate height value for the paragraph view.

The text slot of the paragraph view can contain plain strings or rich strings.

C H A P T E R 7

Text and Ink Input and Display Reference

Text and Ink Display Functions and Methods 7-25

Functions and Methods for Determining View Ink Types7
This section describes the functions and methods you can use to determine
whether a view accepts raw ink or ink words as input.

AddInk 7

AddInk(edit, poly)

Adds ink to an edit view.

edit An edit view object.

poly A polygon frame that can be expanded into a
clPolygonView object. This frame contains two slots:

ink The ink data.
viewBounds

The bounds box for the ink.

The AddInk function adds ink to an edit view. The ink is stored within the
edit view as a polygon view.

ViewAllowsInk 7

ViewAllowsInk(view)

Determines if view accepts raw ink as input.

view A view object.

The ViewAllowsInk function returns a non-nil value if view accepts raw
ink as input. This function uses the view’s recognition configuration and
view flags to determine the return value.

Note

The value returned by the ViewAllowsInk function is not
necessarily the same as the state of the Recognition menu.
This is because a view that does not receive ink due to the
Recognition menu setting can allow ink. ◆

C H A P T E R 7

Text and Ink Input and Display Reference

7-26 Text and Ink Display Functions and Methods

ViewAllowsInkWords 7

ViewAllowsInkWords(view)

Determines if view accepts raw ink as input.

view A view object.

The ViewAllowsInkWords function returns a non-nil value if the view
accepts ink words as input. This function uses the view’s recognition
configuration and view flags to determine the return value.

Font Attribute Functions and Methods 7
You can use the font attribute functions and methods to store or retrieve the
settings stored in a font specification. For more information about using fonts
in your text views, see “Using Fonts for Text and Ink Display” (page 8-17) in
Newton Programmer�s Guide.

FontAscent 7

FontAscent(fontSpec)

Returns the ascent, in pixels, of the font specified by fontSpec. The ascent is
the vertical distance from the font baseline to the font ascent line.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

FontDescent 7

FontDescent(fontSpec)

Returns the descent, in pixels, of the font specified by fontSpec. The descent is
the vertical distance from the font baseline to the font descent line.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

C H A P T E R 7

Text and Ink Input and Display Reference

Text and Ink Display Functions and Methods 7-27

FontHeight 7

FontHeight(fontSpec)

Returns the maximum height, in pixels, of the font specified by fontSpec. This
equals the font ascent plus the descent plus the leading.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

FontLeading 7

FontLeading(fontSpec)

Returns the font leading, in pixels, of the font specified by fontSpec. This is
the vertical distance from the font descent line to the ascent line of the next
text line below it.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

GetFontFace 7

GetFontFace(fontSpec)

Returns the face of the font specified by fontSpec. The face is returned as an
integer value.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

GetFontFamilyNum 7

GetFontFamilyNum(fontSpec)

Returns the family number for the font specified by fontSpec. Only the Espy,
Geneva, Handwriting (Casual), and New York font families currently have
numbers.

Returns nil if no number is available or if the font is an ink font.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

C H A P T E R 7

Text and Ink Input and Display Reference

7-28 Text and Ink Display Functions and Methods

GetFontFamilySym 7

GetFontFamilySym(fontSpec)

Returns the symbol representing the typeface of the font specified by
fontSpec. The returned value is one of the font family symbols, as shown in
Table 8-3 (page 8-18) in Newton Programmer�s Guide.

Returns nil if the fontSpec is an ink font binary object.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

GetFontSize 7

GetFontSize(fontSpec)

Returns the size of the font specified by fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

MakeCompactFont 7

MakeCompactFont(family, size, face)

Makes a new font specification from the supplied components.

family Can be either a symbol or integer that specifies a font
family.

size The point size as an integer value.

face The font face as an integer value.

Returns a font specification. If the font is a ROM font, a packed integer is
returned.

C H A P T E R 7

Text and Ink Input and Display Reference

Text and Ink Display Functions and Methods 7-29

SetFontFace 7

SetFontFace(fontSpec, newFace)

Sets the face of the font specified by fontSpec to the face specified by newFace
and returns the altered fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

newFace An integer, which specifies a font face.

Returns the altered fontSpec. If the font is a ROM font, a packed integer is
returned.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

Note

You can replace the current values in a fontSpec only with
your input specification. You cannot supplement the current
values. For example, you cannot add the bold attribute to a
font that already uses the underline attribute; instead, you
must specify both attributes in your input specification. To
combine existing values with new values, call the
appropriate font attribute retrieval function (e.g.,
GetFontFace) and add in your new value(s). ◆

SetFontFamily 7

SetFontFamily(fontSpec, newFamily)

Sets the family of the font specified by fontSpec to the family specified by
newFamily and returns the altered fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

newFamily Can be either a symbol or integer that specifies a font
family.

C H A P T E R 7

Text and Ink Input and Display Reference

7-30 Text and Ink Display Functions and Methods

Returns the altered fontSpec. If the font is a ROM font, a packed integer is
returned.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

SetFontParms 7

SetFontParms (fontSpec, whichParms)

Alters one or more components of a font specification. The whichParms
parameter specifies which components of the fontSpec to alter.

SetFontParms returns a modified version of the font specification. If the
specification can be packed into an integer (if the font is a ROM font), it
returns a packed integer.

The returned value may be a modified version of the font passed in, or may
be a modified clone of the original fontSpec. If possible, a packed integer is
returned.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

whichParms A frame that specifies which components of the font
spec to alter. The slots that can be used individually or
in combination in this frame include:

size An integer representing the point size of
the type. Usual values include: 9,10,12,14,
and 18.

face An integer representing the font style
attribute. The constants that you can use
for font face values are shown in “Font
Face Constants for Packed Integer Font
Specifications” (page 7-7).

family A symbol or integer representing the
typeface. Note that you cannot change the
family of an ink font. The constants that
you can use for font family numbers are

C H A P T E R 7

Text and Ink Input and Display Reference

Text and Ink Display Functions and Methods 7-31

shown in “Font Family Constants”
(page 7-7)

scale Applies only to ink fonts. An integer
percentage of the original written ink size.
When this slot is present, the size slot is
ignored.

penSize Applies only to ink fonts. An integer
between 1 and 4.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

SetFontSize 7

SetFontSize(fontSpec, newSize)

Sets the size of the font specified by fontSpec to the size specified by newSize
and returns the altered fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

newSize The new font size, specified as an integer value.

Returns the altered fontSpec. If the font is a ROM font, a packed integer is
returned.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

Rich String Functions and Methods 7
This section describes the functions and methods you can use to operate with
rich strings. For a description of rich strings and the rich string format, see
“Rich Strings” (page 8-22) in Newton Programmer�s Guide.

C H A P T E R 7

Text and Ink Input and Display Reference

7-32 Text and Ink Display Functions and Methods

DecodeRichString 7

DecodeRichString(richString, defaultFontSpec)

Returns a frame containing two slots: text and a styles. These slots can be
placed in a paragraph view for editing or viewing.

richString A rich string that can contain text and ink words.

defaultFontSpec The font specification for the text in richString. This is
usually the same as the viewFont slot of the view in
which the text is displayed.

Note

The SetValue function, which also decodes a rich string, is
more efficient than the DecodeRichString function. ◆

ExtractRangeAsRichString 7

view:ExtractRangeAsRichString(offset, length)

Returns a rich string for the range of text specified from a paragraph view.
This method can be used only on paragraph views.

offset The beginning offset of the text range, specified as an
integer value.

length The number of characters in the range of text, specified
as an integer value. Each ink word in the rich string
counts as a single character.

GetRichString 7

view:GetRichString()

Returns either a rich string or a plain string that represents the text in the
paragraph view to which the GetRichString message is sent. If the
paragraph contains ink, GetRichString returns a rich string; if not,
GetRichString returns a plain string.

C H A P T E R 7

Text and Ink Input and Display Reference

Text and Ink Display Functions and Methods 7-33

IsRichString 7

IsRichString(testString)

Returns non-nil if the testString parameter is a rich string containing ink.

testString A rich string that can contain text and ink words.

MakeRichString 7

MakeRichString(text, styleArray)

Encodes the data from the text and styleArray parameters into a rich string.

text The text from the text slot of a paragraph view.

styleArray The array found in the styles slot of a view. The
format of this array is described in the section “Text and
Styles” (page 8-25) in Newton Programmer�s Guide.

Returns a rich string that has the encoded information for the text and style
array parameters.

StripInk 7

StripInk(richString, replaceChar)

Modifies richString, replacing every ink word placeholder in the string with
replaceChar. If replaceChar is nil, the ink words are deleted.

richString The rich string to strip of ink word placeholders.

replaceChar The character to insert into richString in place of the ink
word placeholders. Use nil to delete all ink words
from the rich string.

Returns the modified string.

▲ W A R N I N G

The StripInk function destructively modifies richString. ▲

C H A P T E R 7

Text and Ink Input and Display Reference

7-34 Text and Ink Display Functions and Methods

Functions and Methods for Accessing Ink in Views 7
This section describes the functions you can use to determine if a view has
ink in it and to access the ink in a paragraph view.

GetInkAt 7

GetInkAt(para, index)

Returns the next ink in the paragraph view specified by para.

para A paragraph view.

index The starting position of the search. If this value is nil,
GetInkAt starts searching at the beginning of the
paragraph text. If this value is an integer, GetInkAt
starts searching at the next position after index.

The GetInkAt function returns a polygon view that contains the ink.

NextInkIndex 7

NextInkIndex(para, index)

Finds the next piece of ink within the paragraph view specified by para.

para A paragraph view.

index The starting position of the search. If this value is nil,
NextInkIndex starts searching at the beginning of the
paragraph text. If this value is an integer,
NextInkIndex starts searching at the next position
after index.

Returns the offset of the next ink in the paragraph. If NextInkIndex does
not find ink, it returns nil.

To start checking at the beginning of the text, use nil as the value of index.
To start checking for ink at offset i, use i-1 as the value of index. To start
checking at the next location in the text, use the value returned by the
previous call to NextInkIndex.

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-35

ParaContainsInk 7

ParaContainsInk(para)

Determines if the paragraph view specified by para contains ink.

para A paragraph view.

If the paragraph view contains ink, ParaContainsInk returns the offset
within the paragraph of the first piece of ink. If the paragraph view does not
contain ink, ParaContainsInk returns nil.

PolyContainsInk 7

PolyContainsInk(poly)

Determines if the polygon specified by poly contains ink.

poly A polygon view.

Returns true if the polygon contains ink and nil if not.

Keyboards 7

This section describes the views, protos, and functions you can use in your
applications to work with on-screen keyboards.

Keyboard View (clKeyboardView) 7
The clKeyboardView class displays keyboard-like arrays of buttons that
can be pressed (tapped with the pen) to perform an action. To read about
how to use this class, see “Keyboard Views” (page 8-26) in Newton
Programmer�s Guide.

C H A P T E R 7

Text and Ink Input and Display Reference

7-36 Keyboards

Slot descriptions

_noRepeat If present, indicates that keys do not repeat while held
down.

viewBounds Set to the size and location where you want the view to
appear.

keyDefinitions An array that defines the layout of the keys, as
described in “The Key Definitions Array” (page 8-31) in
Newton Programmer�s Guide.

viewFlags The default setting is vVisible + vClickable.
viewFormat Optional. The default setting is nil.
keyArrayIndex Optional. Determines the array element to use for a key

legend or result, allowing dynamic indexing into an
array for legends or results. See “The Key Definitions
Array” (page 8-31) in Newton Programmer�s Guide.

keyHighlightKeys
Optional. An array of keys that to highlight on the
displayed keyboard. Specify an array of keyResult
items, as described in “The Key Definitions Array”
(page 8-31) in Newton Programmer�s Guide

keyResultsAreKeycodes
Optional. If true, indicates that integers specified as
results are to be interpreted as key codes, and the
corresponding character is returned. If nil (the
default), integers are not converted to characters.

keyReceiverView
Optional. The view to which key commands (as a result
of key presses) should be posted if no keyPressScript
method exists. If the keyReceiverView slot is not
found, the view identified by the symbol
'viewFrontKey is used. This symbol evaluates at run
time to the current key receiver view.

keySound Optional. A reference to a sound frame. The sound is
played whenever a key is pressed. The default is no
sound.

keyPressScript Optional. This method is called whenever a key is
pressed. The key result of the key pressed is passed as a

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-37

parameter to this method. If this method is not
supplied, the key result is converted (if possible) into a
sequence of characters, which are posted as key events
to the key receiver view.

An example of a view definition of the clKeyboardView class, including
the key definitions for the view, is shown in “Defining Keys in a Keyboard
View” (page 8-30) in Newton Programmer�s Guide.

Keyboard Protos 7
This section provides reference information for the keyboard protos.

protoKeyboard 7

This proto creates a keyboard view that floats above all other views. It is
centered within its parent view and appears in a location that won’t obscure
the key-receiving view. For a description of how to use this proto, see
“protoKeyboard” (page 8-28) in Newton Programmer�s Guide.

Slot descriptions

saveBounds Set to the size and location where you want the
keyboard view to appear. (This is used as the
viewBounds value for the keyboard view.) Note that
the keyboard view may be displayed above or below
the location you specify, if it must be moved so as not to
obscure the key-receiving view. (You can “freeze” it in
place by using the freeze slot.)

freeze Optional. If set to true, prevents automatic movement
of the keyboard view. This slot is set to nil by default,
allowing movement of the keyboard view so as not to
obscure the key-receiving view, if it would be blocked
by the bounds you specified for the keyboard.

The following additional methods are defined internally:
ViewSetupFormScript, ViewClickScript, and ViewQuitScript. If
you need to use one of these methods, be sure to call the inherited method

C H A P T E R 7

Text and Ink Input and Display Reference

7-38 Keyboards

also (for example, inherited:?ViewClickScript()), otherwise the
proto may not work as expected.

This proto is used in conjunction with protoKeypad to implement a
floating keyboard. It defines the parent view, and protoKeypad is a child
view that defines the key characteristics.

The protoKeyboard itself uses the protoFloater proto, which is
described in “Controls and Other Protos” (page 7-1) in Newton Programmer�s
Guide.

protoKeypad 7

This proto defines key characteristics for a keyboard view
(clKeyboardView class). For a description of how to use this proto, see
“protoKeypad” (page 8-29) in Newton Programmer�s Guide.

Slot descriptions

keyDefinitions An array that defines the layout of the keys. Refer to the
clKeyboardView description in “The Key Definitions
Array” (page 8-31) in Newton Programmer�s Guide.

viewFont Optional. The default font is ROM_fontSystem9Bold.
viewFormat Optional. The default setting is vfFillWhite.
keyArrayIndex Optional. Set by this proto to zero.
keyHighlightKeys

Optional. Set by this proto to nil.
keyResultsAreKeycodes

Optional. Set by this proto to true.
keyReceiverView

Optional. Set by this proto to 'viewFrontKey.
keySound Optional. Set by this proto to typewriter.
keyPressScript Optional. This method is called whenever a key is

pressed. The result of the key press is passed as a
parameter to this method. If this method is not
supplied, the key result is converted (if possible) into a
sequence of characters that are posted as key events to
the key receiver view.

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-39

The protoKeypad is based on a view of the class clKeyboardView. For
more information about the key slots listed above, refer to “Keyboard View
(clKeyboardView)” (page 7-35).

Use this proto along with protoKeyboard to implement a floating
keyboard. The view using the protoKeypad proto should be a child of the
view using the protoKeyboard proto.

protoKeyboardButton 7

This proto is used to include the keyboard button in a view. For a description
of how to use this proto, see “protoKeyboardButton” (page 8-29) in Newton
Programmer�s Guide.

Slot descriptions

viewFlags The default is vVisible + vReadOnly +
vClickable.

viewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

defaultKeyboard
Required. The symbol of the default keyboard to open.
This value is not actually in the button view frame, but
is found by inheritance.

Note that the ViewClickScript, ButtonClickScript, and
PickActionScript methods are used internally in the
protoPictureButton and should not be overridden.

The protoKeyboardButton uses the protoPictureButton as its proto;
and protoPictureButton is based on a view of the clPictureView
class.

C H A P T E R 7

Text and Ink Input and Display Reference

7-40 Keyboards

protoSmallKeyboardButton 7

This proto is used to include the small keyboard button in a view. For a
description of how to use this proto, see “protoSmallKeyboardButton”
(page 8-30) in Newton Programmer�s Guide.

Slot descriptions

viewFlags The default is vVisible + vReadOnly +
vClickable.

viewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

current Required. The symbol of the default keyboard to open.
This value is not actually in the button view frame, but
is found by inheritance.

The protoSmallKeyboardButton uses the protoKeyboardButton as
its proto, and protoKeyboardButton uses the protoPictureButton as
its proto.

Note that the ViewClickScript, ButtonClickScript, and
PickActionScript methods are used internally in the
protoPictureButton and should not be overridden.

protoAlphaKeyboard 7

This proto is used to include an alphanumeric keyboard in a view. For a
description of how to use this proto, see “protoAlphaKeyboard” (page 8-30)
in Newton Programmer�s Guide.

Slot descriptions

viewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-41

protoNumericKeyboard 7

This proto is used to include a numeric keyboard in a view. For a description
of how to use this proto, see “protoNumericKeyboard” (page 8-30) in Newton
Programmer�s Guide.

Slot descriptions

viewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

protoPhoneKeyboard 7

This proto is used to include a phone keyboard in a view. For a description of
how to use this proto, see “protoPhoneKeyboard” (page 8-30) in Newton
Programmer�s Guide.

Slot descriptions

viewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

protoDateKeyboard 7

This proto is used to include a time and date keyboard in a view. For a
description of how to use this proto, see “protoDateKeyboard” (page 8-30) in
Newton Programmer�s Guide.

Slot descriptions

viewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV.

C H A P T E R 7

Text and Ink Input and Display Reference

7-42 Keyboards

Keyboard Functions and Methods 7
This section describes the functions and methods you can use with
keyboards in your Newton applications.

GetCaretBox 7

GetCaretBox()

Returns a bounds frame containing the global coordinates of the text
insertion caret, if it is displayed. If there is a text selection in a view, the caret
is positioned before the first character of the selection, though it may not be
visible. If there is no text selection and the caret is not displayed, this
function may still return a bounds frame giving the virtual position of the
text caret. This is the last position of the caret when it was displayed, or the
position where handwritten text would be inserted (usually immediately
following existing text).

If there is no key-receiving view, nil is returned.

KeyboardInput 7

view:KeyboardInput()

Returns true if the view is the current key view (the view receiving
keystrokes) and the keyboard is enabled (visible). Otherwise, this function
returns nil.

This method applies only to views of the class clEditView and
clParagraphView.

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-43

KeyIn 7

KeyIn(keyCode, down)

Allows you to programmatically change the state of the modifier keys (Caps
Lock, Shift, and Option) on the alpha keyboard.

keyCode The physical keycode of the key whose state you want
to change. Caps Lock is 0x39, Shift is 0x38, and Option
is 0x3A.

down Specify true to cause the equivalent of a key press.
Specify nil to release the key.

The key is highlighted on the alpha keyboard when it is pressed (down =
true), and unhighlighted when it is released (down = nil). Note that if the
keyboard is open, you must send it the Dirty message after changing the
key state in order for the visual change to occur. This is not necessary if you
use the KeyIn function to change the key state before opening the keyboard.

PostKeyString 7

PostKeyString(view, keyString)

Sends keystrokes to a view, as if they had been entered on a keyboard.

view The view to which to send keystrokes.

keyString A string containing the keystrokes to send.

This function always returns nil.

SetKeyView 7

SetKeyView(view, offset)

Sets the view that is to receive keyboard input from an on-screen keyboard
and positions the caret at the specified offset in that view. Note that this

C H A P T E R 7

Text and Ink Input and Display Reference

7-44 Keyboards

function is only guaranteed to work with a clParagraphView. To place the
caret in an edit view, you should use SetCaretInfo or PositionCaret.

view The view to receive keyboard input. This must be a
clParagraphView. Using nil for this value makes the
caret disappear.

offset The text caret is displayed at this character location. An
offset of zero indicates the beginning of the view, an
offset of one is after the first character, and so on.

Note that you may also call this function with only nil as the argument, to
make the caret disappear. This function always returns nil.

Keyboard Registry Functions and Methods 7
If your application includes its own keyboard, you may need to use these
functions. The system needs to know when keyboards are open, both for the
purposes of the insertion caret and for keyboard-related callbacks.

KeyboardConnected 7

KeyboardConnected()

Returns non-nil if a keyboard is connected to the Newton.

OpenKeyPadFor 7

OpenKeyPadFor(view)

Opens a context-sensitive keyboard for the specified view.

The OpenKeyPadFor function first searches the proto chain to see if the
view defines a keyboard in a _keyboard slot. If so, it opens the keyboard
specified by that slot.

If the view does not define a keyboard, OpenKeyPadFor checks to see if the
view allows only a single type of input for which the Newton system has a
corresponding keyboard: date, time, phone number, or number. If so, it
opens the appropriate keyboard.

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-45

If none of these other constraints is met, OpenKeyPadFor opens the
alphaKeyboard.

view A view for which a context-sensitive keypad exists.
Generally this should be the view that is returned by
GetKeyView.

Note

The Newton System Software uses the OpenKeypadFor
function to open a context-sensitive keyboard when the user
double-taps on a view in which a _keyboard slot is
defined. ◆

RegGlobalKeyboard 7

RegGlobalKeyboard(kbdSymbol, kbdTemplate) // platform file
function

Installs a keyboard as the only alphanumeric keyboard. This replaces the
built-in alpha keyboard view.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kRegGlobalKeyboardFunc with (kbdSymbol, kbdTemplate);
▲

kbdSymbol A unique identifier symbol for the keyboard view.

kbdTemplate A view template used to create the new keyboard. This
template must include the the following slot:

preAllocatedContext
This slot must have the value
'alphaKeyboard.

C H A P T E R 7

Text and Ink Input and Display Reference

7-46 Keyboards

RegisterOpenKeyboard 7

view:RegisterOpenKeyboard(flags)

Notifies the system that a keyboard view is open and displays the insertion
caret if necessary. You should call this method in your
ViewSetupDoneScript.

flags Specifies how the keyboard is used. You can use a
combination of the constants shown in the section
“Keyboard Registration Constants” (page 7-8).

Note

Each keyboard prototype automatically calls the
RegisterOpenKeyboard method. If you are using a
keyboard prototype, you need not call this method. ◆

UnRegGlobalKeyboard 7

UnRegGlobalKeyboard(kbdSymbol, kbdTemplate) // platform file
function

De-installs a keyboard that was installed by the RegGlobalKeyboard
functions. This restores the built-in alpha keyboard view.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kUnRegGlobalKeyabordFunc with (kbdSymbol, kbdTemplate);
▲

kbdSymbol A unique identifier symbol for the keyboard view.

UnregisterOpenKeyboard 7

view:UnregisterOpenKeyboard()

Notifies the system that a keyboard view is no longer visible, which causes
the insertion caret to be hidden, if necessary.

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-47

Note

The system automatically unregisters a keyboard when it is
hidden or closed. ◆

Caret Insertion Writing Mode Functions and Methods 7
Use these functions to determine the setting of caret insertion writing mode
or to set it yourself.

GetRemoteWriting 7

GetRemoteWriting()

Returns non-nil if caret insertion writing mode is currently enabled.

SetRemoteWriting 7

SetRemoteWriting(newSetting)

Sets the caret insertion writing mode preference. If newSetting is nil, caret
insertion writing mode is disabled; otherwise, caret insertion writing mode is
enabled.

newSetting Indicates the new setting (enabled or disabled) for caret
insertion writing mode. If newSetting is nil, caret
insertion writing mode is disabled; otherwise, it is
enabled.

IMPORTANT

The caret insertion writing mode is a user preference that
you should rarely change. The SetRemoteWriting method
is meant to be called only from preferences or applications
that serve a similar purpose. ▲

C H A P T E R 7

Text and Ink Input and Display Reference

7-48 Keyboards

Insertion Caret Functions and Methods 7
This section describes the functions and methods you can use to retrieve
information about or manipulate the insertion caret.

GetCaretInfo 7

GetCaretInfo()

Returns nil if there is no insertion caret. If there is an insertion caret, returns
a frame with the following two slots:

view The view that owns the insertion caret. This can be
either a clParagraphView or a clEditView.

info A frame whose contents depend on the type of view in
which the caret is positioned.

If the caret is in a paragraph view, the slots are

class 'paraCaret

offset The offset in characters of the caret
position or the start of the selection, if
there is one.

length The length of the selection. The value of
this slot is 0 if there is no selection.

If the caret is in an edit view and not inside any existing
text, the slots are

class 'editCaret

x The x-coordinate of the caret, in local
coordinates.

y The y-coordinate of the caret, in local
coordinates.

If the caret is in a view that is more complex than a
single paragraph, the slots are

class 'hilite

C H A P T E R 7

Text and Ink Input and Display Reference

Keyboards 7-49

GetKeyView 7

GetKeyView()

Returns the view that owns the insertion caret.

Returns nil if there is no insertion caret.

Note

The insertion caret may have a defined view and offset even
if it is not visible. The insertion caret is shown only when
caret insertion writing mode is on, a keyboard is connected,
or one or more keyboards are open on the screen. ◆

PositionCaret 7

view:PositionCaret(x, y, playSound)

Positions the caret at local coordinates within the view. You can use this
method in an edit view.

x The x position of the insertion caret in coordinates local
to the view.

y The y position of the insertion caret in coordinates local
to the view.

playSound If this value is non-nil, the system plays a sound when
the caret is positioned.

▲ W A R N I N G

You can use the PositionCaret method only with an
edit view. ▲

C H A P T E R 7

Text and Ink Input and Display Reference

7-50 Keyboards

SetCaretInfo 7

SetCaretInfo(view, info)

Restores the position of the insertion caret in a custom view that performs its
own caret location management.

view The view in which you want to modify the insertion
caret information.

info A frame in which you have specified the insertion caret
information, using the same value types as are returned
in the info parameter of the GetCaretInfo function, as
described in “GetCaretInfo” (page 7-48).

▲ W A R N I N G

You can use the SetCaretInfo function to restore the caret
information for caret classes 'paraCaret or 'editCaret.
You cannot use this function to restore caret information for
caret class 'hilite. The caret classes are described in
“GetCaretInfo” (page 7-48). ▲

Application-Defined Methods for Keyboards 7
This section describes the keyboard-related methods you can define in order
to perform keyboard-related actions at certain times.

ViewCaretChangedScript 7

view:ViewCaretChangedScript(view, offset, length)

Is sent to a registered keyboard view whenever the caret position or text
selection has changed. Implement this method for a registered keyboard if
you need to respond in some way to a change in the caret position or text
selection.

view The view in which the caret appears.

offset Character offset of the insertion caret within the view,
beginning with zero.

C H A P T E R 7

Text and Ink Input and Display Reference

Input Event Functions and Methods 7-51

length The length of the text selection. If this value is 0, there is
no selection.

Input Event Functions and Methods 7

This section describes the methods that can use to handle and respond to
input events in your applications.

Functions and Methods for Hit-Testing 7
This section describes the methods you can use to gather information about
the location of user input in a paragraph view.

PointToCharOffset 7

view:PointToCharOffset(x,y)

Performs hit-testing for the character closest to the point specified by x and y
in a paragraph view. The x and y values are specified as global point
coordinates.

x,y Global point coordinates.

If the point (x,y) is within the paragraph margins, PointToCharOffset
finds the character nearest to the point and returns its offset, measured from
the beginning of the paragraph. If PointToCharOffset cannot find a
character, it returns -1.

Note

This method works only for visible points in a paragraph
view. You cannot hit-test an off-screen or clipped point. ◆

C H A P T E R 7

Text and Ink Input and Display Reference

7-52 Input Event Functions and Methods

PointToWord 7

view:PointToWord(x,y)

Performs hit-testing for the word closest to the point specified by x and y.
The x and y values are specified as global point coordinates.

x,y Global point coordinates.

If the point (x,y) is within the paragraph margins, PointToWord finds the
word nearest to the point and returns a frame with two slots: start and
end. The start slot specifies the offset from the beginning of the paragraph
to the start of the word. The end slot specifies the offset from the beginning
of the paragraph to the end of the word.

If PointToWord cannot find a word, it returns nil.

Note

This method works only for visible points in a paragraph
view. You cannot hit-test an off-screen or clipped point. ◆

Functions and Methods for Handling Insertions 7
This section describes the methods and functions you can use to handle
insertion events.

The Insert Specification Frame 7

Several methods in this section receive an input parameter that is an insert
specification frame. This frame contains the following six slots:

insertItems The items to be inserted. This can be a single item or an
array of items. Each item must be one of the valid item
forms shown in Table 7-2 (page 7-53).

addSpace Optional. The value true adds a space between items
unless vNoSpaces is set.

undoable Optional. If true, indicates that the insertion can be
undone; otherwise, the insertion cannot be undone. The
default value is true.

C H A P T E R 7

Text and Ink Input and Display Reference

Input Event Functions and Methods 7-53

insertOffset Optional. The number of characters to offset the
insertion from the beginning of the paragraph.

replaceChars Optional. Replaces this number of characters, starting at
the insert offset. If no insert offset is specified, replaces
the selection (if there is one).

moveCaret Optional. If true, indicates that the insertion caret
should be moved to the position following the insertion;
otherwise, the insertion caret is not moved. The default
value is true.

For more information about correctInfo frames, see “Recognition”
(page 9-1) in Newton Programmer�s Guide.

Table 7-2 Valid items in an insert specification

Item type Description Example

string Used for keyboard and plain
text insertions.

"hello"

text and styles
frame

Used for styled text.

Note that if styles is not
an array, it is assumed to be
a single fontSpec that
applies to all text.

{
text: "hi there"
styles: [len, fontSpec,
 len, fontSpec, ...]
}

rich string Used for rich string
insertions.

ink binary
object

Used for ink words (class
'inkWord).

correctInfo
frames

Used for handwritten words.

C H A P T E R 7

Text and Ink Input and Display Reference

7-54 Input Event Functions and Methods

HandleInsertItems 7

view:HandleInsertItems(insertSpec)

Inserts one or more items into a paragraph.

You usually implement this method for paragraph views; however, you can
implement it for a clView that has scripts set up to handle the
InsertItems event.

insertSpec An insert specification frame, as described in the section
“The Insert Specification Frame” (page 7-52).

Returns nil.

InsertItemsAtCaret 7

InsertItemsAtCaret(insertSpec)

Inserts one or more items into a paragraph at the caret position. The inserted
items replace the selection, if there is one.

You usually implement this method for paragraph views; however, you can
implement it for a clView that has scripts set up to handle the
InsertItems event.

insertSpec An insert specification frame, as described in the section
“The Insert Specification Frame” (page 7-52).

Note

You should not use the following insert specification frame
slots for this method: replaceChars, insertOffset, and
moveCaret. ◆

Functions and Methods for Handling Ink Words 7
This section describes the functions and methods you can use to work with
ink words in your applications.

C H A P T E R 7

Text and Ink Input and Display Reference

Input Event Functions and Methods 7-55

GetInkWordInfo 7

GetInkWordInfo(inkWord)

Returns information about an ink word.

inkWord An ink word.

Returns a frame with the following slots:

origWidth The width of the originally written ink word.

origAscent The ascent of the originally written ink word.

origDescent The descent of the originally written ink word.

origXHeight The x-height of the originally written ink word.

fontFace The font style of the ink word.

scale The scaling percentage for the ink word.

origPenSize The pen width used to display the word. This is the
value defined in the Styles menu.

origFontSize The font size of the originally written ink word.

curFontSize The current font size of the ink word.

curPenSize Unused. Do not rely on this value.

curWidth The current (scaled) width of the ink word.

curHeight The current (scaled) height of the ink word.

curAscent The current (scaled) ascent of the ink word.

curXHeight The current (scaled) x-height of the ink word.

curDescent The current (scaled) descent of the ink word.

HandleInkWord 7

view:HandleInkWord(strokeBundle)

Hands a stroke bundle off to a view for processing.

C H A P T E R 7

Text and Ink Input and Display Reference

7-56 Input Event Functions and Methods

strokeBundle Raw stroke data for the ink word. You need to convert
this data to an ink word by calling the
StrokeBundleToInkWord method, which is
described in “StrokeBundleToInkWord” (page 8-89).

The view’s ViewInkWordScript, if any, is called as if the ink had been
written by the user.

HandleRawInk 7

view:HandleRawInk(strokeBundle)

Sends a stroke bundle to a view for handling.

strokeBundle Raw data for the sketch ink, as described in
“Recognition: Advanced Topics” (page 10-1).

The view’s ViewRawInkScript, if any, is called.

Application-Defined Methods for Handling Ink in a View7
This section describes the messages that are sent for handling ink in a view.

ViewInkWordScript 7

view:ViewInkWordScript(strokeBundle)

Is sent when an ink word is recognized and sent to a view. The system
searches for this method in the current view and its protos.

strokeBundle Stroke data for the ink word.

Returns true if your method handles the incoming ink word and nil if not.

If you do not handle the ink word, the edit and paragraph view default
handlers are used. Note that views other than edit and paragraph views do
not have default handlers.

C H A P T E R 7

Text and Ink Input and Display Reference

Input Event Functions and Methods 7-57

ViewRawInkScript 7

view:ViewRawInkScript(strokeBundle)

Is sent when sketch ink is passed to a view. The system searches for this
method in the current view and its protos.

strokeBundle Stroke data for the sketch ink.

Returns true if your method handles the incoming sketch ink and nil if not.

If you do not handle the sketch ink, the edit and paragraph view default
handlers are used. Note that views other than edit and paragraph views do
not have default handlers.

Recognition System Data Structures 8-1

C H A P T E R 8

Recognition System
Reference 8

This chapter describes in detail the constants, data structures, objects,
methods, and global functions you can use to work with the recognition
system.

Recognition System Data Structures 8

This section describes constants and data structures that you can use when
working with the recognition system, including system-wide settings, view
flags that control recognition behavior, system-supplied dictionaries, stroke
bundles, word units, gesture units, shape units, point arrays, recConfig
frames, rcBaseInfo frames, and rcGridInfo frames.

Figure 8-0
Table 8-0

C H A P T E R 8

Recognition System Reference

8-2 Recognition System Data Structures

System-Wide Settings 8
You can use the following slots in the system’s user configuration data to

■ specify the use of a particular recognizer.

■ enable and disable the system’s ability to modify its handwriting model.

■ enable and disable the automatic addition of words to the user dictionary
and the auto-add dictionary.

Note that the values of most of these slots are set by the user in various
preferences slips. Others are set by a recToggle view associated with the
view performing recognition. Generally, you should not change the values of
these slots.

To access slots in the system’s user configuration data, use the
GetUserConfig and SetUserConfig functions, as described in Newton
Programmer�s Guide Chapter 19, “Built-in Applications and System Data.”
After setting the values of recognition-related slots in the system’s user
configuration data, you must call the ReadCursiveOptions function to
cause the recognition system to use the new settings.

Slot descriptions

letterSetSelection
Sets the text recognizer currently in use. This value may
be either of the constants kStandardCharSetInfo
(cursive recognizer) or kUCBlockCharSetInfo
(printed recognizer). Although the recognizers built into
Newton platforms through version 2.0 of system
software support these values, other recognizers are not
guaranteed to support them. You cannot set this value
from your view’s recConfig frame. This value is set
by the user; for more information, see “User Preferences
for Recognition” (page 9-14) in Newton Programmer�s
Guide.

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-3

learningEnabledOption
The default value true specifies that the system records
learning data as the user corrects misrecognized words.
Conversely, the value nil specifies that correcting
misrecognized words does not modify the
system-defined handwriting model. Because the printed
recognizer does not record learning data, it ignores this
value. For more information, see the description of this
slot in “protoRecConfig” beginning on page 8-36; see
also “User Preferences for Recognition” (page 9-14) in
Newton Programmer�s Guide.

letterSpaceCursiveOption
The value of this slot affects the amount of space
required to consider sets of strokes as belonging to
separate letters or words. This value may be set by the
user from the Handwriting Recognition preferences slip,
or it may be set programmatically in a recConfig
frame. For more information, see the description of this
slot in “protoRecConfig” beginning on page 8-36; see
also “User Preferences for Recognition” (page 9-14) in
Newton Programmer�s Guide.

timeoutCursiveOption
This value affects the amount of time a recognizer waits
from the completion of a stroke for subsequent strokes
that might belong to the same word, shape, or graphic.
For more information, see the description of this slot in
“protoRecConfig” beginning on page 8-36; see also
“User Preferences for Recognition” (page 9-14) in
Newton Programmer�s Guide.

speedCursiveOption
The amount of time the cursive recognizer spends
recognizing input. Not all recognizers use this value; for
more information, see the description of this slot

C H A P T E R 8

Recognition System Reference

8-4 Recognition System Data Structures

beginning on page 8-39. See also “User Preferences for
Recognition” (page 9-14) in Newton Programmer�s Guide.

letterInFieldsOption
The value true specifies that, in addition to providing
recognition behaviors specified by other settings,
recognizers able to do so provide letter-by-letter
recognition in protoLabelInputLine views. The
value nil causes some recognizers to return only words
appearing in the set of dictionaries available to the
recognizer. On 2.0-based Newton systems, the cursive
recognizer respects the letterInFieldsOption
value; on the other hand, the printed recognizer always
provides letter-by-letter recognition regardless of the
value of this slot. The user can set this slot to true by
selecting the “Letter-by-letter in fields” checkbox in the
Handwriting Settings preferences slip. For more
information, see “User Preferences for Recognition”
(page 9-14) in Newton Programmer�s Guide.

lettersCursiveOption
The default value true specifies that, in addition to
providing recognition behaviors specified by other
settings, recognizers able to do so provide
letter-by-letter recognition in clEditView views. The
value nil causes some recognizers to return only words
appearing in the set of dictionaries available to the
recognizer. On 2.0-based systems, the cursive recognizer
respects the value of the lettersCursiveOption
slot; on the other hand, the printed recognizer always
provides letter-by-letter recognition regardless of the
value of this slot. The user can set this slot to true by
selecting the “Letter-by-letter in notes” checkbox in the
Handwriting Settings preferences slip. For more
information, see “User Preferences for Recognition”
(page 9-14) in Newton Programmer�s Guide.

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-5

doAutoAdd The default value true specifies that new words are
added to the user dictionary and the auto-add
dictionary automatically. The value nil specifies that
words are not added to these dictionaries automatically.
For more information, see “Disabling the Auto-Add
Mechanism” (page 10-35) in Newton Programmer�s Guide.

doTextRecognition
The value true enables word recognition. The system
sets the value of this slot to true when the user selects
the Text item from the protoRecToggle view. For
more information, see “User Preferences for
Recognition” (page 9-14) in Newton Programmer�s Guide
and “Using RecConfig Frames to Enable Recognizers”
(page 10-10) in Newton Programmer�s Guide.

doShapeRecognition
The value true enables shape recognition. The system
sets the value of this slot to true when the user selects
the Shapes item from the protoRecToggle view. For
more information, see “User Preferences for
Recognition” (page 9-14) in Newton Programmer�s Guide
and “Using RecConfig Frames to Enable Recognizers”
(page 10-10) in Newton Programmer�s Guide.

doInkWordRecognition
The value true causes the recognizer to convert strokes
to ink text rather than sketch ink. Ink text may also be
returned to a view when the text recognizer is enabled
but cannot recognize the input successfully or when text
and shape recognition is disabled. The system sets the
value of this slot to true when the user selects the Ink
Text item from the protoRecToggle view. For more
information, see “User Preferences for Recognition”
(page 9-14) in Newton Programmer�s Guide and “Using
RecConfig Frames to Enable Recognizers” (page 10-10)
in Newton Programmer�s Guide.

C H A P T E R 8

Recognition System Reference

8-6 Recognition System Data Structures

View Flags for Recognition 8
This section describes flags that enable the recognizers and dictionaries used
by views for recognition. The system also provides flags that specify aspects
of the view’s appearance and drawing behavior; for information about these
additional view flags, see Chapter 2, “Views Reference.”

Note that the specific set of dictionaries enabled by a particular flag can vary
according to the user’s current location as specified in the built in Time
Zones application. The set of dictionaries used by a particular view is
specified by a combination of the default settings, the locale specified in user
preferences, and the set of view flags specified for the view. For more
information about locales, see “How Locale Affects Recognition” (page 20-2)
in Newton Programmer�s Guide.

Multiple view flags may be combined to provide a view with a particular set
of attributes; however, every option may not be available in every kind of
view. For example, a view of the clView class can accept clicks (taps) but
can’t recognize words unless you supply code that provides this behavior.

The flags described here may be specified in the viewFlags slot of the view
performing recognition or in the inputMask slot of the view’s recConfig
frame. For information on using the viewFlags slot, see “Enabling
Recognizers” (page 9-8) in Newton Programmer�s Guide. For information on
using the inputMask slot, see the following sections in Newton Programmer�s
Guide: “Creating a recConfig Frame”(page 10-9) and “Creating Single-Letter
Input Views”(page 10-15).

Note

Although the Newton Toolkit user interface distinguishes
between entry flags and view flags, this chapter refers to all
such flags as view flags. For more information, see
“Flag-Naming Conventions” (page 9-19) in Newton
Programmer�s Guide. ◆

Table 8-1 summarizes the view flags that enable text recognition using
enumerated dictionaries (including custom dictionaries).

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-7

Table 8-1 View flags for text recognition using enumerated
dictionaries

Constant Value Description

vCharsAllowed 1 << 12
or
0x01000

Enables the default text recognizer and the
default dictionary set. The default text
recognizer is specified as a system-wide setting
by the user from within the Handwriting
Recognition preferences slip. The default
dictionary set for a particular view is defined
according to the view class or system prototype
from which it is derived, its set of view flags,
and the current locale. Setting this flag enables
dictionaries for common words, proper names,
and the review dictionary (which contains the
user, auto-add, and expand dictionaries). For
more information, see “How Locale Affects
Recognition” in Chapter 15, “Localizing
Newton Applications.”

vLettersAllowed 1 << 14
or
0x04000

Enables letter-by-letter text recognition. Set this
flag for views that may need to recognize
words not present in the currently available set
of dictionaries. Setting this flag enables the
default text recognizer; if that recognizer is the
cursive recognizer, it is enabled in
letter-by-letter mode, which allows it to
recognize combinations of letters that are not
dictionary items. (Note that the printed
recognizer can always recognize words that are
not present in dictionaries.) For example, the
cursive recognizer can return nonword
combinations of characters such as “xyz” when
the vLettersAllowed flag is set. Take care to
use this flag only when necessary, as it can slow
the performance of the cursive recognizer and
make it less reliable.

C H A P T E R 8

Recognition System Reference

8-8 Recognition System Data Structures

vAddressField 1 << 21
or
0x0200000

Enables recognizers and dictionaries suitable
for the input of address data in the current
locale. It is not necessary to set the
vPunctuationAllowed or
vNumbersAllowed flags in conjunction with
this flag. The set of dictionaries this flag enables
is suitable for recognizing numbers,
punctuation, abbreviations, common words,
and proper nouns. Words found in proper
noun dictionaries are in most cases capitalized
before they are returned to the view for
display; thus, you need not set the
vCapsRequired flag in conjunction with the
vAddressField flag. At your discretion, you
can set the vCapsRequired flag to force the
capitalization of recognized words before they
are returned to the view.

vNumbersAllowed 1 << 13
or
0x02000

Enables the recognition of numeric characters,
monetary values (for example, $12.25), decimal
points, and signs (+ or –). To recognize integer
values only, set the vCustomDictionaries
flag instead of setting the vNumbersAllowed
flag and place only the kNumbersDict
constant in the dictionaries slot of the view
or its recConfig frame.

vNameField 1 << 22
or
0x0400000

Enables text recognition optimized for name
data. This flag is usually combined with the
vCapsRequired flag. This flag does not
provide access to or control of the Names
application or the Names soup.

Table 8-1 View flags for text recognition using enumerated
dictionaries (continued)

Constant Value Description

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-9

vCustomDictionarie
s

1 << 24
or
0x01000000

Enables text recognition using dictionaries
specified by values in the view’s
dictionaries slot. This flag is used for views
that accept custom data such as company
names, plant species, and so on. When this flag
is set, the view’s template or recConfig frame
must provide a dictionaries slot that
contains a single dictionary identifier or an
array of dictionary identifiers. These identifiers
may refer to custom dictionaries you provide
or to built-in dictionaries that the system
provides. You need not set the
vCharsAllowed flag with the
vCustomDictionaries flag unless the view
needs to use the system-supplied dictionaries
that the vCharsAllowed flag enables.

vPunctuationAllowe
d

1 << 15
or
0x08000

Enables recognition of punctuation marks by
the cursive recognizer. (The printed recognizer
always recognizes punctuation marks in any
position in input strings, regardless of the
setting of the vPunctuationAllowed flag.)
This flag enables recognition of the following
marks preceding a word: single quotation
mark, double quotation mark, left parenthesis,
and hyphen. This flag also enables the
recognition of the following marks at the end of
a word: single quotation mark, double
quotation mark, right parenthesis, hyphen,
period, comma, exclamation point, question
mark, colon, and semicolon.

Table 8-1 View flags for text recognition using enumerated
dictionaries (continued)

Constant Value Description

C H A P T E R 8

Recognition System Reference

8-10 Recognition System Data Structures

Table 8-2 describes view flags that enable text recognition using
system-supplied lexical dictionaries.

vCapsRequired 1 << 23
or
0x0800000

Forces capitalization of the first character of
each recognized word before it is returned to
the view. Setting this flag reduces the view’s
ability to accept uncapitalized input. Views that
do not set this flag capitalize words according
to the size of the first letter in the word and the
capitalization requirement specified by the
dictionary used to recognize the word, if any.

Table 8-2 View flags for text recognition using lexical dictionaries

Constant Value Description

vNumbersAllowe
d

1 << 13
or
0x02000

Enables recognition of numbers, monetary values (for
example, $12.25), decimal points, and mathematical
signs (+ and –).

vPhoneField 1 << 18
or
0x040000

Enables recognition of phone numbers. Note that the
set of lexical dictionaries enabled by this flag varies
with the text recognizer currently in use. Most
notably, views for which this flag is set can recognize
phone numbers with intermixed alphabetic characters
(for example, “1-800-NOOTOON”) when the printed
recognizer is enabled, but not when the cursive
recognizer is enabled.

vDateField 1 << 19
or
0x080000

Enables recognition of date formats (such as “March
3-95”), names of months, and names of days.

vTimeField 1 << 20
or
0x0100000

Enables recognition of times.

Table 8-1 View flags for text recognition using enumerated
dictionaries (continued)

Constant Value Description

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-11

Note

The lexical dictionaries enabled by a particular flag can vary
according to the user’s current location as specified in the
built in Time Zones application. For more information, see
“How Locale Affects Recognition” (page 20-2) in Newton
Programmer�s Guide. ◆

Table 8-3 describes view flags that control the nontextual aspects of
recognition system behavior.

Table 8-3 Nontext view flags

Constant Value Description

vNothingAllowed 0x00000000
or
0x0000

The view accepts no handwritten or keyboard
input. The NTK view editor does not provide a
checkbox to set this flag, as it is equivalent to
turning off all of the other flags.

vAnythingAllowed 65535 << 9
or
0x01FFFE00

Set this flag only for views derived from the
clEditView class. This flag is actually a mask
that turns on all recognizers, theoretically
allowing the view to accept any kind of input;
however, the recognition that the view actually
performs at run time is controlled by a
combination of user preferences settings,
recToggle settings, and recConfig settings.
You must be certain that the recToggle view
is visible when you use this flag, because it
allows the creation of a state in which nothing
is recognized. That is, if recognition is turned
off and the recToggle view is not displayed,
the user cannot enable recognition in the view.

Note that you’ll obtain faster and more accurate
recognition using the correct set of individual
flags for the types of data that your view
accepts. To control specific recognizers, you
must use a combination of the other view flags
that the system provides.

C H A P T E R 8

Recognition System Reference

8-12 Recognition System Data Structures

vClickable 1 << 9
or
0x0200

The system sends the ViewClickScript
message to the view once for each pen tap that
occurs within the view. The unit passed as the
argument to the ViewClickScript method is
valid only during the recognition process—that
is, while the various recognition-related scripts
are being called. Do not attempt to save units
for later use.

You must set the vClickable flag for any
view that is to accept pen input; no taps or
strokes are passed to the view when this flag is
not set. Views that handle taps explicitly (such
as buttons) or that track the pen themselves can
set this flag and use the ViewClickScript
method to implement their handling of pen
input. This method can track the position of the
pen by calling the GetPoint function. For
more information, see “GetPoint” on page 8-79.

Electronic ink is turned on or off depending on
the vClickable flag’s interaction with the
ViewClickScript method and the settings of
view flags for views in the _parent chain. If
vClickable is the only view flag set for the
view, inking is turned off automatically.
However, if vClickable is not set for the
view, any of its parent views may handle clicks
or draw ink. For more information, see “Taps
and Overlapping Views” (page 9-24) in Newton
Programmer�s Guide.

Ink is turned on in views having a
ViewClickScript method. To turn off
inking, the ViewClickScript method can
call either of the global functions InkOff or
InkOffUnHobbled. Note that the
TrackHilite and TrackButton methods
also disable inking.

Table 8-3 Nontext view flags (continued)

Constant Value Description

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-13

vStrokesAllowed 1 << 10
or
0x0400

The view accepts strokes and is sent the
ViewStrokeScript message at the end of
each stroke.

Note that when several strokes occur within the
amount of time specified by the
timeoutCursiveOptions value, only the
first stroke causes the ViewStrokeScript
message to be sent.

The only time you need to set this flag is when
the view has a ViewStrokeScript method.
You might use this method to do something
application-specific with strokes, such as
recognizing your own gestures. Don’t set this
flag if your view does not have a
ViewStrokeScript method—you’ll only
waste battery power!

You must also set the vClickable flag when
using this flag; otherwise, the view accepts no
input.

Table 8-3 Nontext view flags (continued)

Constant Value Description

C H A P T E R 8

Recognition System Reference

8-14 Recognition System Data Structures

vGesturesAllowed 1 << 11
or
0x0800

The view accepts gesture strokes such as scrub,
highlight, tap, double tap, caret, and line. Most
views that accept input also set this flag so that
gestures such as scrub can be used. You must
also set the vClickable flag when using the
vGesturesAllowed flag; otherwise, the view
accepts no pen input.

Setting this flag causes the view to send the
ViewGestureScript message when it
recognizes a gesture that it does not handle
automatically. Views based on the
clEditView and clParagraphView classes
handle standard gestures automatically. To
interpret gestures yourself in a clView view,
you must set the vGesturesAllowed flag and
provide a ViewGestureScript method. See
“ViewGestureScript” (page 8-71) for more
information.

vShapesAllowed 1 << 16
or
0x010000

Enables shape recognition within a view based
on the clEditView class. You must also set
the vClickable flag when using this flag;
otherwise, the view accepts no input.

Table 8-3 Nontext view flags (continued)

Constant Value Description

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-15

vSingleUnit 1 << 8
or
0x0100

Disables the recognition system’s use of spatial
cues (distance between strokes), forcing it to
rely on temporal cues (time between the
completion of one stroke and the beginning of
another) to determine when the user has
completed a group of strokes. Using this flag
may result in better recognition of complex
stroke groups in which users tend to put large
spaces, such as phone numbers. This flag has
meaning for text recognizers only.

Once input has been recognized and added to
the view, subsequent input is recognized as
separate words. In effect, setting this flag
causes the recognizer to ignore short delays,
such as those that occur between writing the
individual characters in a word. Longer delays
cue the recognizer to group the most recently
completed set of strokes as a word. The amount
of time considered to be a longer delay is a
function of the speed of the processor and the
recognition system, as well as the value of the
timeoutCursiveOption user preference.

For additional information on suppressing
spaces, see the description of the vNoSpaces
flag.

vNoSpaces 1 << 1
or
0x0002

Directs a view based on the
clParagraphView class to not insert spaces
between existing text and new text. This
post-processing flag neither restricts the
interpretation of the input strokes nor assists
the recognition system in choosing between
alternative interpretations of the input, as the
vSingleUnit flag does.

vWidthIsParentWidt
h

1 << 0
or
0x0001

The right boundary of the clParagraphView
view is extended to match that of its parent.

Table 8-3 Nontext view flags (continued)

Constant Value Description

C H A P T E R 8

Recognition System Reference

8-16 Recognition System Data Structures

System-Supplied Dictionaries 8
The system supplies various enumerated and lexical dictionaries for the
recognition system’s use. The set of dictionaries used by a particular view is
specified by a combination of the default settings, the locale specified in user
preferences, and the set of view flags specified for the view.

Table 8-4 describes the system-supplied enumerated dictionaries accessible
from NewtonScript. Note that the content of the dictionary represented by
the kLocalPropersDictionary constant may vary according to the
user’s locale. For information on locales, see Chapter 20, “Localizing Newton
Applications,” in Newton Programmer�s Guide.

Note

Although these constants currently evaluate to integers, do
not rely on the integer values. Use only the appropriate
constant names to reference these dictionaries. ◆

1 Locale-specific dictionary

Table 8-4 System-supplied enumerated dictionaries

Dictionary ID (constant) Value Contents

kUserDictionary 31 Words added by the user

kCommonDictionary 0 Commonly used words

kCountriesDictionary 8 Names of countries

kDaysMonthsDictionary 34 Names of days and months

kFirstNamesDictionary 48 First names

kLocalCitiesDictionary 41 Names of cities

kLocalPropersDictionary1 2 Proper names

kLocalStatesDictionary 43 Names of states, provinces, etc.

kSharedPropersDictionary 1 Proper names, company names, state or
province names, and abbreviations

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-17

Table 8-5 lists constants representing system-supplied lexical dictionaries
that define formats for dates, times, phone numbers, postal codes, currency
values, and other numeric values. Note that most lexical dictionaries are no
longer locale-specific—each dictionary specifies lexical formats for all locales.
However, the dictionaries represented by the kLocalNumberDictionary,
kMoneyOnlyDictionary, and kNumbersOnlyDictionary constants may
vary according to the user’s locale. For information on locales, see Newton
Programmer�s Guide Chapter 20, “Localizing Newton Applications.”

Note

Although these constants currently evaluate to integers, do
not rely on the integer values. Use only the appropriate
constant names to reference these dictionaries. ◆

Recognition Configuration Frames 8
Recognition configuration frames (recConfig frames) provide an alternate
interface to the recognition system. They can be used to provide any

1 Locale-specific dictionary

Table 8-5 System-supplied lexical dictionaries

Dictionary ID (constant) Value Contents

kLocalDateDictionary 110 Date formats

kLocalNumberDictionary1 113 Currency and numeric formats

kLocalPhoneDictionary 112 Phone number formats

kLocalTimeDictionary 111 Time formats

kMoneyOnlyDictionary1 118 Currency values and formats

kNumbersOnlyDictionary1 117 Numeric values and formats

kPostalCodeDictionary 116 Postal code formats

C H A P T E R 8

Recognition System Reference

8-18 Recognition System Data Structures

behavior that view flags provide, to supplement behavior provided by view
flags, or to provide specialized recognition behaviors that view flags cannot.
The use of a recConfig frame is required to support ink text, specify
baseline information, perform deferred recognition, and define grids of
single-letter input areas within a view.

For descriptions of the slots and methods in recConfig frames, see
“protoRecConfig” on page 8-36.

System-Supplied recConfig Frames 8

You can base your view’s recConfig frame on one of the system-supplied
recConfig frames described in this section.

The recConfig frames supplied by the constants ROM_rcInkOrText,
ROM_rcPrefsConfig, and ROM_rcRerecognizeConfig require no
modification to produce useful behavior. You must provide appropriate
initial values for some slots in the recConfig frames supplied by the
ROM_rcDefaultConfig, ROM_rcSingleCharacterConfig, and
ROM_rcTryLettersConfig constants.

For information regarding the use of the constants described in this section,
see the following sections in Newton Programmer�s Guide: “Creating a
recConfig Frame” (page 10-9) and “Changing Recognition Behavior
Dynamically”(page 10-17).

ROM_rcInkOrText
This general-purpose recConfig frame can be used as
it is for views that accept text input. It allows the user to
turn on text recognition only; when text recognition is
disabled, the system returns ink text to the view. This
recConfig frame is generally used with a
protoRecToggle view to allow the user to specify
whether the view displays ink text or normal text. The
ROM_rcInkOrText frame provides the following slots.
allowTextRecognition

Default value of true allows user to
enable the text recognizer from an
associated recToggle view. See the

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-19

description of the
allowTextRecognition slot
(page 8-37) for more information.

doInkWordRecognition
Default value of true enables recognition
of input as ink text when text recognizer
is off. See the description of the
doInkWordRecognition slot on
page 8-38 for more information.

ROM_rcPrefsConfig
This frame can be used as is to configure views for
performing recognition according to user preference
settings. Views that have recognition behavior based on
this frame permit the user to enable or disable any
recognizer for which the system provides a user
interface. The default recognition behavior of views that
set the vAnythingAllowed mask is based on this
frame.

Note

The ROM_rcPrefsConfig frame does not specify an input
mask, forcing the system to build one using settings
specified in user preferences. ◆

The ROM_rcPrefsConfig frame provides the
following slots:
allowTextRecognition

Default value of true allows the user to
enable the text recognizer from an
associated protoRecToggle view. See
the description of the
allowTextRecognition slot
(page 8-37) for more information.

allowShapeRecognition
Default value of true allows the user to
enable the shape recognizer from an
associated protoRecToggle view. See

C H A P T E R 8

Recognition System Reference

8-20 Recognition System Data Structures

the description of the
allowShapeRecognition slot on
page 8-37 for more information.

ROM_rcDefaultConfig
The ROM_rcDefaultConfig frame can be used as a
prototype for a generic recConfig frame; it provides a
useful set of slots for which you must supply values.
This frame provides the following slots:

punctuationCursiveOption
A value of true specifies that the view
recognizes punctuation marks. This frame
supplies a default value of nil.

dictionaries
The list of dictionaries to use for
recognition. This slot holds an array of
dictionary identifiers, a single dictionary
identifier, or the value nil. This frame
supplies a default value of nil. For more
information, see the description of the
dictionaries slot in the section “Using
Your RAM-Based Custom Dictionary”
(page 10-28) in Newton Programmer�s Guide.

rcSingleLetters
A value of true specifies that the view
recognizes single letters only, rather than
dictionary words. This frame supplies a
default value of nil.

rcBaseInfo
Holds an rcBaseInfo frame, which
describes the coordinates of an editable
view having known baselines. This frame
supplies a default value of nil. For more
information, see “rcBaseInfo” beginning
on page 8-25.

inputMask A bit field specifying the configuration of
the recognition system for this view. This
frame supplies a default value of zero

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-21

(0x0000). For more information, see
“View Flags for Recognition” beginning
on page 8-6.

ROM_rcSingleCharacterConfig
This frame can be used as it is to configure recognition
in views accepting single-character input. For example,
you can use this frame to configure the entry fields in a
crossword puzzle or the entry fields in a
single-character corrector view similar to the
protoCharEdit system prototype. For an example of
the use of this prototype, see “Creating Single-Letter
Input Views” (page 10-15) in Newton Programmer�s Guide.

The ROM_rcSingleCharacterConfig frame
provides the following slots:

_proto The default value of this slot is
ROM_rcDefaultConfig. Do not change
the value of this slot. For more
information regarding slots that this
frame acquires through prototype
inheritance, see the description of the
ROM_rcDefaultConfig constant
beginning on page 8-20.

letterSpaceCursiveOption
Indicates whether the recognition system
segments strokes into groups by
interpreting spatial and temporal cues.
The default value of nil specifies that the
system performs no segmentation, which
is appropriate for a field in which all
strokes are to be interpreted as a single
word.

rcSingleLetters
The default value of true indicates that
the text recognizer is to recognize single
letters rather than dictionary words.

C H A P T E R 8

Recognition System Reference

8-22 Recognition System Data Structures

inputMask This view’s input mask. The default value
of vCustomDictionaries indicates that
the view uses the dictionaries specified in
the view’s dictionaries slot. For more
information, see the description of the
dictionaries slot in the section “Using
Your RAM-Based Custom Dictionary”
(page 10-28) in Newton Programmer�s Guide.

dictionaries
The default value of
kSymbolsDictionary specifies that this
view uses the system-supplied symbols
dictionary for recognition. The symbols
dictionary is used to recognize single
alphanumeric characters, punctuation
marks, mathematical symbols, diacritical
marks, and so on.

inhibitSymbolsDictionary
The default value of true specifies that
the system is not to use the symbols
dictionary in addition to the specified
dictionaries. (To do so would be
redundant: the symbols dictionary is
already enabled by this frame’s
dictionaries slot.)

ROM_rcTryLettersConfig
This frame can be used as it is to configure a view for
recognizing alphanumeric character combinations that
do not appear in available dictionaries; it is intended for
use by views that implement their own form of deferred
recognition. For example, the system uses this
recConfig frame when the user chooses the Try
Letters item from the picker displayed as the result of
double-tapping a word previously recognized by the
cursive recognizer.

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-23

_proto The default value of this slot is
ROM_rcDefaultConfig. For more
information regarding slots that this
frame acquires through prototype
inheritance, see the description of the
ROM_rcDefaultConfig constant
beginning on page 8-20.

letterSpaceCursiveOption
Indicates whether the recognition system
segments strokes into groups by
interpreting spatial and temporal cues.
The default value of nil specifies that the
system performs no segmentation, which
is appropriate for a field in which all
strokes are to be interpreted as a single
word.

inputMask The default value of
vLettersAllowed+vNumbersAllowed
configures this view to recognize
non-dictionary words and numbers. See
the descriptions of these flags (page 8-6)
for more information. For information
regarding the use of the NewtonScript
plus (+) operator to combine view flags,
see “Combining View Flags” (page 9-26)
in Newton Programmer�s Guide.

ROM_rcRerecognizeConfig
This frame can be used as it is by views that implement
their own form of deferred recognition. It builds an
input mask from user preference settings and the
settings of an associated recToggle view.

allowTextRecognition
Default value of true causes the value of
the doTextRecognition slot to be used.
See the description of the
allowTextRecognition slot
(page 8-37) for more information.

C H A P T E R 8

Recognition System Reference

8-24 Recognition System Data Structures

doTextRecognition
The default value true enables word
recognition in the view that this
recConfig frame controls. For more
information, see the protoRecConfig
section’s description of this slot on
page 8-37.

speedCursiveOption
The amount of time the cursive recognizer
spends recognizing input. This frame
provides a default value of 2. For more
information see the protoRecConfig
section’s description of this slot on
page 8-39.

letterSpaceCursiveOption
Indicates whether the recognition system
uses spatial and temporal cues to segment
strokes into groups. The default value of
nil specifies that the system performs no
segmentation, which is appropriate for a
field in which all strokes are to be
interpreted as a single word.

ROM_canonicalBaseInfo
System-supplied rcBaseInfo frame. Clone this frame
into your recConfig frame’s rcBaseInfo slot.

ROM_canonicalCharGrid
System-supplied rcGridInfo frame. Clone this frame
into your recConfig frame’s rcGridInfo slot.

Data Structures Used in recConfig Frames 8

The system-supplied rcBaseInfo and rcGridInfo frames are used within
recConfig frames to define baseline information and grids of single-letter
input views, respectively.

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-25

rcBaseInfo 8

This frame specifies to the recognizer precisely where characters are written
with respect to a well-defined baseline in a view. The rcBaseInfo frame is
especially valuable in improving the recognition of single letters or letter-size
values, for which it is sometimes difficult to derive baseline information from
user input alone. For example, without adequate baseline information it is
difficult to distinguish between an upper-case letter P and a lower-case letter
p.

Figure 8-1 depicts the editing box that an rcBaseInfo frame defines.

Figure 8-1 Single-character editing box specified by rcBaseInfo frame

The rcBaseInfo frame has the following slots:

Slot descriptions

base The Y coordinate of the view’s baseline, expressed in
screen coordinates (global coordinates).

smallHeight Positive offset, expressed in pixels, from base to the top
of a lowercase x. Set to nil if you aren’t sure what value
this slot should have.

bigHeight Positive offset, expressed in pixels, from base to the top
of an uppercase X. Set to nil if you aren’t sure what
value this slot should have.

C H A P T E R 8

Recognition System Reference

8-26 Recognition System Data Structures

descent Positive offset, expressed in pixels, from base to the
bottom of a lowercase g. Set to nil if you aren’t sure
what value this slot should have.

If you aren’t sure of appropriate values for the smallHeight, bigHeight,
or descent slots, it’s better to set them to nil than to provide inaccurate
values. In general, you shouldn’t specify these values unless there is a visible
guideline on the screen with which the user can align handwritten input.

Note

If the user can drag the view around on the screen, you’ll
need to offset the value of the base slot when the view
is moved. ◆

rcGridInfo 8

You can use the rcGridInfo frame in conjunction with an rcBaseInfo
frame to define to the recognizer the position of a single letter input area
within a specified view. The rcGridInfo frame can be used to define a
single box, a horizontal array of boxes, a vertical array of boxes, or a
two-dimensional array of boxes. For example, the system-supplied
protoCharEdit prototype uses an rcGridInfo frame to define the cells of
the comb view it provides.

If you provide a grid in which the user is to write characters or words, you
need to use an rcGridInfo frame to define the grid to the text recognizer.
The recognizer requires the information in an rcGridInfo frame in order to
make character-segmentation decisions.

Figure 8-2 depicts the grid—the two-dimensional array of boxes—that an
rcGridInfo frame can define.

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-27

Figure 8-2 Two-dimensional array of input boxes specified by
rcGridInfo frame

The rcGridInfo frame has the following slots:

Slot descriptions

boxLeft The global (screen) coordinate of the left edge of the
top-left box.

boxRight The global (screen) coordinate of the right edge of the
top-left box.

xSpace The distance from one boxLeft coordinate to the next
boxLeft coordinate.

boxTop The global (screen) coordinate of the topmost edge of
the top-left box.

boxBottom The global (screen) coordinate of the bottom edge of the
top-left box.

ySpace The distance from one boxTop coordinate to the next
boxTop coordinate.

C H A P T E R 8

Recognition System Reference

8-28 Recognition System Data Structures

The definition of a horizontal array requires the presence of the boxLeft,
boxRight, and xSpace slots. The definition of a vertical array requires the
presence of the boxTop, boxBottom, and ySpace slots. The definition of a
two-dimensional array requires that all six slots be defined.

Note

If the user can drag the view around on the screen, you’ll
need to offset the values of the boxLeft, boxRight,
boxTop, and boxBottom slots when the view is moved. ◆

Stroke Bundle Data Structures 8
This section describes the data structures that you can use to work with
stroke bundles.

The Stroke Bundle Frame 8

The stroke bundle frame describes the point data from an input stroke drawn
on the Newton tablet. This frame contains the following slots:

Slot descriptions

bounds The bounding rectangle for the ink strokes in the bundle.

strokes An array with one element for each stroke in the
bundle. Each element is a binary object containing tablet
resolution data.

Format Specification Values for Stroke Bundle Functions 8

Several stroke bundle functions use a format specification to determine the
resolution of point data. Some functions also use this format specification to
determine whether or not to copy duplicate point values. The format
specification values are shown in Table 8-6.

C H A P T E R 8

Recognition System Reference

Recognition System Data Structures 8-29

Note

Points are stored in a compressed format that is based on
screen resolution. ◆

Filtering of duplicate points is irrelevant for several stroke bundle functions.
These functions use screen resolution if you supply a filter value of 0 or 1,
and tablet resolution if you supply a filter value of 2 or 3. For example, the
GetStrokePoint function (page 8-85) retrieves a specific point from a
stroke bundle, and needs to know only the resolution in which to return that
point.

Stroke, Word, and Gesture Units 8

The Newton recognition system uses stroke units to describe information
about pen input. You cannot examine a stroke unit directly, but some stroke
bundle and recognition functions accept this object type as an argument. The
system passes stroke units to the optional ViewStrokeScript method of a
view that performs recognition.

The Newton recognition system also uses other units. These include word
units, which are passed to a view’s optional ViewWordScript method, and
gesture units, which are passed to a view’s optional ViewGestureScript
method.

For more information about stroke, word, and gesture units, as well as the
application-defined view methods that use them, see “Customized
Processing of Input Strokes” (page 10-40) in Newton Programmer�s Guide.

Table 8-6 Stroke bundle data format specifications

Value Description

0 Data in screen resolution. Filter out duplicate points.

1 Data in screen resolution. Duplicate points are allowed.

2 Data in tablet resolution. Filter out duplicate points.

3 Data in tablet resolution. Duplicate points are allowed.

C H A P T E R 8

Recognition System Reference

8-30 Recognition System Data Structures

Point Arrays 8

Several of the stroke bundle functions use or return point arrays. This is a
single array of coordinate values, with alternating y and x coordinates.

Note that the first value in each pair is the y coordinate value, followed by
the x coordinate value.

The point array structure is the same structure type that is returned by the
GetPointsArray function, described on page 8-81.

CorrectInfo Frame 8
This frame, which contains correction information for recently recognized
words, is returned by the GetCorrectInfo global function (page 8-56). For
descriptions of the slots and methods in this frame, see “protoCorrectInfo”
on page 8-53.

WordInfo Frame 8
This frame contains stroke data, correction information, and learning data for
a single written word interpreted by the text recognizer. An array of
wordInfo frames representing recently recognized words is held by the
info slot of the correctInfo frame. Individual wordInfo frames may
also be extracted from word units passed to the optional ViewWordScript
method of the view performing text recognition. For descriptions of the slots
and methods in this frame, see “protoWordInfo” on page 8-60.

WordInterp Frame 8
This frame represents a single interpretation of input strokes returned by the
text recognizer. An array of wordInterp frames resides in the wordInfo
frame’s words slot. For descriptions of the slots in this frame, see
“protoWordInterp” on page 8-63.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-31

Recognition System Prototypes 8

This section describes protos used to configure the recognition system or
provide a user interface to it.

protoRecToggle 8
The protoRecToggle system prototype provides a picker that controls
recognition in an associated view. This prototype is intended for use with
views that set the vAnythingAllowed mask.

This proto changes the recognition behavior of a view that allows recognition
of various kinds of input. For example, the built-in Notepad application
provides a protoRecToggle view that allows the user to change the
recognition behavior of note views. Another common use of this proto is to
facilitate changing between text recognition and ink text in an input view
that supports both kinds of text.

The protoRecToggle view is designed to be added as a child of a status
bar view based on the protoStatus proto. When used in this way, the
recToggle view is positioned on the status bar automatically, and the value
of its viewBounds slot is ignored. For example, the built-in Notepad
application positions this view immediately to the right of the
protoInfoButton view on the status bar.

When collapsed, the protoRecToggle view’s appearance reflects the
current configuration of the recognition system for the view that it controls.
Figure 8-3 shows the protoRecToggle picker (popup menu) as it appears
when collapsed and when expanded.

C H A P T E R 8

Recognition System Reference

8-32 Recognition System Prototypes

Figure 8-3 protoRecToggle picker collapsed and expanded

You can cause this view to display only those items that are appropriate for
your application. For example, applications having only text entry fields
typically display only the Text and Ink Text items. On the other hand,
applications like the built-in Notepad have views that allow several different
types of recognition within the note, and so display additional items in this
picker. For more information, see the description of the _recogPopup slot,
later in this section.

Applications that use a protoRecToggle view must provide a
_recogSettings slot. When your application closes, it can save the
contents of this slot and restore it the next time your application opens,
thereby restoring the state of the recToggle view.

The protoRecToggle prototype provides the following slots of interest to
developers:

Slot descriptions

_recogSettings Required; holds the current setting of the
protoRecToggle view. When your application closes,
it can save the value of this slot for use in restoring the
state of the protoRecToggle view when the
application opens again.

This slot may appear anywhere in the _parent chain of
the view that the recToggle controls. For more
information, see “Creating the _recogSettings Slot”
(page 10-20) in Newton Programmer�s Guide.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-33

defaultItem Optional; an integer value specifying the element of the
_recogPopup array to be used as the recToggle
view’s default setting. If this slot is missing or nil, the
first element of the _recogPopup array specifies the
default setting.

_recogPopup Optional; an array of symbols specifying the items to be
included in the protoRecToggle picker. If this slot is
missing or nil, all items specified in the _recogPopup
slot of the recToggle view’s template are included in
the picker. The first item in this array is the default
setting for the recToggle button.

The default _recogPopup slot provided by the
protoRecToggle system prototype contains the array
shown in the following code fragment:

_recogPopup:[

'recogText, // "Text"

'recogInkText, // "Ink Text"

'pickSeparator, // ------------------

'recogShapes, // "Shapes"

'recogSketches, // "Sketches"

'pickSeparator, // ------------------

'recToggleSettings, // "Preferences"

],

Your _recogPopup slot can contain any combination
or subset of these symbols, in any order.

The next several paragraphs describe each of the
symbols that may appear in the _recogPopup array.

'recogText
Specifies that the Text item is to appear in
the recToggle picker. When this item is
chosen, it enables text recognition as
specified by any view flags, recConfig

C H A P T E R 8

Recognition System Reference

8-34 Recognition System Prototypes

frame, or user preference settings that
apply to the view controlled by the
recToggle view. In views that set the
vAnythingAllowed mask, this item
enables the recognition of words,
numbers, dates, times, and letters. For all
views controlled by this item,
unrecognized words are returned as ink
text if the view supports ink text.

'recogInkText
Specifies that the Ink Text item is to
appear in the recToggle picker. When
this item is chosen, written words are
returned as unrecognized ink text.

'recogShapes
Specifies that the Shapes item is to appear
in the recToggle picker. When this item
is chosen, it enables shape recognition for
the view that the recToggle view
controls and causes unrecognized shapes
to be returned as sketch ink.

'recogSketches
Specifies that the Sketches item is to
appear in the recToggle picker. When
this item is chosen, it disables recognition
of text and shapes, causing input to be
returned as sketch ink.

'pickseparator
Specifies that an unselectable dotted line
is to appear in the recToggle picker at
the position corresponding to this array
element.

'recToggleSettings
Specifies that the Preferences item is to
appear in the recToggle picker. When
this item is chosen, it causes the system to
display the Handwriting Recognition

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-35

preferences slip. Simply displaying the
slip does not change any preferences.

Application-Defined recToggle Methods 8

The current system supports only one application-defined recToggle view
method, the RecogSettingsChanged method, which is described here.

RecogSettingsChanged 8

view:RecogSettingsChanged(viewFlags)

This application-defined method provides a means of taking
application-specific action in response to changes in the setting of an
associated recToggle view. This message is sent when the recToggle
picker changes if this method is defined in the recToggle view or
anywhere in its _parent chain.

Edit views that set the vAnythingAllowed mask set use the new
recognition settings automatically when this message is sent. Other kinds of
views may need to take appropriate action themselves. This message is sent
to self (which usually evaluates to the recToggle view), relying on parent
inheritance for appropriate dispatch. Therefore, your implementation of this
method must confine its actions to appropriate local changes only.

Typically, your RecogSettingsChanged method must add the value of the
viewFlags parameter to any other appropriate nonrecognition view flags and
place the resulting value in the viewFlags slot of any view that must
respond to the change in the recToggle view’s state. The new settings are
used automatically because when the recToggle picker changes, the
system calls the PurgeAreaCache function before sending the
RecogSettingsChanged message.

viewFlags The current set of view flags to be used by the
associated view for recognition. This value is passed to
your RecogSettingsChanged method by the system.
Note that this value does not include view flags
unrelated to recognition, although the proper operation
of the view may require them.

C H A P T E R 8

Recognition System Reference

8-36 Recognition System Prototypes

The system sets the value of the viewFlags parameter as follows:

■ If the Text or Ink Text item was chosen in the recToggle picker, then the
value of the viewFlags parameter is set to vCharsAllowed plus additional
text recognition flags as appropriate.

■ If the Shapes item was chosen in the recToggle picker, then the value of
the viewFlags parameter is set to vShapesAllowed.

■ If the Sketches item was chosen in the recToggle picker, then the value
of the viewFlags parameter is set to 0.

protoRecConfig 8
This prototype may be used to configure the recognition system when a
particular configuration is not available through the use of view flags. It is
also used to support features such as ink text and specialized behavior such
as limiting the set of characters recognized by a view.

Your view’s recConfig frame may be based on this proto or on one of the
system-supplied recConfig frames (all of which are also based on this
proto) described in “System-Supplied recConfig Frames” (page 8-18).

The value of the following slot affects the input mask that the view
constructs:

Input mask slots

inputMask Required. The bit field that controls the view’s
recognition behavior. The recognition portion of the
view’s viewFlags slot should be set to the same value
as the inputMask slot in the recConfig frame. There
is one exception to this rule: to enable ink text, you can
put the system-supplied recConfig frame
ROM_rcInkOrText in your view’s recConfig slot,
leaving everything else the same.

The values of the following slots specify the choices that an associated
protoRecToggle view provides to the user:

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-37

recToggle configuration slots

allowTextRecognition
A value of true specifies that text recognition is
enabled when the value of the doTextRecognition
slot in the system’s user configuration data is true.
(The system sets the doTextRecognition user
configuration slot to true when the user chooses the
Text item from the associated recToggle picker.) You
might set this value to implement deferred recognition
in a view that disables text recognition. User preferences
not related to recognizer settings are not affected by the
value of this slot.

allowShapeRecognition
A value of true specifies that shape recognition is
enabled when the value of the doShapeRecognition
slot in the system’s user configuration data is true.
(The system sets the doShapeRecognition user
configuration slot to true when the user chooses the
Shapes item from the associated recToggle picker.)
User preferences not related to recognizer settings are
not affected by the value of this slot.

The values of the following slots (or their inherited values) enable the use of
a particular recognizer in views that set the vAnythingAllowed mask.
Note that these slots are used rarely; normally, the bits in the viewFlags
slot control the view’s recognition behavior. The values of these slots can be
used to override values inherited from system-wide settings or an associated
recToggle view. These slots enable specified recognizers unconditionally—
as opposed to the allowXxxRecognition slots, which enable a specified
recognizer only when the appropriate slot in user configuration data holds
the value true.)

Recognizer configuration slots

doTextRecognition
The value true enables word recognition in the view
that this recConfig frame controls. This slot is usually

C H A P T E R 8

Recognition System Reference

8-38 Recognition System Prototypes

used only with views that set the vAnythingAllowed
mask. When the user turns on text recognition from the
protoRecToggle view associated with the view this
recConfig frame controls, the system sets the value of
the doTextRecognition slot in the system’s user
configuration data to true. This recConfig slot can be
used to override values inherited from a
protoRecToggle view or user configuration settings.

doShapeRecognition
The value true enables shape recognition in the view
that this recConfig frame controls. This slot is usually
used only with views that set the vAnythingAllowed
mask. When the user turns on shape recognition from
the protoRecToggle view associated with the view
this recConfig frame controls, the system sets the
value of the doShapeRecognition slot in the system’s
user configuration data to true. This recConfig slot
can be used to override values inherited from a
protoRecToggle view or user configuration settings.

doInkWordRecognition
The value true causes the recognizer to convert strokes
to ink text rather than sketch ink. If the value of this slot
is nil or the slot is absent, the view turns unrecognized
ink into sketch ink. When the user turns on text or ink
text recognition from the protoRecToggle view
associated with the view this recConfig frame
controls, the system sets the value of the
doInkWordRecognition slot in the system’s user
configuration data to true. This recConfig slot can be
used to override values inherited from a
protoRecToggle view or user configuration settings.
Note that the system may also return ink text to the
view when the text recognizer cannot recognize the
input successfully or when text and shape recognition
are both disabled.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-39

Do not attempt to include letterSetSelection or
learningEnabledOption slots in your recConfig frame, for the
following reasons:

■ The text recognizer (printed or cursive) made available to all views is
determined by the value of the letterSetSelection slot in the
system’s user configuration data. Individual views cannot override this
system-wide setting.

■ The system’s ability to save learning data is enabled by the value of the
learningEnabledOption slot in the system’s user configuration data.
Individual views cannot override this system-wide setting.

The following slots modify the behavior of the text recognizer:

Text recognizer configuration slots

speedCursiveOption
This value affects the amount of time the cursive
recognizer spends analyzing input. This value does not
affect the printed recognizer. The user's preference (set
by a slider in the Fine Tuning preferences slip) is used as
the default value of this slot. This value ranges from 0 to
9, with 0 representing the slowest and most accurate
recognition, and 9 representing the fastest and least
accurate recognition.

Note

These slots are not guaranteed to affect all recognizers
available in future versions of the system. ◆

timeoutCursiveOption
This value affects the amount of time the recognizer
waits from the completion of a stroke for subsequent
strokes that might belong to the same character, word or
shape. The value of this slot is a delay expressed in ticks
(60ths of a second). The “Transform my handwriting”
slider in the Fine Tuning user preferences slip sets
values for this slot ranging from 15 ticks (.25 second) to

C H A P T E R 8

Recognition System Reference

8-40 Recognition System Prototypes

60 ticks (1 second). Your view can use larger or smaller
values, although it is not recommended.

letterSpaceCursiveOption
The value of this slot affects the amount of horizontal
space required to consider sets of strokes as belonging
to separate letters or words. The user's preference (set
by a slider in the Handwriting Recognition preferences
slip), is used as the default value of this slot. This value
ranges from 0 to 9, with 0 representing widely spaced
words or characters, and 9 representing closely spaced
words or characters. If the value of this slot is nil, the
recognizer performs no segmentation.

The following slots affect the view’s use of dictionaries for recognition.

Dictionary configuration slots

dictionaries Specifies custom dictionaries to be used by the view.
This slot may contain a single dictionary identifier or an
array of dictionary identifiers. When this slot is present,
the view’s dictionaries slot is ignored. Although not
always necessary, it is still a good idea to set the
vCustomDictionaries bit in the recConfig frame’s
inputMask slot when the recConfig frame provides
a dictionaries slot.

rcSingleLetters
Set the value of this slot to true for a view that is to
recognize only single letters. For example, this feature
would be useful in a corrector view, in a crossword
puzzle view, or when letters in a previously recognized
word are overwritten. Note that you still need to
provide a dictionary—in this case, one having entries
that are single letters.

inhibitSymbolsDictionary
Set the value of this slot to true when the symbols
dictionary is not to be included in the set of dictionaries

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-41

used by the view for text recognition. The symbols
dictionary contains single letters, punctuation marks,
and miscellaneous characters, and is normally enabled.
It is used by the recognition system when the user
overwrites single characters in a misrecognized word.

protoCharEdit 8
The protoCharEdit system prototype provides a comb-style entry view in
which the user can edit text. The recognition system uses this proto as a
means of allowing the user to correct single letters in a misrecognized word.
The protoCharEdit system prototype is shown in Figure 8-4.

Figure 8-4 Typical protoCharEdit comb view and text to correct

In a protoCharEdit view, each character position that can be edited has a
dotted line beneath it to indicate that it can be changed. The user can edit a
character by overwriting it, causing the recognized value of the new
character to be displayed in that position. When the user taps a cell in the
comb view, it displays a picker containing alternate interpretations of the
strokes which produced the character occupying that cell.

The user can delete one or more characters with the scrub gesture.
Alternatively, the user can delete an individual character by tapping it and
selecting the Delete item from the alternate interpretations picker that the
comb view displays.

The user can insert a space for a new character with the caret gesture.
Alternatively, the user can insert a space by tapping the position that the
space is to occupy in the comb view and selecting the Insert item from the
alternate interpretations picker that the comb view displays.

C H A P T E R 8

Recognition System Reference

8-42 Recognition System Prototypes

In addition to these gestures, the user can tap any blank space to display a
list of punctuation marks that may be inserted at that position.

The comb view provided by the protoCharEdit view may be formatted or
unformatted. In unformatted comb views, the word in the comb is of
variable length. The user can delete any character, or insert new spaces
anywhere. When a character is deleted, the surrounding characters move to
close up the space formerly occupied by the deleted character. Although
unformatted comb views usually accept any characters as input, it is possible
to restrict input to a specified set of characters.

Words displayed in formatted comb views are restricted to a fixed length,
and inserting additional characters is not allowed. Scrubbing characters in a
formatted comb view clears them rather than deletes them; that is, the
scrubbed character is replaced by a space. The set of characters recognized in
each position may be restricted to a specified set. For example, a
protoCharEdit view that holds a phone number is likely to restrict to
numeric values the set of characters it returns.

The protoCharEdit prototype provides the following slots of interest to
application developers. These slots are normally defined in your view
template, used during initialization, and not changed subsequently:

Slot descriptions

top The screen coordinates of the top edge of the comb
view; required when no viewBounds value is
provided. If you provide the value of the top slot, you
must also provide values for the maxChars and left
slots.

left The screen coordinates of the left edge of the comb
view; required when no viewBounds value is
provided. If you provide the value of the left slot, you
must also provide values for the maxChars and top
slots.

viewBounds A standard viewBounds frame that specifies the
dimensions of the comb view; required when the top

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-43

and left values are not provided. If you provide the
value of the viewBounds slot, the system provides the
value of the maxChars slot for you.

maxChars The number of character positions to display in the
comb view. The default value is 8. If you specify the
values of the top and left slots, then you'll also need
to specify the value of the maxChars slot. If instead you
specify the value of the viewBounds slot, the value of
the maxChars slot is calculated for you, based on the
width of the view. In formatted comb views, the value
of maxChars cannot be greater than the maximum
number of characters allowed by the template.

frameCells Optional. The value true specifies that the comb view
displays gray divider lines between cells. The default
value is nil.

cellWidth The width of each cell in the comb view, expressed in
pixels. This value must be an even number. The default
value is 24. If you specify the values of the top and
left slots, then the width of the view is calculated as
the value (cellWidth*maxChars)+1, and is set for
you.

cellGap The number of pixels of blank space between cells in the
comb view. This value must be an even number. The
default value is 6. This value is used for drawing the
cells and for determining the cells covered by a scrub
gesture.

viewLineSpacing
The distance in pixels from the top of the viewBounds
to the dotted line on which the user enters written
input. The default value is 30.

cellHeight The total height of the cell, expressed in pixels. The
default value is 50. If you specify the values of the top
and left slots, then the height of the view as expressed

C H A P T E R 8

Recognition System Reference

8-44 Recognition System Prototypes

by its viewBounds value is set to the value of the
cellHeight slot. If you specify the value of the
viewBounds slot explicitly, the value of the
cellHeight slot is set to the height expressed by the
value of the viewBounds slot.

recConfig The recognition configuration frame that specifies the
recognition behavior of the comb view. The same
recognition setting is used for all cells in the comb view.
The default recConfig frame supplied as the value of
this slot allows all standard characters to be recognized.
To improve the speed and accuracy of a numbers-only
comb view, you could change the recConfig frame in
this slot appropriately. (For example, you might supply
a custom dictionary containing only those digits that
represent valid values.) If you change the value of this
slot, you must ensure that the ViewSetupDoneScript
method of the view is invoked afterward.

template Optional frame used to customize the appearance and
behavior of the comb view. For more information, see
the section “Template Used by ProtoCharEdit Views”
beginning on page 8-45.

text The string to be displayed in the comb view. Initially,
this slot contains the string to be displayed; after the
ViewSetupFormScript method executes, this string
may contain leading and trailing spaces.

wordLeft The index of the leftmost character in the comb view
that is not a space.

wordRight The index of the cell to the right of the rightmost
character in the comb view that is not a space.

dispLeft In the text slot, the index of the character occupying
the leftmost position in the comb view. The dispLeft

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-45

slot normally has the value 0, but after scrolling it may
have values greater than zero.

dispIndent The offset from the leftmost edge of the comb view to
the leftmost edge of the first character position
displayed, expressed in pixels.

Template Used by ProtoCharEdit Views 8

System-supplied templates for restricting input in protoCharEdit views to
numbers, dates, phone numbers or times are described in “System-Supplied
protoCharEdit Templates” beginning on page 8-46.

The optional template residing in your protoCharEdit view’s template
slot is a frame that may contain the following slots:

Slot descriptions

filters Required when a format slot is provided. An array of
one or more strings specifying characters that may be
entered in cells of the protoCharEdit view. If your
template does not provide a format slot, this array
holds a single element that filters input for all cells in
the protoCharEdit view. If you provide a format
slot, this array can contain multiple elements. The
format slot specifies indexes into this array that
associate cells in the protoCharEdit view with
elements of this array.

format Optional. A string having one character for each
position in the protoCharEdit view. Each ordinal
position in this string specifies an index into the
filters array to define permissible input in the
corresponding ordinal position in the protoCharEdit
view; any position holding an underscore specifies that
the corresponding position in the protoCharEdit
view cannot be edited.

C H A P T E R 8

Recognition System Reference

8-46 Recognition System Prototypes

The presence of the format slot specifies that the
protoCharEdit view is a formatted comb view: it
permits only a fixed number of characters; cells cannot
be inserted or deleted; and scrubbing clears a cell in the
comb rather than deleting it. If the format slot is
missing or if its value is nil, the comb field is an
unformatted comb view, like the corrector in the built-in
Notepad application.

If the template has a format slot, then it must also
provide a filters slot.

text Optional. This string is used by the SetupString and
CleanupString methods.

SetupString Optional method you supply that provides a string
value for the template’s text slot. For more
information, see this method’s description in
“Application-Defined protoCharEdit Template
Methods” beginning on page 8-52.

CleanupString Optional method you provide that processes the string
obtained from the text slot before it is displayed in the
comb view. For more information, see this method’s
description in “Application-Defined protoCharEdit
Template Methods” beginning on page 8-52.

System-Supplied protoCharEdit Templates 8

This section describes system-supplied templates that can be used to filter
input in protoCharEdit views. Place the appropriate template in your
protoCharEdit view’s template slot to restrict input to phone numbers,
dates, times, or numeric values in general.

Note that the specific templates provided for filtering dates, times, or phone
numbers may change according to the user’s locale.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-47

Phone Number Template 8

The template for phone numbers is stored in GetLocale().phoneFilter.
This template lets the user enter phone numbers (excluding area code) in a
format acceptable for the current locale. The area code must be entered in a
separate input view.

Date Template 8

The template for dates is stored in GetLocale().dateFilter. This
template lets you enter a date in mm/dd/yy format, with the specific order of
these elements determined by the current locale bundle.

m A digit representing the month.

d A digit representing the day of the month.

y A digit representing the year.

Time Template 8

The template for times is stored in GetLocale().timeFilter. This
template lets you enter a time in HH:MM [AM|PM] format. For locales that
use 24-hour time, the format is simply HH:MM.

H A digit representing the hour.

M A digit representing the minute.

Number Template 8

A general-purpose numeric template is defined in ROM_numberFilter.
This template allows the user to enter a variable length integer containing
only digits.

protoCharEdit Functions and Methods 8

The system provides the protoCharEdit functions and methods described
here. Additionally, you can provide the optional methods described in
“Application-Defined protoCharEdit Template Methods” on page 8-52, as

C H A P T E R 8

Recognition System Reference

8-48 Recognition System Prototypes

well as the protoCharEdit template methods described in
“Application-Defined protoCharEdit Template Methods” on page 8-52.

GetWordForDisplay 8

charEditView:GetWordForDisplay()

Returns a cleaned-up version of the string currently displayed by the comb
view.

This is the best method to invoke to obtain a readable version of the string
for external display—if the protoCharEdit view’s template defines a
CleanupString method, this function uses it to further modify the string
returned by the CurrentWord method.

CurrentWord 8

charEditView:CurrentWord()

Returns the word currently displayed in the comb view, with leading and
trailing spaces removed. Because unformatted comb views may add leading
and trailing spaces to display strings, the string returned by this method may
not be precisely the same as that residing in the text slot of charEditView.

Always use this method or the GetWordForDisplay function to retrieve
the text from the comb view. The difference between these routines is that the
GetWordForDisplay function calls the associated template’s optional
CleanupString method if it is provided.

DeleteText 8

charEditView:DeleteText(left, right)

Deletes the specified text from the comb view.

left The index of the leftmost character to be deleted. This
value may be obtained from the protoCharEdit
view’s wordLeft slot.

right The index of the cell to the right of the rightmost
character to be deleted. This value may be obtained
from the protoCharEdit view’s wordRight slot.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-49

Normally, text is deleted from a protoCharEdit view when the user scrubs
the text or chooses an item from the picker displayed when a character is
tapped. To clear the entire view programmatically, you can use the
DeleteText method as shown in the following code fragment.

view:DeleteText(view.wordLeft, view.wordRight);

Scroll 8

charEditView:Scroll(direction)

Scrolls the comb view left or right as specified. This function returns the
value true when scrolling occurs.

direction Integer indicating the direction to scroll. When this
value is greater than zero, characters to the right of
those currently displayed in the comb view are shown
as necessary. When this value is less than zero, the
display scrolls back to the beginning of the word (not to
the next chunk to the left), as necessary.

UseTextAndTemplate 8

charEditView:UseTextAndTemplate()

Causes the comb view to use the current values of the text and template
slots. Before using this method, you must set the protoCharEdit view’s
text and template slots to their new values.

You can use this method to change the text or template used by the comb
view. It is not necessary to invoke this method when first opening the comb
view, as its ViewSetupFormScript method provides equivalent
initialization.

To change an already open comb view’s text without changing its template,
invoke the SetNewWord method, followed by the UseNewWord method.
This approach provides better performance than the UseTextAndTemplate
method does.

C H A P T E R 8

Recognition System Reference

8-50 Recognition System Prototypes

SetNewWord 8

charEditView:SetNewWord(str, nil)

Sets the string displayed in the comb view. This method is intended to be
called after the protoCharEdit view’s ViewSetupFormScript method
has executed. After calling this method, you must call the UseNewWord
method to make the comb view display the new string.

Because the SetNewWord method performs no reformatting, the string
passed as its argument must be of the appropriate length and format. For
example, you cannot clear a formatted comb view properly by passing nil
as the value of the str parameter to this method.

For more information on clearing text from comb views, see the description
of the DeleteText method. To change both the text and the template used
by the comb view, call the UseTextAndTemplate method instead of the
SetNewWord method.

str The new text to be displayed. This string must not
contain leading or trailing spaces. If this string is to be
displayed in a formatted comb view, it must be of the
appropriate length and format—this method performs
no reformatting.

nil For system use only; always set this value to nil.

UseNewWord 8

charEditView:UseNewWord()

Initializes the internal parameters of the protoCharEdit view as specified
by the current values of its text and template slots. You must invoke this
method after using the SetNewWord method to make the protoCharEdit
view use new values for the text or template slots.

FixedWord 8

charEditView:FixedWord()

Returns true when the comb view’s template slot holds a template that
has a non-nil format slot. When this function returns true, characters are

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-51

cleared rather than deleted; when it returns false, leading and trailing
spaces are added to the displayed word, as necessary.

FixedWordLength 8

charEditView:FixedWordLength()

Returns the number of characters in the template's format slot. If this slot
does not specify a format (specifically, when the FixedWord method returns
nil) the FixedWordLength method returns nil.

MapAmbiguousCharacters 8

MapAmbiguousCharacters(str)

Replaces character codes for easily-misread glyphs (zero vs. letter O, numeric
value 1 vs. letter l) in the str string with character codes that map to more
readable glyphs.

IMPORTANT

This operation modifies the str argument directly. The
modified str object is intended for display use only. The rest
of the system is not notified of the modifications to this
object. Do not rely on the remapped character codes in
any way. ▲

str The string to modify; after this function returns, this
parameter holds the modified string.

UnmapAmbiguousCharacters 8

UnmapAmbiguousCharacters(str)

Restores the str string modified by the MapAmbiguousCharacters
function to its original, unmodified state.

str The string to unmap; after this function returns, this
parameter holds the restored string.

C H A P T E R 8

Recognition System Reference

8-52 Recognition System Prototypes

Application-Defined protoCharEdit View Methods 8

This section describes the optional DisplayExternal and
SaveUndoState methods that take application-specific action when the
user edits text in the comb view or undoes edits to comb view text.

DisplayExternal 8

charEditView:DisplayExternal(doIt)

This message is sent when the text in the comb view is edited, either by
overwriting a cell or by picking an alternate value from a cell's picker.
Applications that maintain an externally-displayed view of the comb view’s
contents can use this method to respond to changes in the comb view.

doIt When this value is nil, you should not need to redraw.

SaveUndoState 8

charEditView:SaveUndoState(appState)

Called by the system to save the state of the comb view for undo operations.
You can override this method to provide application-specific undo
information. Your override must call the inherited SaveUndoState method,
passing a frame holding your undo information as its argument; for example,

myCharEditView.SaveUndoState := func (appState)

begin

local savedState := {myInfo : aValue, ...}
inherited:SaveUndoState(savedState);

end

appState Frame containing your application’s saved undo
information.

Application-Defined protoCharEdit Template Methods 8

Your template can provide optional SetupString and CleanupString
methods to manipulate the string the comb view displays.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-53

SetupString 8

charEditTemplate:SetupString(str)

Optional method you provide which preprocesses the string in the comb
view’s text slot. This method formats the string passed as its argument as
required for display in the comb view and then sets the value of the comb
view’s text slot to the newly formatted string.

If you provide this method, it is invoked when the protoCharEdit view
opens and when the SetTextAndTemplate method is called.

str The string on which this method operates. The system
obtains this value from the text slot before this method
is invoked.

CleanupString 8

charEditTemplate:CleanupString(str)

Optional method you provide which postprocesses the string in the comb
view’s text slot. For example, you can use this method to strip extraneous
spaces or leading zeros from the string before it is displayed in the comb
view.

If you provide this method, it is called by the GetWordForDisplay or
UseTextAndTemplate methods when the text in the comb view changes.

str The string on which this method operates. The system
obtains this value from the text slot before this method
is invoked.

protoCorrectInfo 8
The system holds correction information for recently-recognized words in a
frame that you obtain by calling the GetCorrectInfo global function
(page 8-56). You can send messages to this frame to retrieve and manipulate
correction information for individual words. The methods described in this
section use the correctInfo metasymbol to represent this frame, which is based
on the protoCorrectInfo system prototype.

C H A P T E R 8

Recognition System Reference

8-54 Recognition System Prototypes

The correctInfo frame contains the following slots of interest to developers:

Slot descriptions

info An array of wordInfo frames based on the
protoWordInfo system prototype. Each frame stores
the correction information for a recognized word. For
more information, see “WordInfo Frame” beginning on
page 8-30.

max The maximum number of items for which the system
stores correctInfo frames. Currently, the maximum
value for this slot is 10; it may change in the future.

As words are recognized, the system creates wordInfo frames and saves
them in the info slot of the correctInfo frame. The current version of the
system saves up to ten wordInfo frames at a time (as specified by the
correctInfo frame’s max slot). When the system must add an eleventh frame to
this array, it extracts learning data from the oldest frame as necessary before
discarding the oldest wordInfo frame.

The correctInfo frame provides the following methods of interest to
developers. You do not need to call any of these methods yourself for views
based on the clParagraphView class—such views provide all of these
behaviors automatically. These methods are provided for the implementation
of text support in views not descended from the clParagraphView class.

CorrectInfo Functions and Methods 8

These functions allow you to obtain and manipulate correction information
for recognized words.

Offset 8

correctInfo:Offset(view, start, oldSize, newSize);

Repositions wordInfo frames in the correctInfo.info array. Usually, you do
not need to call this method when view is based on the clParagraphView
class; these kinds of views update the system’s correctInfo frame for you
automatically as the user edits text in the paragraph view.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-55

When replacing, inserting, or deleting a range of text in a view not derived
from the clParagraphView class, you may need to add, remove, or delete
wordInfo frames from the correctInfo frame yourself. This method
repositions existing wordInfo frames in the correctInfo frame to make room
for your changes to the correctInfo frame.

view The view in which text is being replaced. For purposes
of moving correctInfo from one view to another—for
example, during a drag and drop operation on some
text—you can set this value to 0 to offset all the
wordInfo frames in the correctInfo frame
regardless of source view.

start Offset into the text of the beginning of the range of text
to replace.

oldSize Size of the text to replace.

newSize Size of the text to insert.

When you are inserting text in view, the value of oldSize is less than that of
newSize. In this situation, the Offset method moves wordInfo frames
associated with words to the right of the insertion point to the right within
the correctInfo.info array—that is, it makes room in the array for the
subsequent insertion of wordInfo frames associated with the inserted text.

When you are deleting text from view, the value of newSize is less than that of
oldSize. In this situation, the Offset method moves wordInfo frames
associated with words to the right of the deletion to the left within the
correctInfo.info array—that is, it shifts existing array elements to close
up empty space created by the removal of wordInfo frames associated with
the deleted text.

When the range being replaced overlaps existing wordInfo elements, those
elements are deleted.

When you delete a single space that lies between two words, this method
merges the corresponding wordInfo frames.

When the value of the view parameter is 0, all wordInfo frames in the
correctInfo frame are offset, regardless of their source view.

C H A P T E R 8

Recognition System Reference

8-56 Recognition System Prototypes

GetCorrectInfo 8

GetCorrectInfo()

Returns the system-maintained correction information frame.

GetViewID 8

GetViewID(view)

Returns the specified view’s unique identifier. This value is used to identify
source and destination views when copying correction information between
views.

view The view for which this function returns the identifier.

GetCorrectionWordInfo 8

GetCorrectionWordInfo(wordUnit)

Returns a wordInfo frame extracted from the word unit passed as its
argument. You can use this function to inspect or alter the wordInfo frame
from within your ViewWordScript method before a word is actually added
to the paragraph view that provides the ViewWordScript method. This
function creates a new wordInfo frame and caches it in the wordUnit, so
that the same wordInfo frame can be used later to add wordInfo to the
paragraph.

wordUnit The word unit passed to the ViewWordScript
method. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

RemoveView 8

correctInfo:RemoveView(view);

Deletes from correctInfo all frames having the same viewID value as view.
This method is useful when an entire view is being deleted, and you want to
delete all correctInfo information corresponding to that view.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-57

view The view from which this method extracts a viewID
value. This value is the same one returned by the
GetViewID function.

Find 8

correctInfo:Find(view, offset);

Returns the wordInfo frame at the specified offset in the specified view.

view The view from which to extract a wordInfo frame. This
view must contain a text slot holding the word to
which the value of the offset parameter refers.

offset The number of characters from the beginning of the
view.text slot to the first character of the word for
which this method extracts a wordInfo frame.

FindNew 8

correctInfo:FindNew(view, offset, length);

Returns the wordInfo frame at the specified offset in the specified view. If
this method does not find a wordInfo frame at the specified location, it
creates a new wordInfo frame for the word, adds it to the correctInfo frame,
and returns the new wordInfo frame.

view The view that performs text recognition, from which
this method extracts a wordInfo frame. This view must
contain a text slot holding the word referred to by the
value of the offset parameter.

offset The number of characters from the beginning of the
view.text slot to the first character of the word for
which this method extracts a wordInfo frame.

length The number of characters in the word.

C H A P T E R 8

Recognition System Reference

8-58 Recognition System Prototypes

AddUnit 8

correctInfo:AddUnit(view, start, stop, unit);

Extracts the wordInfo frame from the specified unit and adds it to the
correctInfo frame. This method does not move existing elements. If you are
inserting or replacing text, you need to invoke the Offset method to adjust
correctInfo before using the AddUnit method to add wordInfo frames to it.
The AddUnit method can be called from the ViewWordScript method of
view to write the word unit’s wordInfo frame into the correctInfo frame.

view The view into which text is being inserted. This view
must contain a text slot holding the word referred to
by the value of the offset parameter.

start The number of characters from the beginning of the
view.text slot to the first character of the word being
inserted.

stop The number of characters from the beginning of the
view.text slot to the end of the word being inserted.
This value is equal to the sum of start plus the length of
the word.

unit The word unit from which the wordInfo frame is
extracted. This object is valid only during the
recognition process—that is, while the various
recognition-related scripts are being called. Do not
attempt to save units for later use.

AddWord 8

correctInfo:AddWord(wordInfo);

Adds the specified wordInfo frame to the correctInfo.info array. This method
doesn't do anything to the wordInfo or correctInfo frames—it just adds the
wordInfo frame to the correctInfo.info array.

wordInfo The wordInfo frame to add.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-59

Clear 8

correctInfo:Clear(view, offset, length);

Deletes all wordInfo frames that overlap the specified range. If view is nil,
this method removes any wordInfo frames that overlap the range,
regardless of their originating view.

view The view from which text is being deleted. This view
contains a text slot that holds the word referred to by
the value of the offset parameter.

offset The number of characters from the beginning of the
view.text slot to the first character of the word being
deleted.

length The number of characters in the word being deleted.

Extract 8

correctInfo:Extract(view, start, stop);

Creates a new correction information frame, copies all wordInfo frames
overlapping the specified range in view into it, and returns the resulting
frame. This method does not remove wordInfo frames from the correctInfo
frame—normally, you use the Offset and Clear methods to do so when
necessary.

The Extract method clones the entries that are copied, in case the receiver
wants to offset them. This method is useful for supporting undo or drag and
drop operations. For example, you could use it to copy correction
information when dragging a text selection to a new view.

view The view from which to extract text.

start Offset to the beginning of the range of text to copy,
expressed in characters from the beginning of the string
in the view.text slot.

stop Offset to the end of the range of text to copy, expressed
in characters from the beginning of the string in the
view.text slot.

C H A P T E R 8

Recognition System Reference

8-60 Recognition System Prototypes

Insert 8

destCorrectInfo:Insert(srcCorrectInfo, destView);

Inserts copies of all wordInfo frames in srcCorrectInfo into the destCorrectInfo
frame.

destCorrectInfo The correctInfo frame that is to hold the copied entries.

srcCorrectInfo The correctInfo frame that holds the wordInfo frames to
copy.

destView The view into which text is being inserted.

In typical usage of this method, you would take the following steps:

1. Call the Offset method of the destCorrectInfo frame to create space to
hold the new wordInfo frames.

2. Call the Offset method of the srcCorrectInfo frame to specify the range of
text for which this method copies wordInfo frames.

3. Call the Insert method of the destCorrectInfo frame to copy the specified
set of wordInfo frames

protoWordInfo 8
The protoWordInfo frame holds the correction information for a
recognized word. This frame contains slots specifying the
clParagraphView view that contains the word, the position of the word in
its view, the alternate interpretations of the original input strokes that
produced the word, and a reference to the recognizer that recognized the
word. Optionally, this frame can also contain strokes, ink, and learning data.

Each protoWordInfo frame contains the following slots of interest to
developers:

Slot descriptions

ID For system use only. An integer used by
protoWordInfo methods to identify the
clParagraphView view in which the recognized word

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-61

appears; this is the same value returned by the
GetViewID function. Do not rely on this value for any
operations not performed by protoWordInfo methods.

start A zero-based index into the text slot of the
clParagraphView view. This value specifies the
position of the word’s first character. You can determine
the number of characters in the word by subtracting the
value of the stop slot from the value of the start slot.

stop A zero-based index into the text slot of the
clParagraphView view. This value specifies the
position of the space after the word’s last character. You
can determine the number of characters in the word by
subtracting the value of the stop slot from the value of
the start slot.

flags Not documented; for system use only.

unitID Not documented; for system use only.

words The list of words returned by the recognition system as
an array of protoWordInterp frames. The
protoWordInterp system prototype is described in
“protoWordInterp” beginning on page 8-63.

strokes The stroke bundle associated with the word. This value
is nil when no stroke data is present. For more
information, see “The Stroke Bundle Frame” on
page 8-28.

ink The compressed ink representing the written word. This
value is nil when no ink is present for the word. This
slot is used rarely and this information is provided for
debugging use only; commercial applications must not
rely on this value.

unitData Not documented; for system use only.

C H A P T E R 8

Recognition System Reference

8-62 Recognition System Prototypes

A typical protoWordInfo frame looks like the following code example.

[{id: 267, // ID of view that owns this data

Start: 0, // first char’s offset into clParagraphView view

Stop: 5, // last char’s offset into clParagraphView view

flags: forSystemUseOnly, // do not use this slot
unitID: forSystemUseOnly, // do not use this slot

// list of words & associated data returned by recognition system

words: [{word: "Lunch", score: 130, label: -1, index: 0},

{word: "lunch", score: 0, label: -1, index: -2},

{word: "Lunar", score: 290, label: -1, index: 1},

{word: "Sundv", score: 300, label: -1, index: 2}],

// the original input’s stroke data

strokes: {class: strokeBundle,

 bounds: {left: 176, top: 289, right: 338, bottom: 336},

 strokes: [<stroke, length 2040>]},

unitData: forSystemUseOnly}, // do not use this slot

Note the negative values in the second interpretation of the word lunch. The
-1 value is the default value of the label slot and the -2 value in the index
slot indicates that the word was synthesized by the system; in other words,
it’s an alternate capitalization, or something similar. Use these values for
debugging purposes only; commercial applications must not rely on them.

WordInfo Methods 8

You can use the following methods to manipulate correction information
encoded as wordInfo frames.

C H A P T E R 8

Recognition System Reference

Recognition System Prototypes 8-63

SetWords 8

wordInfo:SetWords(words)

Sets the list of words held in a wordInfo frame. For each element in the
words array, this method clones the protoWordInterp frame and sets its
word slot to the value of that array element.

words An array of strings.

GetWords 8

wordInfo:GetWords()

Returns an array of strings, one for each wordInterp frame stored in the
wordInfo.words array.

AutoAdd 8

wordInfo:AutoAdd()

Adds the first item in the wordInfo frame's word list to the auto-add
dictionary and the user dictionary. If the wordInfo frame has a non-nil
_noAutoAdd slot, this method does nothing.

AutoRemove 8

wordInfo:AutoRemove()

Removes the first word in the wordInfo frame’s word list from the user
dictionary if that word was previously added by the AutoAdd method.

protoWordInterp 8
The words slot in the protoCorrectInfo frame stores an array of
protoWordInterp frames returned by the recognition system. Each
protoWordInterp frame contains data associated with a possible
interpretation of the original stroke data. For an example of a typical
protoWordInterp frame, see the words slot in the protoWordInfo code
listing on page 8-62.

C H A P T E R 8

Recognition System Reference

8-64 Recognition Functions

Each protoWordInterp frame containing the following slots:

Slot descriptions

word The text string to which the values of the other slots in
this frame apply.

score An integer indicating the accuracy level of the match
between this word and the original ink. A low score
indicates a good match; conversely, a higher score
indicates a poorer match.

label For system use only. The default value is -1. Use this
value for debugging purposes only; commercial
applications must not rely on it.

index An integer indicating the position of this word in the
original list of matches returned by the recognition
system. The word having the lowest index value is
displayed at the top of the text-correction picker. This
value is initialized to -1. A value of -2 indicates that
the word was synthesized by the system; in other
words, it’s an alternate capitalization or something
similar. Use these values for debugging purposes only;
commercial applications must not rely on them.

Recognition Functions 8

This section describes functions that you can use to configure the recognition
system, control the display of electronic ink, access information in objects
such as units and stroke bundles, manipulate various dictionaries, and
implement your own form of deferred recognition.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-65

Recognition Configuration Functions 8
These functions allow you to configure the recognition system dynamically.

ReadCursiveOptions 8

ReadCursiveOptions()

Reconfigures the recognition system dynamically, using the current values of
user preferences for handwriting recognition. You must call this function to
cause the recognition system to use the current settings after changing values
in the system’s user configuration data. You can also call this function after
changing a view’s view flags, entry flags, or recConfig frame; however, it’s
not absolutely necessary to do so: calling the PurgeAreaCache function is
sufficient when user preferences have not changed.

PurgeAreaCache 8

PurgeAreaCache()

Recalculates recognition behavior for all views. Call this function when you
have changed your view’s recConfig frame, view flags, entry flags, or
dictionaries slot. This function does not affect stroke recognition that
began before it was called.

PrepRecConfig 8

PrepRecConfig(recConfigFrame)

Returns a RAM frame that references the specified template from its _proto
slot and references recognition-related user configuration data from its
_parent slot.

recConfigFrame The view’s recognition configuration frame.

You can use this function to create a recConfig frame that can be modified
at run time by placing the following code fragment in your view’s
ViewSetupFormScript method:

// prebuild editable recConfig frame

recConfig := PrepRecConfig(recConfig);

C H A P T E R 8

Recognition System Reference

8-66 Recognition Functions

BuildRecConfig 8

BuildRecConfig(view)

Returns a recConfig frame that is configured exactly like the one used for
recognition in the specified view. The frame that this function returns is
intended for debugging use only—any changes you make to it are not
applied to the view.

view The view from which this function builds a recConfig
frame.

Application-Defined Recognition Methods 8
These messages are sent to your view during pen input. Your view can
supply the following optional methods to take action in response to these
messages.

ViewClickScript 8

view:ViewClickScript(unit)

This message is sent when the user places the pen on the screen within the
bounds of a view that has the vClickable flag set. This message is sent
before the view system does any processing of the pen input.

The system does not necessarily send this message for every single pen tap.
When recognizers that group strokes are enabled, this message is sent only
once for each group.

unit The unit (word unit, stroke unit, gesture unit, or shape
unit) passed to the ViewClickScript method. This
object is valid only while the various recognition-related
ViewXxxScript methods are being called. Do not
attempt to save units for later use.

If the ViewClickScript method returns true, the pen interaction is
considered to be complete: the system performs no further processing of the
pen input and no other stroke-related messages are sent to the view (for
example, ViewStrokeScript, ViewGestureScript, and so on).

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-67

If the ViewClickScript method returns the 'skip symbol, the view does
not pass the ViewClickScript message up the _parent chain but sends
all other messages that it normally would. You can return this symbol when
you want to prevent clicks from falling through to other views while still
passing strokes or gestures along. For information on how views handle pen
input in general (rather than for recognition purposes) see “Handling Pen
Input” (page 3-10) in Newton Programmer�s Guide.

If the ViewClickScript method returns nil, the system continues to
process the pen input. The message is passed up the parent view chain, until
it is handled by a ViewClickScript method or ignored. If the
ViewClickScript message is not handled and there are other recognition
flags set, then additional system messages may be sent to the view. For
example, if the vStrokesAllowed flag is set, then the ViewStrokeScript
message may be sent; this may be followed by the ViewGestureScript
message, if the vGesturesAllowed flag is set; and this may be followed by
the ViewWordScript message, if word recognition is enabled.

You can determine the coordinates of the pen-down location by calling the
GetPoint function from within your ViewClickScript method. To
prevent the display of electronic ink in the view while tracking the pen, you
can call the view methods TrackHilite or TrackButton or the global
functions InkOff or InkOffUnHobbled.

Note that calling the Ticks function from within your ViewClickScript
method provides the time when the ViewClickScript method was
invoked instead of the time when the stroke began. To obtain accurate times
for the beginning and the end of a stroke, your ViewClickScript method
can call the GetUnitStartTime and GetUnitEndTime functions,
respectively.

Attempting to use the GetUnitEndTime function before input is complete
can produce unpredictable behavior—most often, a bus error. Your
ViewClickScript method can use the StrokeDone function to determine
whether the user has finished making the stroke. The following example uses
the result returned by the StrokeDone function to condition its call to the
Drag method. The Drag method tracks the pen on the screen automatically
and drags the view to where the pen is lifted.

C H A P T E R 8

Recognition System Reference

8-68 Recognition Functions

ViewClickScript := func(unit)

begin

startTicks := GetUnitStartTime(unit);

while not StrokeDone(unit) do

begin

// drag the view when it’s tapped

:Drag(unit, nil);

// important to sleep in tight loops see note

Sleep(1);

end

// do what you need to do with times here

endTicks := GetUnitEndTime(unit);

end

Note

Tight loops use power more heavily than normal operation
does. To reduce power consumption significantly without
sacrificing responsiveness, your loop can call the Sleep
function with a value of 1 to 10 ticks as its argument. ◆

Here is another example; this code fragment captures all of the points in the
stroke. Note that the ViewStrokeScript method is not suitable for such
use, because it is not called until after a short delay; see “ViewStrokeScript”
(page 8-69) for more information.

ViewClickScript: func(unit)

begin

// track the click until the stroke is finished

loop

begin

while not StrokeDone(unit) do

// sleep a little to save battery

Sleep(10);

end;

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-69

// use GetPointsArray(unit) to get points

// and save them somewhere

local points := GetPointsArray(unit);

// yes, we handled the click, so erase the ink

// and stop recognition for this stroke

true;

end,

ViewStrokeScript 8

view:ViewStrokeScript(unit)

This message is sent when the pen is first lifted after contacting the screen
within the boundaries of the specified view (assuming the view has the
vStrokesAllowed flag set). You can do any processing you want as a result
of this event. The view system does no default processing as a result of this
event.

The ViewStrokeScript message is sent to the view only the first time the
pen is lifted during a stroke. If the pen is lifted more than once during a
single stroke, only one ViewStrokeScript message is sent for that stroke.

The system does not necessarily send this message for every single pen tap.
The system treats multiple pen-down/pen-up events that are close together
in time as a single stroke (for writing letters and words); as a result, this
message may not be sent for every stroke when the delay between strokes is
not sufficient for the system to consider the strokes to be separate events. The
amount of time required to consider strokes separate is a function of the
speed of the processor and the recognition system, as well as the value of the
timeoutCursiveOption user preference.

unit The stroke unit passed to the ViewStrokeScript
method. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

If the ViewStrokeScript method returns true, the pen interaction is
considered complete: the system performs no further processing of the pen

C H A P T E R 8

Recognition System Reference

8-70 Recognition Functions

input, and no other stroke-related messages are sent to the view (for
example, ViewGestureScript, ViewWordScript, and so on).

If the ViewStrokeScript method returns nil, the system continues to
process the pen input. The message is passed up the parent view chain, until
it is handled by a ViewStrokeScript method or discarded. If the stroke is
not handled and other recognition flags are set for the view, then additional
system messages may be sent to the view. For example, if the
vGesturesAllowed flag is set, then the ViewGestureScript message
may be sent. This message may be followed by the ViewWordScript
message, if word recognition is enabled.

Note that this message is preceded by a ViewClickScript message if the
view has defined such a method. To capture all of the points in a stroke, you
need to use the ViewClickScript method, rather than the
ViewStrokeScript method, because the ViewClickScript message is
sent immediately when the pen is placed on the screen, whereas the
ViewStrokeScript message is not sent until the stroke is complete. For a
code example, see “ViewClickScript” beginning on page 8-66.

You can determine the coordinates of the stroke using the function
GetPointsArray, as shown in the following code example. For more
examples of the use of stroke units, see the description of the
ViewClickScript method beginning on page 8-66.

ViewStrokeScript: func(unit)

begin

local bounds, points;

bounds := StrokeBounds(unit);

print("Bounds of stroke are "); print(bounds);

points := GetPointsArray(unit);

print("Points are "); print(points);

true;

end

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-71

ViewGestureScript 8

view:ViewGestureScript(unit, gesture)

When the vGesturesAllowed flag is set for a view, this message is sent
when the user writes a recognizable gesture inside the view that the view
does not handle automatically. Views based on the clEditView and
clParagraphView classes handle standard gestures automatically; other
kinds of views do not. Standard gestures include scrub, highlight, tap,
double tap, caret, and line. To interpret gestures yourself in a clView view,
you must set its vGesturesAllowed flag and provide a
ViewGestureScript method.

Gestures are returned only for strokes that are temporally isolated from other
strokes—that is, the system does not recognize strokes within a word as
gestures. Similarly, strokes that immediately precede or follow other strokes
are not recognized as gestures, either.

unit The gesture unit passed to the ViewGestureScript
method. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

gesture An integer code that identifies the gesture that was
recognized. The following gestures are supported:

This message is sent after the view system recognizes the gesture, and only if
the gesture is one not normally handled by the view. For example, views of
the clParagraphView class handle all gestures except a tap, so for this
kind of view, the ViewGestureScript message will not usually be sent

Gesture Constant Integer value

Tap aeTap 49

Double tap aeDoubleTap 50

Scrub aeScrub 13

Highlight aeHilite 47

Caret aeCaret 15

 Line aeLine 16

C H A P T E R 8

Recognition System Reference

8-72 Recognition Functions

(except for pen taps). However, if you set the vReadOnly flag in the
viewFlags slot, the ViewGestureScript message will be sent for all
gestures except the highlight gesture.

Note

You can work around the limitation that this message is
sometimes not sent. For example, you may want a view to
receive this message regardless of what kind of view it is or
what kinds of input it handles. To do this, create a child view
of the clView class that is transparent and the same size as
the input view. If you set the appropriate input flags for the
clView view, it will receive the input-related messages first.
For any particular message, the clView view can take some
action and return true to prevent the message from being
passed to the parent, or it can return nil to pass the
message on to the parent. ◆

If the ViewGestureScript method returns true, the recognition system
performs no further processing of this pen input and sends no additional
recognition-related messages (for example, ViewWordScript) to the view .

If the ViewGestureScript method returns nil, the system continues to
process the pen input. The message is passed up the parent view chain, until
it is handled by a ViewGestureScript method or discarded. If the stroke
is not handled and other recognition flags are set for the view, then
additional system messages may be sent to the view. For example, if the
vGesturesAllowed flag is set, the ViewGestureScript message may be
sent. This message may be followed by the ViewWordScript message,
when word recognition is enabled for the view.

Note that the ViewGestureScript message is preceded by a
ViewStrokeScript message if the view has defined that method. The
ViewStrokeScript message may be preceded by a ViewClickScript
message if the view has defined such a method.

Here is an example of the use of the ViewGestureScript method. For
more examples of the use of stroke units, see the description of the
ViewClickScript method beginning on page 8-66.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-73

ViewGestureScript: func(unit, gestureKind)

begin

if gestureKind = aeLine then // If it was a line

begin

// Make a new data item in our app

end;

end

ViewWordScript 8

view:ViewWordScript(stroke)

This message is sent to the view performing text recognition when a word is
recognized.

unit The word unit passed to the ViewWordScript
method. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

You can get the word that was recognized by calling the function
GetWordArray. The first string in the array that the GetWordArray
function returns is the interpretation in which the recognizer has the highest
confidence.

The ViewWordScript message is sent after the system recognizes the word,
and only if the view is not one that normally supports word recognition. For
example, views of the clParagraphView and clEditView class support
word recognition, so they do not normally receive this message.

C H A P T E R 8

Recognition System Reference

8-74 Recognition Functions

Note

You can work around the limitation that this message is
sometimes not sent. For example, you may want a view to
receive this message regardless of what kind of view it is, or
what kinds of input it handles. To do this, create a child view
of the clView class that is transparent and the same size as
the input view. If you set the appropriate input flags for the
clView view, it receives the input-related messages first. For
any particular message, the clView view can take some
action and return true to prevent the message from being
passed to its parent, or it can return nil to pass the message
on to its parent. ◆

If the ViewWordScript method returns true, the event is considered to be
handled. If the ViewWordScript method returns nil, the message is
passed up the parent view chain until it is handled by a ViewWordScript
method or discarded. If no method handles the event, the unrecognized
strokes are grouped into words and passed to the ViewInkWordScript or
ViewRawInkScript methods.

Here is an example of the use of this method. For more examples of the use
of stroke units, see the description of the ViewClickScript method
beginning on page 8-66.

ViewWordScript: func(unit)

begin

local matchedWords, recognizedWord;

matchedWords := GetWordArray(unit);

recognizedWord := matchedWords[0];

print("The recognized word was " & recognizedWord);

true;

end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
ViewWordScript method. ◆

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-75

ViewCorrectionPopupScript 8

textView:ViewCorrectionPopupScript(pickForm)

The ViewCorrectionPopupScript method provides a means of
modifying or replacing the picker displayed when the user double-taps a
previously recognized word. This method is not invoked if it has not been
defined or if a keyboard view is open when the user double-taps the
recognized word.

Your ViewCorrectionPopupScript method must return nil to cause the
system to display the picker. For example, your method could insert or
remove items in the list of alternate interpretations of the recognized word
and return nil to display the modified picker.

Your ViewCorrectionPopupScript method can return true to suppress
the display of the picker. For example, your method could provide an
alternative user interface to correction information and return true to
suppress the display of the picker that the system provides.

pickForm A frame containing information about the recognized
word on which the user double tapped. The system
builds this frame and passes it to your
ViewCorrectionPopupScript method.

The pickForm frame contains the following slots:

bounds The viewBounds of the refCon.form
view. (see below)

wordInfo The wordInfo frame for the originally
recognized word. For more information,
see “protoWordInfo” beginning on
page 8-60.

pickItems Alternate interpretations of the
recognized word.

refCon A frame describing the view that contains
the word that was double-tapped.

The refCon frame contains the following slots:

form The view containing the word that was
double-tapped.

C H A P T E R 8

Recognition System Reference

8-76 Recognition Functions

wordOffset
Offset of the beginning of the recognized
word, expressed as the number of 2-byte
characters from the beginning of the form
view’s text slot. This value is similar to
the offsets used for other text-related
functions and methods.

wordLength
The number of characters in the word.

The following code fragments illustrate typical pickForm and refCon
frames.

pickForm := {

 bounds: nil, // bounding box for word

 wordInfo: nil, // wordInfo frame for word

 pickItems: nil, // array of words from wordInfo

 refCon: nil, // frame describing view

};

refCon := // frame describing view containing word

{

 form: nil, // view containing word

 wordOffset: nil, // offset of word within form

 wordLength: nil, // length of word

};

Inker Functions 8
These functions allow you to control the display of electronic ink.

InkOff 8

InkOff(unit)

Turns off the display of electronic ink for the current stroke, which is
referenced by the specified unit. This function’s return value is unspecified.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-77

This function is usually called from within a view’s ViewClickScript
method. You cannot call this function successfully from within a
ViewStrokeScript method because the ViewStrokeScript message is
not sent until the stroke is completed.

Note

This function reduces the tablet’s sampling rate to conserve
battery power and provide better performance in scrolling
views. As a result, stroke information obtained after calling
this function is inconsistent with that normally returned by
the tablet; however, the reduced sampling rate is suitable for
tracking the pen in most situations. If you need
high-resolution point data, use the InkOffUnHobbled
function to disable the inker. ◆

unit The unit (word unit, stroke unit, gesture unit, or shape
unit) passed to the ViewClickScript method when
the user touches the pen to the screen. This object is
valid only during the recognition process—that is, while
the various recognition-related scripts are being called.
Do not attempt to save units for later use.

InkOffUnHobbled 8

InkOffUnHobbled(unit)

Turns off the display of electronic ink for the stroke contained in the specified
unit. This function does not reduce the tablet hardware’s sampling rate. It is
intended for use in situations requiring the suppression of inking while
tracking the pen with a high degree of precision. This function’s return value
is unspecified.

This function is usually called from within a view’s ViewClickScript
method. You cannot call this function successfully from within a
ViewStrokeScript method because the ViewStrokeScript message is
not sent until the stroke is completed.

unit The unit (word unit, stroke unit, gesture unit, or shape
unit) passed to the ViewClickScript method when

C H A P T E R 8

Recognition System Reference

8-78 Recognition Functions

the user touches the pen to the screen. This object is
valid only during the recognition process—that is, while
the various recognition-related scripts are being called.
Do not attempt to save units for later use.

SetInkerPenSize 8

SetInkerPenSize(size)

size The width of the pen, in pixels.

Sets the thickness of the electronic ink drawn on the screen. The pen size can
range from 1 to 4 pixels wide; the system default is 2.

This function returns nil if the pen size was set successfully; otherwise, it
returns an error code.

Note

This function only changes the width of ink as it is drawn by
the system. To ensure that ink is properly displayed and
updated under all circumstances, you must use the
SetUserConfig function to set an appropriate value for
the userPenSize slot in the system’s user configuration
data. After doing so, you need to pass this value as the
argument to the SetInkerPenSize global function. ◆

The following code example sets the size of the pen to four pixels:

SetUserConfig('userPenSize, 4);

SetInkerPenSize(4);

Stroke Unit Functions 8
These functions operate on the objects passed to the ViewClickScript,
ViewStrokeScript, ViewGestureScript, and ViewWordScript
methods. These objects include stroke units, word units, gesture units, and
shape units.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-79

GetPoint 8

GetPoint(selector, unit)

Returns the specified point coordinates from the stroke contained in the
specified unit. All points returned are in global (screen) coordinates.

If the stroke is in progress when this function is called, the coordinate of the
last point read by the system (finalX, finalY, or finalXY) may not be the
last point in the stroke. You can call the StrokeDone function to determine
whether the stroke is complete.

selector Specifies which point coordinate is returned. This
parameter may hold any of the following predefined
values:
firstX The X coordinate of the first point in the

stroke.
firstY The Y coordinate of the first point in the

stroke.
firstXY The X and Y coordinates of the first point

in the stroke.
finalX The X coordinate of the last read point in

the stroke.
finalY The Y coordinate of the last read point in

the stroke.
finalXY The X and Y coordinates of the last read

point in the stroke

unit The unit passed to the ViewClickScript or
ViewStrokeScript methods. This object is valid only
during the recognition process—that is, while the
various recognition-related scripts are being called. Do
not attempt to save units for later use.

C H A P T E R 8

Recognition System Reference

8-80 Recognition Functions

GetUnitStartTime 8

GetUnitStartTime(unit)

Returns the time, expressed in ticks, when the strokes comprising the object
(word unit, shape unit, stroke unit, or gesture unit) encapsulated by the
specified unit began.

unit The unit passed to the ViewWordScript,
ViewStrokeScript, and ViewGestureScript
methods. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

GetUnitEndTime 8

GetUnitEndTime(unit)

Returns the time, expressed in ticks, when the strokes comprising the object
(word unit, shape unit, stroke unit, or gesture unit) encapsulated by the
specified unit ended.

unit The unit passed to the ViewWordScript,
ViewStrokeScript, and ViewGestureScript
methods. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

StrokeDone 8

StrokeDone(unit)

Returns true if the stroke contained in the specified unit has been
completed by the user (the pen has been lifted from the screen). Returns nil
if the stroke is not yet completed.

unit The stroke unit passed to the ViewClickScript
method. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-81

The following code fragment uses the StrokeDone function to determine
whether the user has finished the current input stroke:

ViewClickScript : func(unit)

begin

while not StrokeDone(unit) do

// do something here

// important to sleep in tight loops - see note

Sleep(1);

end

Note

Tight loops use power more heavily than normal operation.
To reduce power consumption significantly without
sacrificing responsiveness, your loop can call the Sleep
function with a value of 1 to 10 ticks as its argument. ◆

StrokeBounds 8

StrokeBounds (unit)

Returns a viewBounds frame describing the boundaries of the unit in its
view. A viewBounds frame has this structure:

{left: n1, top: n2, right: n3, bottom: n4}

unit The unit passed to the ViewWordScript,
ViewStrokeScript, and ViewGestureScript
methods. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

GetPointsArray 8

GetPointsArray(unit)

Returns an array of points extracted from the specified unit. If the unit
encapsulates multiple strokes, this function returns points from the first
stroke.

C H A P T E R 8

Recognition System Reference

8-82 Recognition Functions

The array that this function returns consists of coordinate pairs describing
the points. The first element contains the Y coordinate of the first point, the
second element contains the X coordinate, and so on. (Note that this is the
reverse of the usual way that coordinate pairs are written.) Coordinates are
global; that is, they are relative to the upper-left corner (0, 0) of the screen.

unit The unit passed to the ViewWordScript,
ViewStrokeScript, and ViewGestureScript
methods. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

GetWordArray 8

GetWordArray(unit)

Returns an array of strings that are the recognition choices for the unit
passed as its argument. The first element in the array is the word with the
highest probability of matching the stroke that the user wrote (the highest
score). The subsequent elements are alternate choices in descending order of
matching confidence. Note that the “words” returned aren't necessarily
alphabetical. They can be numbers, phone numbers, times, or any other kind
of recognized characters.

unit The word unit passed to the ViewWordScript
method. This object is valid only while the various
recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

GetScoreArray 8

GetScoreArray(unit)

Returns an array of numbers that are the recognition confidence scores for
each of the words returned by GetWordArray. There is one score for each
word. A score can range from 1 to 1000, with a lower number representing a
higher recognition confidence.

unit The word unit passed to the ViewWordScript
method. This object is valid only while the various

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-83

recognition-related ViewXxxScript methods are being
called. Do not attempt to save units for later use.

Stroke Bundle Functions and Methods 8
This section describes the functions and methods you can use to work with
stroke bundles.

ExpandInk 8

ExpandInk(poly, format)

Decompresses the ink in a polygon view and returns it as a stroke bundle.

poly A clPolygonView, which is stored as a child of a
clEditView and has an ink slot. You can test this by
calling the PolyContainsInk function, which is
described in “PolyContainsInk” on page 7-35.

format The data resolution and filtering value. Use one of the
values shown in Table 8-6 on page 8-29.

The stroke bundle returned by ExpandInk uses the same coordinate system
and has the same bounds as the polygon view. Every point within the
returned stroke bundle falls within those bounds.

If you expand ink at tablet resolution, the returned stroke bundle contains
points that are at the highest resolution that can be derived from the
compressed ink. If you expand ink at screen resolution, the points in the
stroke bundle are spaced at a resolution approximately equal to screen
resolution. The former expansion is suitable for recognition; the latter for
display.

ExpandUnit 8

ExpandUnit(unit)

Creates a stroke bundle from information in unit and returns the stroke
bundle, which uses global coordinate values.

C H A P T E R 8

Recognition System Reference

8-84 Recognition Functions

unit An object that describes pen input information, as
discussed in “Stroke, Word, and Gesture Units” on
page 8-29. This is the object passed to one of the
following application-defined view methods:
the ViewStrokeScript method (stroke units),
the ViewWordScript method (word units),
or the ViewGestureScript method (gesture units).

Note that if you want a reference to the stroke bundle that is cached in a
word unit, you should use the GetCorrectionWordInfo function, which
returns a frame that contains the stroke bundle in a slot named strokes. For
more information, see “GetCorrectionWordInfo” on page 8-56.

CompressStrokes 8

CompressStrokes(strokeBundle)

Compresses the strokeBundle and returns a polygon view.

strokeBundle A stroke bundle frame, as described in “The Stroke
Bundle Frame” on page 8-28.

CountPoints 8

CountPoints(stroke)

Returns the number of points in stroke as an integer value.

stroke A binary object representing an ink stroke.

CountStrokes 8

CountStrokes(strokeBundle)

Returns the number of strokes in the stroke bundle as an integer value.

strokeBundle A stroke bundle frame, as described in “The Stroke
Bundle Frame” on page 8-28.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-85

GetStroke 8

GetStroke(strokeBundle, index)

Returns the stroke binary object specified by index from the strokes array in
the strokeBundle frame.

strokeBundle A stroke bundle frame, as described in “The Stroke
Bundle Frame” on page 8-28.

index An integer specifying a stroke in the stroke bundle array.

GetStrokeBounds 8

GetStrokeBounds(stroke)

Calculates the bounding rectangle for the specified stroke, and returns it as a
frame.

stroke A binary object representing an ink stroke.

GetStrokePoint 8

GetStrokePoint(stroke, index, point, format)

Copies the data from a specified point in a stroke into a new point.

stroke A binary object representing an ink stroke.

index An integer specifying the point in the stroke to copy.

point A frame containing slots named x and y.

format The data resolution and filtering value. Use one of the
values shown in Table 8-6 on page 8-29. Note that the
duplication filter is ignored by this function.

The GetStrokePoint function copies the data for the point in stroke
specified by index. The data is copied into the point frame, using the
resolution specified by format.

C H A P T E R 8

Recognition System Reference

8-86 Recognition Functions

GetStrokePointsArray 8

GetStrokePointsArray(stroke, format)

Copies the data for all the points in stroke into an array. The points are
filtered and scaled according to the value of the format parameter.

stroke A binary object representing an ink stroke.

format The data resolution and filtering value. Use one of the
values shown in Table 8-6 on page 8-29.

The GetStrokePointsArray function returns a point array, as described
in “Point Arrays” on page 8-30.

InkConvert 8

InkConvert(ink, outputFormat)

Converts the input ink to the specified format and returns the converted ink
as a binary object. If ink is not a valid ink object, this function returns nil.

ink A binary object that contains the ink to be converted.

outputFormat A symbol that defines the conversion type. Use one of
the following values:

'ink The ink is converted to 1.x-compatible
ink.

'ink2 The ink is converted to 2.x sketching ink.

'inkword The ink is converted to 2.x ink text.

MakeStrokeBundle 8

MakeStrokeBundle(strokes, format)

Creates a stroke bundle from an array of points.

strokes An array of point arrays. The structure of each point
array is described in “Point Arrays” on page 8-30. Each
point array represents the coordinate data for a single
stroke in the stroke bundle.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-87

format The data resolution and filtering value for the point
values in the strokes array. Use one of the values shown
in Table 8-6 on page 8-29.

The MakeStrokeBundle function uses the coordinate data in strokes to
create a stroke bundle and it returns that bundle. The input data is assumed
to be in the resolution specified by format.

You can use the MakeStrokeBundle function to synthesize ink text for
recognition; however, the quality of recognition is uncertain for such data.
The recognizer generally requires high-quality, tablet-resolution data in order
to produce accurate results.

MergeInk 8

MergeInk(poly1, poly2)

Decompresses the ink text in two polygons, recompresses them as a union of
the original two polygons, and returns the resulting polygon. If a memory
error occurs, MergeInk returns nil.

poly1, poly2 A clPolygonView, which is stored as a child of a
clEditView and has an ink slot. Test this by using the
method PolyContainsInk, which is described in
“PolyContainsInk” on page 7-35.

The MergeInk function assumes that both of its arguments are polygon
views containing ink text and that these views are horizontally adjacent with
no intervening space.

PointsArrayToStroke 8

PointsArrayToStroke(pointsArray, format)

Creates a stroke from a point array.

pointsArray A point array, as described in the section “Point Arrays”
on page 8-30.

format The data resolution and filtering value for the point
values in the strokes array. Use one of the values shown
in Table 8-6 on page 8-29.

C H A P T E R 8

Recognition System Reference

8-88 Recognition Functions

The PointsArrayToStroke function creates a stroke from the coordinate
data in pointsArray and returns the stroke object. The resolution of the input
points is specified by format.

Note that the PointsArrayToStroke function is the inverse of the
GetStrokePointsArray function, which is described in
“GetStrokePointsArray” on page 8-86.

SplitInkAt 8

SplitInkAt(poly, x, slop)

Examines a polygon containing ink for a word break, splits the polygon at
that word break, and returns an array of two polygons, each of which
contains an ink word. The first array element is a polygon containing the first
word, and the second element is a polygon containing the second word. If
SplitInkAt cannot find a reasonable break, it returns nil.

Note

The SplitInkAt function never finds a word break in the
middle of a stroke. ◆

poly A clPolygonView, which is stored as a child of a
clEditView and has an ink slot. Test this by using the
method PolyContainsInk, which is described in
“PolyContainsInk” on page 7-35.

x An integer specifying the horizontal position near
which this function looks for a word break.

slop An integer specifying how far in either direction (from
x) to search for a word break. The recommended value
for slop is somewhere between xHeight and xHeight/
2 for the word.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-89

StrokeBundleToInkWord 8

StrokeBundleToInkWord(strokeBundle)

Converts the stroke bundle to an ink word. You can pass the resulting ink
word object to the HandleInsertItems function, which is described in
“HandleInsertItems” on page 7-54.

strokeBundle A stroke bundle frame, as described in the section “The
Stroke Bundle Frame” on page 8-28.

Deferred Recognition Functions 8
These functions allow you to implement your own form of deferred text
recognition.

RecognizePara 8

RecognizePara(para, start, end, hilite, config)

Recognizes ink in the paragraph view from the start index to the end index,
replacing the ink with the recognized text. All ink within the range is
converted. All text within the range is left as it is. This function returns an
integer that indicates the new end value for the range.

para The clParagraphView view containing the ink to be
recognized.

start Zero-based offset from the beginning of the paragraph
to the first ink character to be recognized.

end Zero-based offset from the beginning of the paragraph
to the last ink character to be recognized.

hilite The value true specifies that the view is to highlight
each ink word as it is passed to the recognition system.
If this value is nil, the words are not highlighted as
they are recognized.

config A recConfig frame or nil. When a recConfig frame
is passed as this value, view uses it to recognize the

C H A P T E R 8

Recognition System Reference

8-90 Recognition Functions

specified strokes. When this value is nil, this method
uses the para view’s default recognition settings.

RecognizePoly 8

RecognizePoly(poly, hilite, config)

Recognizes the ink in the poly view and replaces it in its parent view with the
text returned by the recognition system.

poly The clPolygon view containing the ink to be
recognized.

hilite A nonzero integer value specifies that the view is to
highlight each ink shape as it is passed to the
recognition system. If this value is zero, the shapes are
not highlighted as they are recognized.

config A recConfig frame or nil. When a recConfig frame
is passed as this value, view uses it to recognize the
specified strokes. When this value is nil, this method
uses the poly view’s default recognition settings.

Recognize 8

Recognize(strokes, config, doGroup)

Recognizes the strokes using the specified recConfig frame and returns a
correction information frame.

strokes An array of stroke bundles (as returned by the
ExpandUnit function), or compressed ink (as returned
by the GetInkAt function), in which each element of
the array contains the strokes for a single word.

config The recConfig frame to be used by this function.

doGroup The value true specifies that the strokes are to be
regrouped as part of the recognition process. The value
nil specifies that the grouping specified by the stroke
bundle or ink bundle is to be retained.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-91

Dictionary Functions 8
These functions allow you to look up words in the built-in dictionaries, to
manipulate the review dictionary, and to work with your own custom
dictionaries.

GetRandomWord 8

GetRandomWord(minLength, maxLength)

Returns a string that is a word chosen at random from the common word
dictionary. The string returned by this function is at least minLength
characters long but not more than maxLength characters long. This function
does not return any word longer than 20 characters.

The GetRandomWord function uses random numbers generated by the
system to select words from the dictionary. To begin a new sequence of
random words, you must first initialize the random number generator using
the SetRandomSeed function. To repeat a sequence of words, pass to the
SetRandomSeed function the same argument that was used to generate the
original sequence of random words. You need only call SetRandomSeed
once to begin a new sequence of random words. For more information, see
the discussion of the SetRandomSeed function in Chapter 26, “Utility
Functions,” in Newton Programmer�s Guide.

minLength The minimum number of characters in words returned
by this function.

maxLength The maximum number of characters in words returned
by this function. This function does not return words
longer than 20 characters, regardless of the value
specified by this argument.

LookupWordInDictionary 8

LookupWordInDictionary(dictID, word)

Returns true if the specified word or an alternate capitalization form of the
word is present in the specified dictionary. This function returns nil if
the word is not found.

C H A P T E R 8

Recognition System Reference

8-92 Recognition Functions

Note

This function does not strip punctuation from word before
searching for it in the specified dictionary. ◆

dictID The dictionary identifier specifying the dictionary to be
searched.

word The string to be found in the specified dictionary. This
string must not contain more than 32 characters.

DeleteWordFromDictionary 8

DeleteWordFromDictionary(dictID, word)

Removes the specified word from the RAM-based dictionary indicated by
dictID, returning true if the word is removed and nil if it is not. A nil
result usually indicates that the specified word was not found in the
specified dictionary, but it also may indicate an error. For example, it is an
error to call this function on a static dictionary.

dictID The dictionary identifier specifying the dictionary to be
searched.

word The string to be removed from the specified dictionary.

NewDictionary 8

NewDictionary(dictionaryKind)

Creates a new RAM-based dictionary and returns a dictionary ID for it. The
dictionary ID is used in the other custom dictionary functions.

dictionaryKind Specifies how the dictionary is to be used. Currently,
only the symbol 'custom has any meaning as an
argument to this function. If you pass 'custom, the
dictionary is used for recognition only in views where it
is specified in a dictionaries slot in conjunction with
the vCustomDictionaries view flag. For more
information, see “Using Your RAM-Based Custom
Dictionary” (page 10-28) in Newton Programmer�s Guide.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-93

Note

Although the token returned by the NewDictionary
function currently evaluates to an integer in the NTK
Inspector, the type of value returned by this function may
change on future Newton devices. Do not rely on the
NewDictionary function returning an integer. ◆

DisposeDictionary 8

DisposeDictionary(dictionary)

Deletes the specified RAM-based dictionary. This function’s return value is
unspecified.

dictionary The dictionary to be deleted

AddWordToDictionary 8

AddWordToDictionary(dictionary, wordString)

Adds the specified word to the specified RAM-based dictionary, returning
true if the word was added successfully. If the word could not be added,
this function returns nil. This function does not strip punctuation before
adding wordString to dictionary.

IMPORTANT

Do not use the AddWordToDictionary function to add
words to the personal word list or user dictionary. Instead,
use the AddWord method of the ReviewDict object for this
purpose. ▲

dictionary The dictionary to which this function adds the specified
string.

wordString The string to be added to the specified dictionary. This
string must not contain more than 32 characters.

C H A P T E R 8

Recognition System Reference

8-94 Recognition Functions

GetDictionaryData 8

GetDictionaryData(dictionary)

Returns a binary object or virtual binary object representing the specified
dictionary’s word list. To save dictionary data in a soup, place the object that
this function returns in a slot in a frame that you add to a soup. For a code
example, see “Saving Dictionary Data to a Soup” (page 10-27) in Newton
Programmer�s Guide.

dictionary The dictionary from which this function extracts data.

SetDictionaryData 8

SetDictionaryData(dictionary, binaryObject)

Retrieves dictionary data (words) from the specified binary object and loads
them into the specified dictionary. You can use this function to populate a
blank dictionary with dictionary items stored in a soup. This function’s
return value is unspecified.

dictionary The dictionary into which this function loads data.

binaryObject The binary object or virtual binary object from which
this function extracts data.

User Dictionary Functions and Methods 8
This section describes methods available from the review dictionary object in
the root view. You can send messages to this object to manipulate the user
dictionary and the expand dictionary.

You can use code similar to the following to get a reference to the review
dictionary object:

local reviewDict := GetRoot().reviewDict;

Note

Future versions of the system are not guaranteed to have
this slot. You must verify that the returned value is non-nil
before using it. ◆

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-95

Open 8

reviewDict:Open()

Displays the Personal Word List slip. If there are items in the auto-add
dictionary, this method displays the Recently Written Words slip along with
the Personal Word List slip.

AddWord 8

reviewDict:AddWord(word)

Adds the specified word to the user dictionary. If the word is added
successfully, this method returns the value true. You must call the
SaveUserDictionary method to make changes persistent. If the word is
already in the user dictionary or one of the standard system dictionaries,
then the word is not added and the return value of this method is
unspecified.

This method updates the display in the Personal Word List slip automatically
if it is open. An undo action is posted for this operation. For performance
reasons, the dictionary is not flushed to the internal store for each word that
is added.

word The string to be added to the user dictionary. This string
may be capitalized or contain punctuation.

RemoveWord 8

reviewDict:RemoveWord(word)

Removes the specified word from the user dictionary. This method returns
true if the word was removed successfully; otherwise it returns nil. If the
Personal Word List is open, the display is updated automatically. An undo
action is posted for this operation. For performance reasons, the changed
dictionary is not written to the system soup; after calling this function, you
must call the SaveUserDictionary function to make dictionary changes
persist.

C H A P T E R 8

Recognition System Reference

8-96 Recognition Functions

word The word to be removed from the user dictionary. If this
string’s case does not match that of the string in the user
dictionary exactly the dictionary entry is not removed.

LoadUserDictionary 8

LoadUserDictionary()

Loads the review dictionary into RAM from the system soup.

Most flags that enable text recognition include this dictionary automatically
in the set of dictionaries available to the view performing text recognition.
Therefore, you usually do not need to call this function yourself—the system
calls it whenever the Personal Word List slip is opened or the system is reset.

SaveUserDictionary 8

SaveUserDictionary()

Writes the user dictionary to the system soup, saving any changes that have
been made to the dictionary. You must call this function to make review
dictionary changes persistent.

AddExpandWord 8

reviewDict:AddExpandWord(word, expandedWord)

Adds a word and its expanded version to the expand dictionary. The word
must be recognized before it can be expanded, so you must first invoke the
AddWord method to add the word to the user dictionary. If the word is not
already in the expand dictionary and can be successfully added, the
AddExpandWord method returns the value true; otherwise, its return value
is unspecified. If the Personal Word List slip is open, the display is updated
automatically. An undo action is posted for this operation. For performance
reasons, this method does not write the changed dictionary to the internal
store.

word The abbreviated version of expandedWord to be added to
the expand dictionary.

expandedWord The word to be added to the user dictionary.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-97

GetExpandedWord 8

reviewDict:GetExpandedWord(word)

Looks for the specified word in the expand dictionary and returns the
expansion if the word is found. If the word is not found in the expand
dictionary, the return value of this method is unspecified.

word The word to be found in the expand dictionary.

LoadExpandDictionary 8

LoadExpandDictionary()

Loads the expand dictionary from the internal store into RAM.

SaveExpandDictionary 8

SaveExpandDictionary()

Writes the expand dictionary from RAM into the internal store.

Auto-Add Dictionary Functions and Methods 8
This section describes functions and methods you can use to manipulate the
auto-add dictionary. This dictionary is accessible from the root view. You can
use code similar to the following example to get a reference to this object:

local autoAdd:= GetRoot().autoAdd;

Note

Future versions of the system are not guaranteed to have
this slot. You must verify that the returned value is non-nil
before using it. ◆

This section describes messages you can send to this object to manipulate the
auto-add dictionary.

C H A P T E R 8

Recognition System Reference

8-98 Recognition Functions

Open 8

autoAdd:Open()

Displays the Recently Written Words slip.

AddAutoAdd 8

AddAutoAdd(word)

Adds the specified word to the auto-add and user dictionaries if the base
word (word without punctuation) is not present in the set of dictionaries
enabled by the vCharsAllowed flag. This function returns true when the
word is added successfully. You can determine the base word by passing
word to the LookupWord global function.

If the auto-add dictionary already contains the maximum number of words
allowed (currently 100), this function displays the notify icon, posts a notify
action and does not add the new word. For information about the notify icon
and notify actions, see “Additional System Services” (page 17-1) in Newton
Programmer�s Guide

Note

When the printed recognizer is enabled, new words are not
added to the user dictionary automatically. ◆

RemoveAutoAdd 8

RemoveAutoAdd(word)

Removes the specified word from the user and auto-add dictionaries.

User Configuration Functions 8
These functions allow you to manipulate recognition-related user
preferences data; for example, your application can use these functions to
save and manage recognition settings for multiple users. These functions are
supported only on version 2.0 of the Newton OS. These functions manage
only recognition-related user preference settings; they have no effect on any
other user preferences.

C H A P T E R 8

Recognition System Reference

Recognition Functions 8-99

GetUserSettings 8

GetUserSettings ()

Returns a frame containing the current user recognition settings. The frame
this function returns is suitable for use as the argument to the
SetUserSettings function. Do not modify the frame this function returns,
or rely on any values you may find in it. The format and vlaues in this frame
may change in future versions of the system.

SetDefaultUserSettings 8

SetDefaultUserSettings ()
Sets recognition-related user preference settings to their default
values.

SetUserSettings 8

SetUserSettings (savedSettings)

Sets user preferences for recognition as specified.

savedSettings Recognition preferences frame returned by the
GetUserSettings function.

Data Structures 9-1

C H A P T E R 9

Data Storage and Retrieval
Reference 9

This chapter describes objects, data structures, functions, and methods used
for data storage and retrieval on Newton devices. This chapter begins with a
description of important data structures, including soup definition frames,
index specification frames, query specification frames, soup change
notification callback functions, and package reference information frames.
Subsequent sections provide descriptions of functions and methods grouped
according to the topic with which they are most closely associated, such as
stores, virtual binary objects (VBOs), soups or union soups, tags, soup
changes, queries, cursors, soup entries, and mock entries.

Data Structures 9

This section describes data structures related to the Newton data storage
system, including soup definitions and specification frames for single-slot
indexes, multiple-slot indexes, and tags indexes. This section also describes
query specification frames, tags query specification frames, callback
functions for change notification, and package reference information frames.

Figure 9-0
Table 9-0

C H A P T E R 9

Data Storage and Retrieval Reference

9-2 Data Structures

Soup Definition Frame 9
Soup definition frames are used to create soups on demand and to provide
information about soups to the system, to other applications, and to the user.
This section describes the slots present in soup definition frames. For a
description of how to use soup definitions, see “Registering and
Unregistering Soup Definitions” (page 11-33) in Newton Programmer�s Guide.

The soup definition frame specifies the soup’s name, its user-visible name,
the application to which it belongs, descriptive strings used to present
information to the user, and a default set of indexes to be created along with
any soup created from this definition.

The soup definition frame contains the following slots:

Slot descriptions

name Required. A string that identifies the soup to the system.
This string must be unique among the names of all
soups on the store. For more information about naming
soups, see “Naming Soups” (page 11-32) in Newton
Programmer�s Guide.

userName Required. A string that is the user-visible name for this
soup; for example, this string is displayed as the soup’s
name in the Extras Drawer.

ownerApp Required. The application symbol identifying the
application to which this soup belongs. For more
information about application symbols, see
“Application Symbol” (page 2-11) in Newton
Programmer�s Guide

ownerAppName Required. The user-visible string identifying the
application to which this soup belongs.

userDescr Required. A string that is the user-visible description of
this soup. This string provides information about the
purpose of the soup and the data it contains; for
example, this string might advise the user not to delete
the soup accidentally.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-3

indexes Required. An array of index specification frames. Each
frame in this array describes one index in the default set
of indexes with which this soup is created. For detailed
descriptions of index spec frames, see “Single-Slot Index
Specification Frame” (page 9-5) and “Multiple-Slot
Index Specification Frame” (page 9-6).

initHook Optional. Any time this soup definition is used to create
a member of a union soup, the system executes the
initHook function specified by this slot. This slot can
hold a symbol or a callback function object. If this slot
holds a function object, the function is executed directly;
otherwise, the symbol it contains is sent to the base
view of the application specified by the value of the
ownerApp slot of the soup definition. That application
must define in its base view a slot containing a function
to be executed when this message is sent.

The initHook function is meant to provide a means of
seeding a new soup with initial values. If your
initHook function uses auto-transmit methods such as
AddXmit, it must pass nil as the second argument to
these functions to suppress the transmission of soup
change notification messages. Note that the system
sends a 'soupCreated notification after it executes
your initHook function.

Regardless of whether the function resides in the
initHook slot or the application’s base view, it must be
of the following form:

myFn := func (soup, soupDef) begin … end

soup The soup on which this function operates.
This value is always a single soup, not a
union soup; thus your initHook
function should not invoke union soup
methods.

C H A P T E R 9

Data Storage and Retrieval Reference

9-4 Data Structures

soupDef The soup definition from which soup was
created; also, the soup definition that
defines this initHook function.

The following code fragment provides an example of a
typical initHook function:

MyInitHookCallback: func(soup, soupDef)

begin

soup:AddFlushedXmit({aSlot: "Entry A"}, nil);

soup:AddFlushedXmit({aSlot: "Entry B"}, nil);

end;

For related information, see the description of the
NewtApp framework’s newtSoup object, which
provides methods for creating soups and filling them
with entries.

A typical soup definition looks like the following code fragment:

local aSlotIndexSpec := {structure: 'slot, path: 'aSlot,

type: 'string};

local bSlotIndexSpec := {structure: 'slot, path: 'bSlot,

type: 'int};

local mySoupDef :=

{ // string that identifies this soup to the system

name: "myApp:mySig",

// string that is user visible name

userName: "My Application soup",

// application symbol

ownerApp: '|myApp:mySig|,

// user-visible name of app that owns this soup

ownerAppName: "My Application",

// user-visible string describing soup

userDescr: "This soup is used by My Application.",

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-5

// array of indexSpec frames - default indexes

indexes: [aSlotIndexSpec, bSlotIndexSpec, …]

// optional function used to initialize the soup

initHook: symbolOrCallBackFn
}

Single-Slot Index Specification Frame 9
This section describes the slots present in single-slot index specification
frames. For general information about index specification frames, see
“Indexes” (page 11-8) in Newton Programmer�s Guide. For a description of how
to use index specification frames, see “Registering and Unregistering Soup
Definitions” (page 11-33) and “Adding an Index to an Existing Soup”
(page 11-36), in Newton Programmer�s Guide.

The index specification frame specifies the kind of index to create, the slot
from which to extract index key values, and the type of data found in the
index key slot.

The index spec frame contains the following slots:

Slot descriptions

structure Required. Specifies whether the soup is indexed on a
single slot or on multiple slots. For a single-slot index,
this value must be the 'slot symbol.

path Required. A path expression specifying the slot from
which index key values are extracted. For a complete
explanation of path expressions, see The NewtonScript
Programming Language.

IMPORTANT

You cannot use a value stored in a virtual binary object as an
index key. ▲

type Required. A symbol specifying the type of data stored in
the index key slot. For integer values, specify 'int; for
string values, specify 'string; for character values,

C H A P T E R 9

Data Storage and Retrieval Reference

9-6 Data Structures

specify 'char; for real number values, specify 'real;
and for symbolic values, specify 'symbol.

order Optional. Specifies the sorting order for the index; the
only permissible value is either the 'ascending or
'descending symbol. If this slot is missing or has the
value nil, the index keys are assumed to be in
ascending order.

sortID Optional. The value 1 specifies the use of the alternate
sort table in ROM, which provides a case and diacritic
sensitive sort order suitable for non-English language
strings. If this slot is missing or has the value nil, the
default sort table is used. For more information, see
“Indexes” (page 11-8) in Newton Programmer�s Guide.

A typical single-slot index spec looks like the following code fragment:

{

// must use this value - index keys are slot values

structure:'slot,

// entries indexed on this slot

path: pathExpr,
// data type found in the indexed slot

type: symbol,
// optional. 'ascending or 'descending

order: symbol,
// optional. pass 1 to use alternate sort table

sortID: nil

}

Multiple-Slot Index Specification Frame 9
This section describes the index description frame for a multiple-slot index.
Each multiple-slot index can index soup entries on a total of up to six key
values. For more information about multiple-slot indexes, see “Querying on
Multiple-Slot Indexes” (page 11-47) in Newton Programmer�s Guide. For

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-7

descriptions of how to use index specification frames to create soup indexes,
see “Using Soups” (page 11-32) and “Adding an Index to an Existing Soup”
(page 11-36), in Newton Programmer�s Guide.

The multiple-slot index specification frame specifies the kind of index to
create, the slots from which to extract index key values, and the types of data
found in those slots.

The multiple-slot index spec frame contains the following slots:

Slot descriptions

structure Required. Specifies whether the soup is indexed on a
single slot or on multiple slots. For a multiple-slot
index, this value must be the 'multiSlot symbol.

path Required. An array of path expressions specifying the
slots from which index key values are extracted. The
first element in the array contains the path to the
primary key, the second element contains the path to the
secondary key, and so on. Each multiple-slot index
allows a total of 6 index paths.

Note

The path and type arrays must have the same number
of elements. ◆

type Required. An array having any of the symbols
'string, 'char, 'int, 'real or 'symbol as its
elements. Each element of this array specifies the type
of the data stored in the slot specified by the
corresponding element of the path array in this index
spec frame.

order Optional. An array of any of the possible values
'ascending or 'descending. Each element of this
array specifies the sorting order for the key stored in the
corresponding element of the path array in this index
description frame. If the order array is missing, all
index keys are assumed to be in ascending order.

C H A P T E R 9

Data Storage and Retrieval Reference

9-8 Data Structures

sortID Optional. The value 1 specifies the use of the alternate
sort table in ROM, which provides a case- and
diacritic-sensitive ranking suitable for non-English
languages. If this slot is missing or has the value nil,
the default sort table is used. For more information, see
“Indexes” (page 11-8) in Newton Programmer�s Guide.

A typical multiple-slot index spec looks like the following code fragment.

{

// index keys are multiple slot values

structure: 'multiSlot, // must use this value

// up to six path expressions specifying indexed slots

path: [pathExpr1, pathExpr2, … , pathExpr6],
// data type found in each indexed slot

type: [sym1, sym2, … sym6]
// optional. 'ascending or 'descending

order: [sym1, sym2, … , sym6]
// optional. pass 1 to use alternate sort table

sortID: nil

}

Tags Index Specification Frame 9
The tags index stores the tag symbols associated with the entries in a soup.
This index is defined by the tags index specification frame described here.
The tags index specification frame specifies the kind of data to index (in this
case, symbols used as tags), the slot from which to extract this data, and the
kind of index to create (in this case, a tags index.)

▲ W A R N I N G

Each soup has only one tags index; if you add a tags index to
a soup or union soup that already has one, it replaces the
original tags index. ▲

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-9

The tags index spec frame contains the following slots:

Slot descriptions

structure Required. Specifies whether the soup is indexed on a
single slot or on multiple slots. For a tags index, this
value must be the 'slot symbol.

path Required. A path expression specifying the slot from
which index key values are extracted. In this case, the
index key values are tags, so this expression specifies
the slot in which this soup stores its tags.

type Required. A symbol specifying the type of the data
stored in the index key slot. For a tags index, this value
must be the 'tags symbol.

A typical tags index spec frame looks like the following code fragment:

{

// must use this value - tags are slot values

structure: 'slot,

// index values (tags) extracted from this slot

path: pathExpr,
// must use this value

type: 'tags,

}

Query Specification Frame 9
A query specification frame (or query spec) is passed as the argument to the
Query method of soups or union soups. The query spec describes the criteria
that soup entries must meet to be included in the set of entries returned by
the cursor that this query generates. To retrieve every entry in a soup, pass
nil as the argument to the Query method instead of passing a query spec
frame. For more information regarding queries and their results, see
“Queries” (page 11-10) in Newton Programmer�s Guide.

C H A P T E R 9

Data Storage and Retrieval Reference

9-10 Data Structures

A query spec frame includes the following slots; missing slots or missing
elements in a slot are presumed to be nil values:

Slot descriptions

indexPath Required. This value specifies the path to the slot in
each entry that holds its index key value. Search results
are sorted according to the value of the slot specified by
this value.

beginKey Optional. Specifies the key value defining the beginning
of the range over which the cursor generated by this
query iterates. Each end of the range may be inclusive
or exclusive of a given key value; that is, you can
specify key >= beginKey, key > beginExclKey,
key <= endKey, or key < endExclKey. Either end of
the range may be unspecified, in which case the range
extends all the way to that end of the index. You can't
specify both the inclusive and exclusive forms of the
same end of the range.

beginExclKey Optional. This value specifies a key value to exclude
from the beginning of the range over which the cursor
generated by this query iterates. This slot specifies the
beginning of a range of key values, just as the
beginKey slot does, but the value of the
beginExclKey slot is not included in the range of key
values over which the query searches. For more
information, see the description of the beginKey slot
on page 9-10.

endKey Optional. Specifies the key value at the end of the range
over which the cursor generated by this query iterates.
For more information, see the description of the
beginKey slot on page 9-10.

endExclKey Optional. This value specifies a key value to exclude
from the end of the range over which the cursor
generated by this query iterates. This slot specifies the

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-11

end of a range of key values, just as the endKey slot
does, but the value of the endExclKey slot is not
included in the range of key values over which the
query searches. For more information, see the
description of the beginKey slot on page 9-10.

tagSpec Optional. Contains a tags query specification frame as
described in “Tags Query Specification Frame”
(page 9-13)

words Optional. One or more strings to match with word
beginnings in any slot in an entry. Single strings can be
passed as they are or as the sole element of an array.
Multiple strings must be passed as the elements of an
array. This query does not match any strings in the
middle of a word. Because each element in the array is a
string, each “word” in a words query can actually
contain multiple words and punctuation. A words
query is not case sensitive. If you specify multiple array
elements, each string in the words array must appear
somewhere in the entry for it to be included in the
query result.

entireWords Optional. The value true specifies that the query is to
match the entire string in the words slot instead of
matching strings beginning with the string in the words
slot.

text Optional. A string for which the query searches. This
search is not confined to word boundaries; that is, the
search string is found if it appears anywhere in any
string in any slot in an entry.

C H A P T E R 9

Data Storage and Retrieval Reference

9-12 Data Structures

indexValidTest Optional. A developer-supplied function that tests key
values passed to it and returns a non-nil value if the
corresponding entry is to be included in the query
result. The indexValidTest slot contains a function of
the form

indexValidTest:= func (args) begin … end;

args This value is a single index key for
queries on single-slot indexes. This value
is an array of keys for queries on
multiple-slot indexes.

The system invokes the indexValidTest method
before the validTest method.

Note that in the following situations the input to the
IndexValidTest function may not exactly match the
entry’s actual index key:

Keys of type 'string are truncated after 39 Unicode
characters (80 bytes, 2 of which are used internally).

Ink data is stripped from 'string keys.

Subkeys in multiple-slot indexes may be truncated or
missing when the total key size is greater than 80 bytes.

For more information, see “Limitations of Index Keys”
(page 11-52) in Newton Programmer�s Guide.

validTest Optional. A developer-supplied function accepting a
soup entry as its argument. The function must return
any non-nil value for an entry that is to be included in
the set of entries returned by the cursor, and return nil
for an entry that is not to be included in the set of
entries returned by the cursor. The use of an
indexValidTest is preferable to the use of a
validTest, for performance reasons.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-13

The validTest slot contains a function of the form

validTest:= func (entry) begin … end;

entry The entry to be tested.

secOrder When the soup being queried has an index that
provides internationalized sorting order, the value True
specifies that cursor find operations such as GoToKey
are sensitive to case and diacritical values in strings. For
more information, see “Indexes” (page 11-8) in Newton
Programmer�s Guide.

The following code fragments provide examples of typical query spec frames:

myQSpec := nil // return all entries

// return entries having a name slot

myQSpec := { indexPath : 'name}

// return entries with both "Bob" and "Apple" in any slot

myQSpec := {words : ["Bob","Apple"]}

// return (10 ≥ entry.myIntegerSlot < 190) entries
myQSpec := {indexPath : 'myIntegerSlot}

beginKey : 10,

endExclKey : 190}

// return entries having even values in 'myIntegerSlot

myQSpec := {indexPath : 'myIntegerSlot}

indexValidTest: func (key) (key MOD 2) = 0}

Tags Query Specification Frame 9
The tags query specification frame or tags query spec described here
specifies the use of tags by the Query method of soups or union soups. This
frame is placed in the tagSpec slot of the query spec frame presented as the
argument to the Query method. In addition to specifying the tags on which

C H A P T E R 9

Data Storage and Retrieval Reference

9-14 Data Structures

to test, the tagSpec frame specifies how the query is to use the specified
tags; for example, whether the query includes or excludes entries having the
specified tags.

The tagSpec slot contains a frame holding one or more of the following
slots, each of which contains a symbol, an array of symbols, or the value nil.
The order in which symbols appear in the array is unimportant.

Slot descriptions

equal The entry’s tags must equal the set of tags specified by
this slot. Entries with additional tags or missing tags are
not matched. Note that equal: [] returns all
nontagged entries.

all The entry’s tags must include all tags specified by this
slot. Entries having additional tags are included in the
query result as well.

none Entries having none of the tags specified in this slot
(including entries that have no tags) are included in the
query result.

any Entries having one or more of the tags specified in this
slot are included in the query result.

The following code fragment illustrates the use of a simple tags query spec.
For additional examples of the use of tags query specs, see “Querying for
Tags” (page 11-42) in Newton Programmer�s Guide.

// match ("my text") AND ('tree OR 'flower)

soup:Query({text:"my text",

tagSpec: {any:['tree, 'flower]}});

Callback Functions for Soup Change Notification 9
This section describes the callback function that your application can register
with the soup change notification mechanism. For more information about
soup change notification, see “Introduction to Data Storage Objects”

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-15

(page 11-2) and “Using Soup Change Notification” (page 11-63), in Newton
Programmer�s Guide.

Your callback function is passed as the value of the callBackFn parameter to
the RegSoupChange global function. The RegSoupChange global function
registers this callback to be executed in response to changes in a specified
soup. Note that your callback function must not call the RegSoupChange or
UnRegSoupChange functions.The value your callback function returns is
ignored by the current system.

Your callback function must be of the form

func(soupNameString,appSymbol,changeTypeSymbol,changeData);

IMPORTANT

This callback function must not call the RegSoupChange or
UnRegSoupChange functions. ▲

soupNameString A string that is the name of the soup that changed.

appSymbol A unique symbol identifying the application that caused
the change. If this information is not available, the
system passes the '_unknown symbol to your callback
function.

changeTypeSymbol A symbol indicating the kind of change that occurred;
for possible values, see Table 9-1, immediately following.

changeData The data that changed. The data passed as this
argument varies according to the value of the
changeType parameter; for more information, see
Table 9-1, immediately following.

Table 9-1 Change messages and associated change data

changeTypeSymbol When sent changeData

'entryAdded Entry added
to soup or
union soup.

The new entry added to the soup.

C H A P T E R 9

Data Storage and Retrieval Reference

9-16 Data Structures

'entryRemoved Entry deleted
from soup or
union soup.

A frame having the soup the entry came
from in its oldSoup slot and the (former)
entry that was removed in its entry slot. For
example:

{oldSoup:theSoup,entry:theEntry};

'entryChanged Any change
to entry data.

The changed soup entry.

'entryMoved Entry moved
from one
soup to
another.

A frame having the soup the entry came
from in its oldSoup slot and the entry that
moved in its entry slot. For example:

{oldSoup:theSoup,entry:theEntry}

'entryReplaced Entry
replaced with
another.

A frame holding the entry that was replaced
in its oldEntry slot and the replacement
entry in its entry slot. For example:

{oldEntry:oldOne,entry:newOne}

'soupInfoChanged Any change
to soup
information
frame.

The soup that changed.

'soupEnters* Soup
becomes
available to
union soup;
for example,
because card
inserted.

The soup that became available to the
union soup.

Table 9-1 Change messages and associated change data (continued)

changeTypeSymbol When sent changeData

C H A P T E R 9

Data Storage and Retrieval Reference

Data Structures 9-17

'soupLeaves* Soup
becomes
unavailable
to union
soup; for
example,
because card
removed.

The soup that is no longer available; don’t
use this soup, as it is invalid when this
message is sent.

'soupCreated New soup
created.

The soup that was created.

'soupDeleted Existing soup
deleted.

The store from which the soup was removed.

'soupTagsChanged Several tags
changed.
Send only
when tags are
added by the
AddTags
method;
otherwise,
it’s
unnecessary.

The soup that changed.

'soupIndexAdded New soup
index or tags
index added.

A frame having the new version of the soup
in its soup slot and the new index path in its
index slot; for example,

{soup:reIndexedSoup,index:newIndexPath}

'soupIndexRemoved Existing soup
index or tags
index
removed.

A frame having the new version of the soup
in its soup slot and the removed index path
in its index slot; for example,

{soup:reIndexedSoup,index:indexPath}

Table 9-1 Change messages and associated change data (continued)

changeTypeSymbol When sent changeData

C H A P T E R 9

Data Storage and Retrieval Reference

9-18 Data Structures

Package Reference Information Frame 9
The GetPkgRefInfo function provides information about a specified
package by returning an information frame containing the following slots of
interest to NewtonScript developers. Do not rely on the values of any slots in
this frame that are not documented here; they are for system use only and
subject to change without notice.

Slot descriptions

size An integer specifying the package’s uncompressed size,
expressed in bytes.

store The store on which the package resides.

title The string that is the name of the package.

version The integer that is the version number of the package.

timeStamp The date and time the package was installed, expressed
as an integer returned by the Time global function.

creationDate An integer specifying the date the package was created.

copyProtection Non-nil value specifies that the package is copy
protected.

dispatchOnly Non-nil value specifies that this package is a
dispatch-only package.

copyright Copyright information string.

'whatThe Multiple
changes to
soup, or 1.x
application
made change.

Value is unspecified. Used when it’s
impractical to report all of the individual
changes to a soup; also used by 1.x
applications that still use the obsolete
BroadCastSoupChange function.

* This message may not be sent for soups that are not in use. For example, if no cursor object
references the soup, this message may not be sent.

Table 9-1 Change messages and associated change data (continued)

changeTypeSymbol When sent changeData

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-19

compressed Non-nil value specifies that the package is compressed.

cmprsdSz Integer specifying the compressed size of package,
expressed in bytes.

numParts Integer specifying the number of parts in the package.

parts Array of parts comprising this package. If the package is
not active, references to these parts (or objects in them)
may be invalid. Do not access parts of inactive packages.

partTypes Array of part type symbols; each element in this array
specifies the part type of the corresponding element in
the parts array.

Data Storage Functions and Methods 9

This section describes all Newton data storage functions and methods.
Methods are listed under the object that defines them or the object on which
they operate. Global functions are listed under the object on which they
operate.

Package Functions and Methods 9
A package is an object that encapsulates code, scripts, and resources as a
Newton application; for more information, see “Packages” (page 11-7) in
Newton Programmer�s Guide.

The following functions and methods allow you to work with packages.

GetPackageNames 9

GetPackageNames(store)

Returns an array having elements that are the names of all packages present
on the specified store, including inactive (frozen) packages.

store The store this function tests.

C H A P T E R 9

Data Storage and Retrieval Reference

9-20 Data Storage Functions and Methods

GetPackages 9

GetPackages()

Returns an array of packages currently active in the Newton system. Each
array element is a frame containing the following slots:

Slot descriptions

id An integer that identifies this package to the system.

size An integer that is the uncompressed size of the package,
expressed in bytes.

title A string that is the name of the package.

store The store on which the package resides.

version An integer that is the package’s version number.

timeStamp The time the package was installed, expressed as an
integer returned by the Time global function.

copyProtection Non-nil value specifies that this package is not to be
replicated by the Newton system.

IMPORTANT

Because the current package installation process is not
reentrant, you cannot call the GetPackages function from
your part’s InstallScript function or RemoveScript
function. (The system calls these functions in the process of
installing or removing a package.) ▲

GetPkgRef 9

GetPkgRef(name, store)

Returns a pkgRef reference to the specified package on the specified store.

name The string that is the name of the package.

store The store on which the package resides.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-21

GetPkgRefInfo 9

GetPkgRefInfo(pkgRef)

Returns a frame containing information about the specified package. For a
complete description of this frame, see “Package Reference Information
Frame” (page 9-18).

pkgRef Package reference specifying the package for which this
function returns information.

SuckPackageFromBinary 9

store:SuckPackageFromBinary(binary, paramFrame)

Creates a package from the specified binary object’s data and installs the new
package on the specified store.

binary The binary object supplying this package’s data.

paramFrame The value nil or a frame containing information used
to build the package. When this value is non-nil it is a
frame that may contain the following slots and values:

callbackFrequency
The number of bytes to read before
executing the callback function again; set
to 0 when no callback function is supplied.

callback Optional callback routine; set to nil if no
callback is supplied. This callback is
commonly used for the implementation of
a progress indicator. The callback function
must be a function object of the form
func(callbackInfo)
begin

//do something w/callbackInfo
end

C H A P T E R 9

Data Storage and Retrieval Reference

9-22 Data Storage Functions and Methods

callbackInfo
A frame containing the following slots:
packageSize

Number of bytes in the
package.

numberOfParts
Number of parts in the
package.

packageName
Name of the package.

currentPartNumber
Index of the part currently
being read.

amountRead
Number of bytes of the
package total read so far.

SuckPackageFromEndpoint 9

store:SuckPackageFromEndpoint(endPoint, paramFrame)

Creates a package using data read from the specified endpoint and installs
the new package on the specified store.

endPoint The endpoint supplying this package’s data.

paramFrame The value nil or a frame containing information used
to build the package. This frame may contain the
following slots and values:

callbackFrequency
The number of bytes to read before
executing the callback function again; set
to 0 when no callback function is supplied.

callback Optional callback routine; set to nil if no
callback is supplied. This callback is
commonly used for the implementation of

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-23

a progress indicator. The callback function
must be a function object of the form
func(callbackInfo)
begin

//do something w/callbackInfo
end

callbackInfo
A frame containing the following slots:
packageSize

Number of bytes in the
package.

numberOfParts
Number of parts in the
package.

packageName
Name of the package.

currentPartNumber
Index of the part currently
being read.

amountRead
Number of bytes of the
package total read so far.

IsPackage 9

IsPackage(obj)

Returns a non-nil value if the object to be tested is a package reference;
otherwise, returns nil.

obj The object to be tested.

C H A P T E R 9

Data Storage and Retrieval Reference

9-24 Data Storage Functions and Methods

IsPackageActive 9

IsPackageActive(pkgRef)

Returns a non-nil value when the specified package is active; otherwise,
returns nil.

pkgRef A pkgRef reference, as returned by the GetPkgRef
global function.

IsValid 9

IsValid(obj)

Returns the value true if its argument references an object in valid memory.
Returns nil for invalid objects such as references to objects residing on a
card that is no longer available. This function always returns the value true
for immediate objects. (For a complete list of NewtonScript immediate
objects, see The NewtonScript Programming Language.) Note that soup and
store objects supply their own IsValid methods; do not use the global
function IsValid to test these kinds of objects.

obj The object to be tested.

▲ W A R N I N G

This function tests only whether the object passed as its
argument resides in valid memory; it does not follow
references that the object may contain. Thus, its use does not
cause the display of the “Newton needs the card” slip.
However, if the object to be tested is a frame containing a
slot that references an object on a storage card that has been
removed, the frame itself may test valid even though it
contains an invalid reference. In this situation, you would
need to use the IsValid function to test each slot in the
frame recursively to find the slot containing the invalid
reference. ▲

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-25

ObjectPkgRef 9

ObjectPkgRef(obj)

Returns a package reference to the package containing the specified object.
This function returns nil if the object does not reside in a package or the
object is a NewtonScript immediate. (For a complete list of NewtonScript
immediate objects, see The NewtonScript Programming Language.)

obj The NewtonScript object to be tested.

MarkPackageBusy 9

MarkPackageBusy(pkgRef, appName, reason)

Marks the specified package as busy. Any attempt to perform an operation
that deactivates a busy package (such as moving or removing it) causes the
display of a warning that allows the user to cancel the operation before the
package is deactivated. However, if the user proceeds with the operation that
deactivates the busy package, your application must handle resultant error
conditions gracefully. This function’s return value is unspecified.

You should mark a package as busy if its deactivation will cause serious
problems; for example, a store part that provides critical data may be marked
busy while it is in use. To avoid inconveniencing the user, you must call the
MarkPackageNotBusy function as soon as possible after calling the
MarkPackageBusy function.

pkgRef The package on which this function operates. This value
is a package reference returned by the GetPkgRef
global function.

appName String describing the entity requiring the package.
Usually this value is the string returned by the
GetAppName function.

reason Warning string displayed to the user.

C H A P T E R 9

Data Storage and Retrieval Reference

9-26 Data Storage Functions and Methods

MarkPackageNotBusy 9

MarkPackageNotBusy(pkgRef)

Reverses the effects of the MarkPackageBusy function. This function’s
return value is unspecified. To avoid inconveniencing the user, you must call
the MarkPackageNotBusy function as soon as possible after calling the
MarkPackageBusy function.

pkgRef The package on which this function operates. This value
is a package reference returned by the GetPkgRef
global function.

SafeMovePackage 9

SafeMovePackage(pkgRef, destStore)

Moves the specified package to the specified store. If the package is busy, this
function warns the user to cancel the operation before deactivating the
package. (Moving a package requires that it be deactivated, moved, then
reactivated.) This function’s return value is unspecified.

pkgRef The package on which this function operates. This value
is a package reference returned by the GetPkgRef
global function.

destStore The store to which the specified package is moved.

▲ W A R N I N G

Do not call this function from your application part’s
InstallScript function or RemoveScript function. ▲

SafeRemovePackage 9

SafeRemovePackage(pkgRef)

Removes the specified package. If the package is busy, this function warns
the user to cancel the operation before deactivating the package. (Removing
a package requires that it be deactivated first.) This function’s return value is
unspecified.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-27

▲ W A R N I N G

Do not call this function from your application part’s
InstallScript function or RemoveScript function. ▲

pkgRef The package on which this function operates. This value
is a package reference returned by the GetPkgRef
global function.

SafeFreezePackage 9

SafeFreezePackage(pkgRef)

Deactivates the specified package until it is activated by the ThawPackage
function. The SafeFreezePackage function’s return value is unspecified.

▲ W A R N I N G

Do not call this function from your application part’s
InstallScript function or RemoveScript function. ▲

pkgRef The package on which this function operates. This value
is a package reference returned by the GetPkgRef
global function.

ThawPackage 9

ThawPackage(pkgRef)

Reverses the effects of the SafeFreezePackage function. The
ThawPackage function’s return value is unspecified.

pkgRef The package on which this function operates. This value
is a package reference returned by the GetPkgRef
global function. The package this value represents must
have been deactivated previously by the
SafeFreezePackage function.

C H A P T E R 9

Data Storage and Retrieval Reference

9-28 Data Storage Functions and Methods

Store Functions and Methods 9
A store is a logical data repository on a physical storage device. For more
information, see “Introduction to Data Storage Objects” (page 11-2) and
“Stores” (page 11-6) in Newton Programmer�s Guide.

You can use the functions and methods described in this section to

■ get information about currently available stores

■ get and set the information frame that describes the store and its contents

■ create soups

■ write soups and packages to a store

■ get lists of soups present on a store

■ execute multiple operations as a single transaction with respect to a store

AtomicAction 9

store:AtomicAction(myAction)

Executes the myAction function as a transaction, meaning that if its
operations do not all succeed, the changes to store caused by myAction are
undone and the store is returned to the state it was in before the myAction
function executed.

In order to provide this service, the system caches the changes made by the
myAction function before making them permanent. Therefore, you must
avoid doing large amounts of work from within the myAction function or the
AtomicAction method will fail due to insufficient cache space.

Changing a small number of logically related entries falls within this
method’s intended use, while changing every entry in a soup does not. For
example, you might change the Names soup entries for the company name
of all the members of a company as an atomic action—that way, if an error
occurs, you are ensured that the entries are not left in an inconsistent state
(where some members of the company have the old name and some have the
new name).

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-29

myAction Application-defined function object accepting no
arguments.

BusyAction 9

store:BusyAction(appSymbol, appName, myAction)

Calls the myAction function object with the store marked busy until the
myAction function returns. Unlocking the card switch on a store marked busy
causes the “Newton needs the card…” slip to be displayed. The
BusyAction method returns the result of the action function.

appSymbol Unique symbol identifying the application that posted
the busy action.

appName String displayed in the “Newton needs the card…” slip
as the user-visible name of the application that posted
the busy action.

myAction Application-defined function object accepting no
arguments. The system calls this function with the store
marked busy until the function returns.

CheckWriteProtect 9

store:CheckWriteProtect()

Throws an exception if the store is locked or in ROM. The return value of this
method is unspecified.

This method throws |evt.ex.fr.store|(-48020) when the store is in
ROM. If the store is not in ROM, but is write protected, this method throws
|evt.ex.fr.store|(-10605). Contrast with the IsReadOnly store
method, which returns a non-nil value when a specified store can’t be
written.

You can use this function to test whether the store can be written before
executing lengthy operations. For an operation that completes quickly, you
may prefer to attempt the operation and catch exceptions as they occur. The
following code fragment provides an example of the use of this function:

C H A P T E R 9

Data Storage and Retrieval Reference

9-30 Data Storage Functions and Methods

//exit if we can’t write

myStore:CheckWriteProtect();

// perform potentially lengthy operation

local mySpecialFn := func ()

begin

myUSoup := GetUnionSoupAlways(ROM_CardfileSoupName);

myCurs := myUsoup:Query({beginKey: "Apple", endKey:"Apple");

while e := myCurs:Entry() do

// do something to every "Apple" entry here

end;

myStore:BusyAction('|myApp:mySig|,

GetAppName('|myApp:mySig|),

mySpecialFn);

CreateSoupXmit 9

store:CreateSoupXmit(soupName, indexArray, changeSym)

Creates a soup called soupName on the specified store, returns a reference to
the newly created soup object, and transmits a soup change notification. Any
existing union soups with the same name are updated to include the newly
created soup, as are any existing cursors. The soup this method creates does
not have a soup information frame.

soupName A case-insensitive string up to 39 characters long that
specifies the name with which the soup is to be created.
This name must be unique among all soups on the store.

indexArray An array of index specification frames or nil. For more
information, see “Indexes” (page 11-8) in Newton
Programmer�s Guide, For detailed descriptions of various
kinds of index spec frames, see “Single-Slot Index
Specification Frame” (page 9-5), “Multiple-Slot Index
Specification Frame” (page 9-6), and “Tags Index
Specification Frame” (page 9-8) in Newton Programmer�s
Reference.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-31

changeSym A unique symbol identifying the application that
created the soup; usually this value is the application
symbol or some variation on it. Pass nil as the value of
this parameter to avoid transmitting a soup change
notification.

Erase 9

store:Erase()

Erases all contents of the specified store. This method’s return value is
unspecified.

GetAllInfo 9

store:GetAllInfo()

Returns the store’s information frame. This special-purpose method is
intended for use by backup/restore applications only; most applications
need not use it. Unless an application stores data in this frame, it may not
exist on every store. Applications can use the GetInfo store method to get
their own slot from the store’s information frame. For more information, see
the description of the GetInfo method.

GetInfo 9

store:GetInfo(slotSymbol)

Returns the contents of the specified slot in the store’s information frame.
Unless an application stores data in it, the information frame may not exist
on every store. This function returns nil if the store information frame does
not exist. Applications can create a slot in the information frame to store card
data, such as the last time the application encountered a particular card. For
more information, see the description of the store:SetInfo method.

slotSymbol The slot to be returned. This value must be a symbol.
Applications should create only a single slot in the store
information frame and should store minimal amounts
of data in it.

C H A P T E R 9

Data Storage and Retrieval Reference

9-32 Data Storage Functions and Methods

GetDefaultStore 9

GetDefaultStore()

Returns a reference to the store on which new items are created by default.
The default store is specified by the user.

GetSignature 9

store:GetSignature()

Returns an integer that is the store’s signature. The store signature is a
pseudo-random integer assigned by the system when the store object is
created.

GetName 9

store:GetName()

Returns the name of the specified store as a string value.

GetSoup 9

store:GetSoup(soupNameString)

Returns the specified soup object from the specified store. If the soup doesn’t
exist, this method returns the value nil. You can use this method to retrieve
a union soup’s members one at a time but you cannot use this method to
retrieve a union soup object; use the GetUnionSoupAlways method for this
purpose.

soupNameString The name of the soup to retrieve, as specified by the
name slot of the soup definition frame used to create the
soup.

The following code fragment uses the GetSoup method to retrieve the
"mySoup:mySig" soup from the internal store:

local mySoup := GetStores()[0]:GetSoup("mySoup:mySig");

// make sure result is a valid soup

if mySoup:IsValid() then

// do something

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-33

GetSoupNames 9

store:GetSoupNames()

Returns an array of strings that are the names of the soups on the specified
store.

GetStores 9

GetStores()

Returns an array containing references to all existing stores. Do not modify
this array. The elements of this array are store objects to which you can send
the messages described in the rest of this section. The element occupying the
first position in the array this function returns (GetStores()[0]) is always
the internal store; however, the meaning of the positions occupied by other
stores in this array cannot be relied upon.

HasSoup 9

store:HasSoup(soupName)

Returns a non-nil value if the store specified by store contains the soup
having the name specified by soupName; otherwise, returns nil.

soupName A string that is the name of the soup for which this
method tests.

IsReadOnly 9

store:IsReadOnly()

Returns a non-nil value if the specified store cannot be written (it could be
on a card that is write protected), and returns nil if the store can be written.

IsValid 9

store:IsValid()

Returns true if the store can be used. A store becomes invalid when it is
removed, such as when the storage card on which it resides is removed.

C H A P T E R 9

Data Storage and Retrieval Reference

9-34 Data Storage Functions and Methods

SetDefaultStore 9

SetDefaultStore(newDefaultStore)// platform file function

Sets the default store as specified and returns a reference to the new default
store. Applications should respect the user’s default store preferences rather
than change them. Do not change any user preferences without obtaining
confirmation from the user.

IMPORTANT

This function is not defined in all ROM versions and may be
supplied by the NTK Platform file. Call it using this syntax:

call kSetDefaultStoreFunc with (newDefaultStore);

▲

newDefaultStore A reference to the store to be set as default.

SetInfo 9

store:SetInfo(slotSymbol,value)

Sets the value of the specified slot in the store’s information frame. If the slot
does not exist, this function creates it and sets it to the specified value. This
method’s return value is unspecified.

Applications can create a slot in the information frame to store card data,
such as the last time the application encountered a particular card. Because
the store information frame is shared by all applications, it is strongly
recommended that your application follow the same guidelines for creating
its slot in the store information frame as for creating a slot in another
application’s soup.

IMPORTANT

Values passed to this function must be wrapped in calls to
the EnsureInternal function to avoid unnecessary
appearances of the “Newton need the card…” slip. ▲

slotSymbol The slot to be set (or created if necessary). This value
must be a symbol. Applications should create only a

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-35

single slot in the store information frame and should
store minimal amounts of data in it. To help avoid
name-space collisions with other slots in the store
information frame, the name of this slot must be
suffixed with your developer signature.

value The value to be stored in the specified slot.

SetName 9

store:SetName(storeNameString)

Sets the name of the specified store to the storeNameString value and returns
the new name of the store. This special-purpose method is intended for use
only by backup/restore applications. This method’s return value is
unspecified.

storeNameString String that is the store’s new name.

TotalSize 9

store:TotalSize()

Returns the total size in bytes of the physical medium on which the specified
store resides.

UsedSize 9

store:UsedSize()

Returns the number of bytes used in the store.

Soup Functions and Methods 9
A soup is an opaque object that provides a persistent, dynamic repository for
data. Unless removed intentionally, soups remain resident on the Newton
device even when the application that owns them is removed. A union soup
object represents multiple same-named soups as a single entity, regardless of
their locations on various physical stores.

C H A P T E R 9

Data Storage and Retrieval Reference

9-36 Data Storage Functions and Methods

The only NewtonScript object you can save in a soup is a frame; however,
any slot in a frame can hold any NewtonScript data type and multiple data
types can reside in a single frame. The system does not impose any
limitations on the number of frames or the kinds of data that may reside in a
soup. Frames added to soups must be self-contained; that is, they should not
hold references to other data structures.

For more information, see the following sections in Newton Programmer�s
Guide: “Introduction to Data Storage Objects” (page 11-2), “Soups”
(page 11-7), and “Entries” (page 11-17).

The functions and methods described in this section allow you to

■ obtain a list of soups present on a specified store

■ create soups and union soups

■ make copies of soups

■ write soups and packages to a specified store.

■ get information about currently available soups and union soups

■ get and set the information frame that describes a soup

RegUnionSoup 9

RegUnionSoup(appSymbol, soupDef);

Registers the specified soup definition for use by union soup methods that
create soups automatically. This method returns the union soup named by
the soupDef soup definition or creates a new union soup from that definition,
as necessary.

appSymbol Unique symbol identifying the application to which this
soup belongs.

soupDef A soup definition frame, as specified in “Soup
Definition Frame” beginning on page 9-2.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-37

UnRegUnionSoup 9

UnRegUnionSoup(name, appSymbol);

Unregisters the specified soup definition with the system. The return value
of this method is unspecified; do not rely on this value.

name The name of the soup to unregister.

appSymbol Unique symbol identifying the application to which this
soup belongs.

GetUnionSoupAlways 9

GetUnionSoupAlways(soupNameString)

Returns the union soup object named by the value of the soupNameString
parameter. This function never returns nil; if necessary, it creates a new
union soup from the registered soup definition that has soupNameString in its
name slot. For more information, see “Using Newton Data Storage Objects”
(page 11-25) in Newton Programmer�s Guide.

soupNameString The name of the union soup to be retrieved, as specified
by the name slot in its soup definition frame.

Query 9

soupOrUSoup:Query(querySpec)

Returns a cursor that iterates over the set of soupOrUSoup entries satisfying
the querySpec query specification.

soupOrUSoup A valid reference to a soup object as returned by the
GetSoup store method or a union soup object as
returned by the RegUnionSoup or
GetUnionSoupAlways global functions.

querySpec A query specification frame, as described in “Query
Specification Frame” beginning on page 9-9.

C H A P T E R 9

Data Storage and Retrieval Reference

9-38 Data Storage Functions and Methods

AddToDefaultStoreXmit 9

uSoup:AddToDefaultStoreXmit(frame, changeSym)

Adds the specified frame to the specified union soup and transmits a soup
change notification message. If necessary, this method creates the member
soup to which the frame is added. This method returns the new entry it
creates when the frame is added successfully and throws an exception if the
frame cannot be added. The frame is added to the appropriate member of the
specified union soup according to the user’s default store preferences. (The
user can specify either the internal store or a store on a storage card as the
default store.)

IMPORTANT

The AddToDefaultStoreXmit method modifies the frame
argument destructively. For more information, see “Adding
Entries to Soups” (page 11-35) in Newton Programmer�s
Guide. ▲

frame The frame to be made into an entry in the specified
union soup. This frame must be not be read-only.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass nil as the value of this
parameter to avoid transmitting a soup change
notification.

AddToStoreXmit 9

uSoup:AddToStoreXmit(frame, store, changeSym)

Adds the specified frame to the member of the specified union soup on the
specified store and transmits a soup change notification message. If
necessary, this method creates the member soup to which the frame is added.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-39

This method returns the new entry it creates when the frame is added
successfully and throws an exception if the frame cannot be added.

frame The frame to be made into an entry in the specified soup.

store The store containing the union soup member to which
this method adds the specified frame as an entry.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass nil for the value of this
parameter to avoid transmitting a soup change
notification.

IMPORTANT

The AddToStoreXmit method modifies the frame argument
destructively. For more information, see “Adding Entries to
Soups” (page 11-35) in Newton Programmer�s Guide. ▲

AddFlushedXmit 9

soupOrUSoup:AddFlushedXmit(frameOrEntry, changeSym)

Adds the specified frame or entry to the specified soup, returns the newly
added entry, and transmits a soup change notification message. The
AddFlushedXmit method is similar to the AddXmit soup method, except
that the AddFlushedXmit method does not create a cached entry. This
method is intended for use in adding entries that won’t be accessed again for
awhile (accessing the entry creates the cached entry). For example, you could
seed a soup with initial values by calling the AddFlushedXmit method
from within a loop in your soup’s optional initHook method.

frameOrEntry The frame or entry to be added to the specified soup as
an entry.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass nil for the value of this
parameter to avoid transmitting a soup change
notification.

C H A P T E R 9

Data Storage and Retrieval Reference

9-40 Data Storage Functions and Methods

AddToStoreFlushedXmit 9

uSoup:AddToStoreFlushedXmit(frameOrEntry, store, changeSym)

Adds the specified frame or entry to the member of the specified union soup
on the specified store, returns the newly added entry, and transmits a soup
change notification message. The AddToStoreFlushedXmit method is
similar to the AddToStoreXmit soup method; however, the
AddToStoreFlushedXmit method does not create a cached entry, nor does
it EnsureInternal the frame presented as its argument.

This method is intended for use in adding entries that won’t be accessed for
awhile (accessing the entry creates the cached entry). For example, you could
seed a soup on a specified store with initial values by calling the
AddToStoreFlushedXmit method from within a loop in your soup’s
optional initHook method.

IMPORTANT

The AddToStoreFlushedXmit method modifies the frame
argument destructively. For more information, see “Adding
Entries to Soups” (page 11-35) in Newton Programmer�s
Guide. ▲

frameOrEntry The frame or entry to be added to the specified soup as
an entry.

store The store containing the union soup member to which
this method adds the specified frame as an entry.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass nil as this parameter’s value
to avoid transmitting a soup change notification.

AddXmit 9

soup:AddXmit(frame, changeSym)

Adds the specified frame to the specified soup, returns the new entry created
from this frame, and transmits a change notification.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-41

IMPORTANT

The AddXmit method modifies the frame argument
destructively. For more information, see “Adding Entries to
Soups” (page 11-35) in Newton Programmer�s Guide. ▲

frame The frame to be made into an entry in the specified soup.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass nil as this parameter’s value
to avoid transmitting a soup change notification.

GetMember 9

uSoup:GetMember(store)

Returns the specified union soup member (single soup) from the specified
store, creating that soup if it doesn’t already exist.

IsValid 9

soup:IsValid()

Returns true if the soup can be used. A soup object becomes invalid when
the store on which it resides is removed, such as when a card is removed, or
when the soup itself is deleted.

GetSoupList 9

uSoup:GetSoupList()

Returns an array of soups comprising the specified union soup.

GetSoupDef 9

GetSoupDef(soupOrUSoupName)

Returns the soup definition frame for the specified soup.

soupOrUSoupName The name of the soup or union soup for which this
function retrieves the soup definition.

C H A P T E R 9

Data Storage and Retrieval Reference

9-42 Data Storage Functions and Methods

CopyEntriesXmit 9

soup:CopyEntriesXmit(destSoup, changeSym)

Copies the entries in the source soup to the destination soup and transmits a
change notification. The copied entries preserve the values of the original
entries’ unique identifiers. This method’s return value is unspecified.

destSoup The soup in which the copied entries are written. This
soup must be empty; this function does not check for
duplicate entries in this soup. This soup must not be a
union soup; if it is, this method throws a “cant copy to
union soup” exception
|evt.ex.fr.store|(-48015).

changeSym A unique symbol identifying the application that copied
the entries; usually this value is the application symbol
or some variation on it. Pass nil for the value of this
parameter to avoid transmitting a soup change
notification.

AddIndexXmit 9

soupOrUsoup:AddIndexXmit(indexSpec, changeSym)

Adds an index to the specified soup or union soup and transmits a soup
change notification. If this message is sent to a union soup, the index is
added to all soups in the union. If the specified soup or union soup resides
on a read-only store, this method throws a “store is in ROM” exception
|evt.ex.fr.store|(-48020). This method’s return value is unspecified.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-43

▲ W A R N I N G

Each soup has only one tags index; if you add a tags index to
a soup or union soup that already has one, it replaces the
original tags index.

You cannot query a union soup on an index not present in all
its member soups. Sending the AddIndexXmit message to a
union soup adds the specified index to all soups currently
available to the union; however, any soup introduced to the
union subsequently has only its original complement of
indexes, which may not include the index this method
added. Similarly, any member soup created by the system
has only the indexes specified by its soup definition, which
may not include the index this method added. ▲

indexSpec An index specification frame. For detailed descriptions
of various kinds of index spec frames, see “Data
Structures” beginning on page 9-1.

changeSym A unique symbol identifying the application that added
the index; usually this value is the application symbol
or some variation on it. Pass nil as the value of this
parameter to avoid transmitting a soup change
notification.

GetAllInfo 9

soup:GetAllInfo()

Returns the soup’s information frame. Unless an application stores data in
this frame, it may not exist in every soup. This special-purpose method is
intended for use by backup/restore applications only; most applications
need not use it. Applications can use the GetInfo method to get their own
slot from the soup information frame. For more information, see the
description of the GetInfo method on page 9-44. See also “Soup
Compatibility Information” (page 11-21) in Newton Programmer�s Guide.

C H A P T E R 9

Data Storage and Retrieval Reference

9-44 Data Storage Functions and Methods

GetIndexes 9

soup:GetIndexes()

Returns an array of index specification frames corresponding to the indexes
that exist in the soup.

GetInfo 9

soup:GetInfo(slotSymbol)

Returns the contents of the specified slot in the soup’s information frame;
this function returns nil if the slot does not exist.

soup The soup having the information frame to be returned;
it must be a single soup, not a union soup. This method
is undefined for union soups.

slotSymbol The slot to be returned. This value must be a symbol.

GetName 9

soupOrUsoup:GetName()

Returns a string that is the name of the soup or union soup object to which
this message is sent.

GetNextUid 9

soup:GetNextUid()

Returns the unique identifier to be assigned to the next entry added to the
soup. This special-purpose method is intended for use by backup/restore
applications. Because the methods that add entries to soups or union soups
assign these identifiers automatically, most applications do not need to use
the GetNextUid method.

GetSignature 9

soup:GetSignature()

Returns an integer that is the signature for the soup. The signature is a
random integer that identifies the soup uniquely to the system; it is assigned

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-45

by the system when the soup is created. You can use this value to determine
whether a soup was replaced with another having the same name.

GetSize 9

soupOrUsoup:GetSize()

Returns the size of the specified soup, expressed in bytes.

GetStore 9

soup:GetStore()

Returns a reference to the store on which the specified soup resides.

IsSoupEntry 9

IsSoupEntry(object)

Returns true if the data object passed to this function is a soup entry;
otherwise, returns nil.

object The object to be tested.

MakeKey 9

soup:MakeKey(string, indexPath)

Constructs the index key that would be used for one or more specified values.

You can use this method to determine precisely the index key used for a
specified string; under the following conditions, a string may not match its
key exactly:

■ Keys of type 'string are truncated after 39 Unicode characters.

■ Ink data is stripped from 'string keys.

■ Subkeys in multiple-slot indexes may be truncated or missing when the
total key size is greater than 80 bytes.

C H A P T E R 9

Data Storage and Retrieval Reference

9-46 Data Storage Functions and Methods

For code examples, see “Limitations of Index Keys” (page 11-52) in Newton
Programmer�s Guide.

string The string for which this method constructs an index
key. This string need not exist in the soup to which the
MakeKey message is sent. When soup has a multiple-slot
index, the value of this parameter can be an array of
strings; otherwise, this value must be a single string.
Missing elements are presumed to be nil values. When
the value of this parameter is an array, each of its
elements must hold the data type specified by the
corresponding element of the indexPath array.

indexPath The index path associated with the key value specified
by the value of the string parameter. This value must
represent a valid index path in the soup to which the
MakeKey message is sent. When soup has a multiple-slot
index, the value of the indexPath parameter can be an
array of index paths corresponding to the elements of
the array passed as the value of the string parameter;
otherwise, the value of the indexPath parameter must be
a single index path. When making a key for use with a
multiple-slot index, the indexPath parameter must
specify all the slots indexed by a particular multiple-slot
index in the same order as used to generate the index. If
the value of this parameter is missing any of the paths
indexed by a multiple-slot index on the soup, or any of
the paths do not appear in the same order as in the
index spec used to generate the multiple-slot index, this
method throws the “Soup index does not
exist”|evt.ex.fr.store|(-48013) exception.

RemoveAllEntriesXmit 9

soup:RemoveAllEntriesXmit(changeSym)

Deletes all entries from the specified soup and transmits a change
notification. The soup object to which this message is sent must be a single

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-47

soup; this method is not implemented for union soups. This method’s return
value is unspecified.

changeSym A unique symbol identifying the application that
removed the entries; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

RemoveFromStoreXmit 9

soup:RemoveFromStoreXmit(changeSym)

Removes the specified soup from its store, deletes all of its entries, and sends
a soup change notification. This method cannot be used on a union soup.
This method’s return value is unspecified.

changeSym A unique symbol identifying the application that
removed the soup; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

RemoveIndexXmit 9

soupOrUsoup:RemoveIndexXmit(indexPath, changeSym)

Removes an index from the specified soup or union soup object and
transmits a soup change notification. This method’s return value is
unspecified.

C H A P T E R 9

Data Storage and Retrieval Reference

9-48 Data Storage Functions and Methods

▲ W A R N I N G

You cannot query a union soup on an index that is not
present in all of its member soups. Sending the
RemoveIndexXmit message to a union soup removes the
specified index from all soups currently in the union.
However, any soup introduced subsequently to the union
has its original complement of indexes, which may include
the one this method removed. Similarly, any member soup
created subsequently by the system is created with the
indexes specified in its soup definition, which may include
the index this method removed from other members. ▲

indexPath The path expression on which the index to remove was
generated; that is, the same index path used to create
the index.

changeSym A unique symbol identifying the application that
removed the index; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

AddWithUniqueIDXmit 9

soup:AddWithUniqueIDXmit(entry, changeSym)

Adds the entry frame to the specified soup as a soup entry having the unique
identifier specified in the entry frame, returns the newly added entry, and
transmits a soup change notification. This method throws an exception if the
specified unique identifier is already used by an entry in the destination
soup.

This special-purpose function is intended only for restoration of soup
data; most applications should not use it. Normally, applications use
the soup:AddXmit method to add a frame to a specified soup. The
soup:AddXmit method generates a new unique identifier for the entry
it adds.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-49

entry The entry to be added to the specified soup. This value
must be a soup entry rather than a normal frame.

changeSym A unique symbol identifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass nil for the value of this
parameter to avoid transmitting a soup change
notification.

SetAllInfoXmit 9

soup:SetAllInfoXmit(frame, changeSym)

Writes the specified frame as the soup’s information frame and transmits a
soup change notification. This method’s return value is unspecified.

This special-purpose method is intended for use by backup/restore
applications only; most applications need not use it. Instead, applications
should use the soup:SetInfoXmit method to store data in a single slot in
the soup information frame. For more information, see the description of the
SetInfoXmit method (page 9-50).

▲ W A R N I N G

The soup information frame holds the soup definition frame
used to create the soup. Loss of the soup definition frame
can lead to the presence of a null union soup. For more
information, see “Null Union Soups” (page 11-23) in Newton
Programmer�s Guide. ▲

frame The frame to be written as the soup’s information frame.

changeSym A unique symbol identifying the application that
changed the soup information frame; usually this value
is the application symbol or some variation on it. Pass
nil for the value of this parameter to avoid
transmitting a soup change notification.

C H A P T E R 9

Data Storage and Retrieval Reference

9-50 Data Storage Functions and Methods

SetInfoXmit 9

soup:SetInfoXmit(slotSymbol, value, changeSym)

Sets the value of the specified slot in the soup information frame and
transmits a soup change notification. If the slot does not exist, this function
creates it and sets it to the specified value. This method’s return value is
unspecified.

slotSymbol The slot to be set (or created if necessary). This value
must be a symbol. Applications should create only a
single slot in the soup information frame and should
store minimal amounts of data in this slot. To avoid
name-space collisions with other slots in the soup
information frame, it is strongly recommended that you
incorporate your unique developer signature in this
name.

For more information, see “Soup Information Frame”
(page 11-22) and “Making Changes to Other
Applications’ Soups” (page 11-37) in Newton
Programmer�s Guide.

value The value to be stored in the specified slot.

changeSym A unique symbol identifying the application that
changed the soup information frame; usually this value
is the application symbol or some variation on it. Pass
nil for the value of this parameter to avoid
transmitting a soup change notification.

SetName 9

soup:SetName(soupNameString)

Sets the name of the soup to the soupNameString string. This method’s return
value is unspecified. If you try to set the name to an invalid value (for
example, one already in use) this method throws an exception. Generally,
you should avoid changing the names of soups (even your own), because
other applications may be using them.

soupNameString The string that is the soup’s new name.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-51

▲ W A R N I N G

Do not under any circumstances change the names of the
built-in soups. ▲

CreateSoupFromSoupDef 9

CreateSoupFromSoupDef(soupDef, store, changeSym)

Creates a single soup on the specified store using the specified soup
definition, transmits a 'soupChanged notification and returns a reference to
the new soup. Normally, plain soups like the one returned by this function
are created by methods that add entries to union soups.

soupDef The soup definition used to create the new soup.

store The store on which to create the new soup.

changeSym A unique symbol identifying the application that
created the new soup; usually this value is the
application symbol or some variation on it. Pass nil as
the value of this parameter to avoid transmitting a soup
change notification.

SupplantSoupDef 9

SupplantSoupDef(soup, soupDef)// platform file function

Installs the specified soup definition in the specified single soup. This
method’s return value is unspecified.

▲ W A R N I N G

Changing a soup definition frame is not recommended. Use
this function only if you know that what you are attempting
to do will not cause errors or undesirable side effects. ▲

C H A P T E R 9

Data Storage and Retrieval Reference

9-52 Data Storage Functions and Methods

IMPORTANT

This function is not defined in all ROM versions and may be
supplied by the NTK Platform file. Call it using this syntax:

call kSupplantSoupDefFunc with (soup, soupDef) ;
▲

soup The soup on which this method operates. This object
must be a soup, not a union soup.

soupDef The soup definition frame this method installs.

The SupplantSoupDef function works on single soups only, not on union
soups. You can use the union soup method GetSoupList to retrieve a list of
the member soups currently available to a specified union soup.

You can use the SupplantSoupDef function to

■ Change the user-visible information for a specified soup. For example,
you could use this function to change the string that the Extras Drawer
displays as the soup’s name.

■ Add a soup definition frame to a soup that lacks one. For example, soups
created by system software prior to version 2.0 do not have soup
definition frames.

■ Replace the soup definition frame in a soup that already has one. Note
that this may cause inconsistencies with other soups in the union that can
lead to unstable behavior.

Note

This function does not change the soup definition currently
registered with the system—it changes only the local copy of
the definition held by a soup created from that definition. To
change a soup definition registered with the system, you
must replace it completely. To do so, first call the
UnRegUnionSoup function to unregister the current soup
definition, and then call the RegUnionSoup function to
register the new soup definition. ◆

Because most of the information in a soup definition frame is used only
when the system creates a new soup, the appropriate usage of the
SupplantSoupDef function is limited. For example, although you can use

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-53

this method to change the indexes a soup definition specifies for new soups,
the actual indexes in existing soups are not updated by this method. Soups
created subsequently from this definition may not have the same
complement of indexes as other soups in their union, which may cause
operations on the union soup to fail. Exercise extreme caution when using
this method for any purpose.

The following code fragment provides an example of the proper use of this
function. Note that because this function is supplied by the Newton 2.0
platform file, it must be called using the call kFnNameFunc with ()
syntax shown in the example:

// unregister old definition

UnRegUnionSoup("mySoup:mySig",'|MyApp:MySig|);

// register new version of soup definition

// assume myNewSoupDef is valid

local uSoup := RegUnionSoup('|MyApp:MySig|, myNewSoupDef);

// update existing soups

foreach member in uSoup:GetSoupList() do

begin

call kSupplantSoupDefFunc with (member, myNewSoupDef);

// perform other housekeeping such as adding or removing indexes

end;

GetIndexesModTime 9

soup:GetIndexesModTime()

Returns the time when the soup indexes were last changed, expressed in the
system’s internal time format as returned by the Time function. Soup index
information is set when the soup is created or restored; when indexes are
added or removed; and when indexed soup entries are added, deleted, or
changed.

C H A P T E R 9

Data Storage and Retrieval Reference

9-54 Data Storage Functions and Methods

GetInfoModTime 9

soup:GetInfoModTime()

Returns the time when the soup info was last changed. Values in the soup
information frame are set when the soup is created or restored. These values
may also be changed by the SetInfoXmit and SetAllInfoXmit soup
methods.

Soup Change Notification Functions 9
These functions allow you to register and unregister callback functions that
the system executes when a specified soup changes in some way; for
example, when soup entries are added or removed, when the soup itself is
created or removed, and so on.

RegSoupChange 9

RegSoupChange(soupName,callbackID,callBackFn)

Registers a callback function to be executed whenever the specified soup
changes. This function’s return value is unspecified.

soupName A string that is the name of the soup that changed.

callbackID A unique symbol identifying the callBackFn function to
the soup change mechanism. Because this symbol must
be unique among the symbols registered with this soup,
this value normally includes your application’s
application symbol or some variation on it.

▲ W A R N I N G

The callBackFn function must not call the RegSoupChange
or UnRegSoupChange functions. ▲

callBackFn A function executed when the specified soup changes.
The current system ignores the value this function
returns; however, it is recommended that this function
return the value nil. This function must not call either
of the RegSoupChange or UnRegSoupChange

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-55

functions. For a detailed description of this function, see
“Callback Functions for Soup Change Notification”
beginning on page 9-14.

UnRegSoupChange 9

UnRegSoupChange(soupName,callbackID)

Unregisters the specified callback function with the soup change notification
service for the specified soup only. This function’s return value is unspecified.

soupName A string that is the name of the soup that changed.

callbackID A unique symbol identifying the callBackFn function to
the soup change mechanism. Because this symbol must
be unique among the symbols registered with this soup,
this value normally includes your application’s
application symbol or some variation on it.

XmitSoupChange 9

XmitSoupChange(soupName,appSymbol,changeType,changeData)

Notifies applications registered with the soup change mechanism that the
specified soup has changed. Use this function when you don’t want to
transmit separate notifications for every change to a soup, or to send change
notifications on older Newton devices.

soupName A string that is the name of the soup that changed.

appSymbol Unique symbol identifying the application that caused
the change.

changeType A symbol indicating the kind of change that occurred;
this value must be one of the symbols listed in Table 9-1
(page 9-15).

changeData The data that changed. The data passed as this
argument varies according to the value of the
changeType parameter; see Table 9-1 (page 9-15) for more
information.

C H A P T E R 9

Data Storage and Retrieval Reference

9-56 Data Storage Functions and Methods

Store Part Functions 9
A store part is an object that encapsulates a read-only store. Because you can
build store parts into application packages, a store part is sometimes referred
to as a package store. For more information, see “Parts” (page 12-3) in
Newton Programmer�s Guide.

This section describes functions that can be used to work with store parts.

GetPackageStore 9

GetPackageStore(name)

Returns the package store having the specified name; otherwise, returns nil.
As always in NewtonScript, string comparison is not case sensitive. When
more than one currently available store has the specified name, this
function’s behavior is unspecified.

name String that is the name of the package store to retrieve.

GetPackageStores 9

GetPackageStores()

Returns an array of all available package stores.

▲ W A R N I N G

Do not modify the array this function returns. ▲

Methods for Manipulating Tags 9
A tag is an optional developer-defined symbol used to mark one or more
soup entries. Each soup can contain a maximum of 624 tags. The system
treats missing tags as nil values.

Tags reside in a developer-specified slot that can be indexed, with the results
stored in a special index called the tags index. The tags index is used to select
soup entries according to their associated symbolic values without reading
the entries themselves into memory; for example, one could select the subset
of entries tagged 'business from the ROM_CardfileSoupName soup.
Note that the system allows only one tags index per soup.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-57

For more information, see “Indexes” (page 11-8) in Newton Programmer�s
Guide.

The methods described here allow you to add, remove, and modify tags in
soups and union soups as well as get information on the currently existing
tags in a specified soup. Methods that modify soups can transmit change
notifications automatically.

AddTagsXmit 9

soupOrUsoup:AddTagsXmit(tags, changeSym)

Adds the specified tags to the soup’s tags index as necessary and transmits a
soup change notification. This method requires that the soup already have a
tags index. If this message is sent to a union soup, the tags are added to each
soup in the union. Note that the soup entries themselves are not changed by
this method. This method’s return value is unspecified.

Normally you do not need to add tags to a soup explicitly; when you add an
entry that uses new tags, the system adds them to the tags index
automatically. You should use the AddTagsXmit method only when unused
tags must be added to the tags index for some reason. For example, if you
wanted to allow the user to file items in a folder category that was not yet
used, you could use the AddTagsXmit method to add the unused tag to the
tags index. Subsequently, you could use the GetTags method to retrieve all
the currently available tags (including unused tags) for display to the user.

This method throws the “no tags” exception |evt.ex.fr.store|
(-48027) when the soup has no tags index. When executing this method
causes the maximum number of tags for the specified soup to be exceeded,
this method throws the “invalid tags count” exception
|evt.ex.fr.store|(-48026) and does not add any of the new tags.

Note

Most applications do not need to use this method. When an
entry with one or more new tags is added to the soup, the
new tags are added to the tags index automatically. ◆

tagsToAdd An array of symbols or a single symbol.

C H A P T E R 9

Data Storage and Retrieval Reference

9-58 Data Storage Functions and Methods

changeSym A unique symbol identifying the application that added
the tag(s); usually this value is the application symbol or
some variation on it. Pass nil for the value of this
parameter to avoid transmitting a soup change
notification.

GetTags 9

soupOrUSoup:GetTags()

Returns an array containing the specified soup’s tags. Returns nil if the
soup does not have a tags index. If the specified soup is a union soup, the
array returned by this method contains the tags for all soups in the union.

soupOrUSoup The soup or union soup from which this method
retrieves tags.

HasTags 9

soupOrUSoup:HasTags()

Returns true if the specified soup has a tags index. If the specified soup is a
union soup, this method returns true only if each of the union’s member
soups has a tags index.

soupOrUSoup The soup or union soup to be tested.

ModifyTagXmit 9

soupOrUsoup:ModifyTagXmit(oldTag, newTag, changeSym)

Changes the symbol specified by oldTag to that specified by newTag, updates
the soup entries, and transmits a soup change notification. If this message is
sent to a union soup, the specified tag is modified in all soups in the union.
This method returns the value nil if successful. This method returns nil
and does nothing if oldTag is not one of the tags in the specified soup.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-59

Note

If the only difference between oldTag and newTag is case, this
method does nothing because symbolic values are case
insensitive. For example, changing a tag from 'foo to 'Foo
has no effect. ◆

This method throws the “no tags” |evt.ex.fr.store|(-48027)
exception when the soupOrUsoup soup has no tags index. If the newTag tag is
already present in the soupOrUsoup soup’s tags index, this method throws an
“invalid tag spec” exception |evt.ex.fr.store|(-48028).

soupOrUSoup The soup or union soup for which this method modifies
the specified tag.

oldTag A symbol specifying an existing soup tag.

newTag The new symbol for the tag specified by the oldTag
argument.

changeSym A unique symbol identifying the application that
invoked this method; usually this value is the
application symbol or some variation on it. Pass nil for
the value of this parameter to avoid transmitting a soup
change notification.

RemoveTagsXmit 9

soupOrUsoup:RemoveTagsXmit(tagsToRemove, changeSym)

Removes the specified tags as necessary from the specified soup, updates the
soup entries, and transmits a soup change notification. If this message is sent
to a union soup, the specified tags are removed from all soups in the union.
This method’s return value is unspecified.

This method throws the “no tags” |evt.ex.fr.store|(-48027)
exception when the soup has no tags index.

soupOrUSoup The soup or union soup from which this method
removes the specified tags.

tagsToRemove An array of symbols or a single symbol.

C H A P T E R 9

Data Storage and Retrieval Reference

9-60 Data Storage Functions and Methods

changeSym A unique symbol identifying the application that
removed the tag(s); usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

Query and Cursor Methods 9
This section describes the Query method of soups and union soups. This
method retrieves soup data according to criteria specified by a query
specification frame or query spec passed as its argument. This method
returns a cursor, which is an object that iterates over the set of soup entries
meeting the criteria defined by the query spec. A soup entry is a frame that
has been saved in a soup. For more information, see the following sections in
Newton Programmer�s Guide: “Introduction to Data Storage Objects”
(page 11-2), “Queries” (page 11-10), and “Cursors” (page 11-16).

In addition to describing the Query method of soups and union soups, this
section describes methods that manipulate the cursor to obtain individual
soup entries.

Clone 9

cursor:Clone()

This method makes a copy of the specified cursor and returns the copy.

Note

Do not use the global functions Clone or DeepClone to
clone cursors. Instead, use the Clone method for cursors, as
described here. ◆

CountEntries 9

cursor:CountEntries()

Returns the number of entries matching the query specification that
generated the cursor cursor. If the query spec used to generate the cursor

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-61

specifies endrange values (includes any of the beginKey, beginExclKey,
endKey, or endExclKey slots), this method counts only the entries within
the range over which the cursor iterates.

cursor Soup cursor returned by the Query function.

Note

Use this method only when necessary—counting a large
number of entries may be time-consuming and may require
relatively large amounts of heap space. ◆

Entry 9

cursor:Entry()

Returns the current soup entry referenced by cursor.

If the current entry is deleted from the soup, the entry reverts to a plain
frame (rather than a soup entry), and the method cursor:Entry returns the
symbol 'deleted. Make sure your code can handle gracefully a return
value of 'deleted from the cursor:Entry method.

If the cursor is advanced past the last entry or moved before the first entry in
the set, the current entry pointed to by the cursor has the value nil. Make
sure your code can also handle gracefully a nil value returned from the
cursor:Entry method.

If the current entry is altered in a way that causes it to move to a different
index position, the cursor moves with it.

EntryKey 9

cursor:EntryKey()

Returns the current entry key without reading the entry into memory.

C H A P T E R 9

Data Storage and Retrieval Reference

9-62 Data Storage Functions and Methods

Note

The value this method returns may be different from the
actual index key value for a particular entry; for more
information, see the description of the indexValidTest
function in “Query Specification Frame” beginning on
page 9-9. ◆

GoTo 9

cursor:GoTo(entry)

If the specified entry is valid, this method moves the cursor to the specified
entry and returns true. If the specified entry is not valid, the cursor does not
move and this method throws an exception.

entry The entry to which this method moves the cursor. You
cannot create an entry procedurally by creating a frame
having certain slots and values. The only valid entries
are those returned by the various cursor and entry
methods.

GoToKey 9

cursor:GoToKey(key)

Moves the cursor to the first valid entry having the specified key value, or to
the next entry in index order if no entry has the specified key value, and
returns the entry. If no entries have the specified key value, or the specified
key value is invalid, the cursor tests each entry until it runs out of entries, at
which point this method returns nil.

key For soups indexed on a single slot, a single index key
value; for soups having a multiple-slot index, an array
of these values. The data type must be that specified by
the soup index used to generate the cursor object that
received the GoToKey message.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-63

MapCursor 9

MapCursor(cursor, function)

Applies the specified function to each of the cursor’s entries in turn and
returns an array of the results. If function is nil, the returned array consists
of the entries themselves.

cursor The cursor supplying the entries against which this
method executes the specified function.

function The function that is to be mapped to the cursor’s
entries. This function must accept a single entry as its
argument.

If this function returns a nil result for an entry, that
entry is not added to the return array. nil results are
discarded.

Move 9

cursor:Move(n)

Moves the cursor n entries forward from its current position and returns that
entry. If n is negative, the cursor is moved backwards. If the cursor is
advanced past the last entry or moved before the first entry in the set of
entries it references, this method returns the value nil.

n Number of positions (entries) to move the cursor.

Next 9

cursor:Next()

Moves the cursor to the next entry in the query result and returns the entry.
If the cursor is advanced past the last entry in the set of entries it references,
this method returns the value nil.

C H A P T E R 9

Data Storage and Retrieval Reference

9-64 Data Storage Functions and Methods

Prev 9

cursor:Prev()

Moves the cursor to the previous entry in the set of entries referenced by the
cursor and returns the entry. If the cursor is moved before the first entry in
the set of entries it references, this method returns the value nil.

Reset 9

cursor:Reset()

Resets the cursor to the entry at the beginning of the range over which it
iterates.

ResetToEnd 9

cursor:ResetToEnd()

Resets the cursor to the entry at the end of the range over which it iterates.

Status 9

cursor:Status()

Returns a symbol describing the validity of the cursor. Cursors on union
soups become invalid when a soup missing an index common to the rest of
the union is included in the union. For more information, see “Testing
Validity of the Cursor” (page 11-54) in Newton Programmer�s Guide.

This method returns the following symbols:

'valid No problems with the soups or indexes used by this
cursor.

'missingIndex At least one soup referenced by this cursor is missing
one or more indexes common to the other soups in the
union. The missing index may have been specified in
the indexPath or tagsSpec slot of the query spec
used to generate the cursor.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-65

WhichEnd 9

cursor:WhichEnd()

Returns 'begin or 'end when the cursor’s position is outside the range of
valid entries. When the cursor is within the valid range of entries, this
function’s return value is nil.

Entry Functions 9
An entry is a frame added to a soup by any of several soup or union soup
methods provided for this purpose. A valid entry can be obtained only as the
result of a cursor method or a method that adds a frame to a soup or union
soup. You cannot create a valid entry by adding certain slots and values to a
frame—the system must create the entry for you from the frame presented to
an entry creation method such as the AddToDefaultStoreXmit union
soup method. For more information, see the following sections in Newton
Programmer�s Guide: “Introduction to Data Storage Objects” (page 11-2) and
“Entries” (page 11-17).

This section describes functions used to work with individual soup entries.

EntryChangeXmit 9

EntryChangeXmit(entry, changeSym)

Writes a cached entry back to its soup and transmits a change notification.
Returns an error if entry is not a valid soup entry; otherwise, this function’s
return value is unspecified.

entry The cached entry this method writes back to its soup.

changeSym A unique symbol identifying the application that
changed the entry; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

C H A P T E R 9

Data Storage and Retrieval Reference

9-66 Data Storage Functions and Methods

EntryUndoChanges 9

EntryUndoChanges(entry)

Disposes of the cached entry frame. Any changes made to the cached entry
are lost and the entry reverts to the version stored in the soup. This
function’s return value is unspecified.

entry The soup entry. If this entry contains VBO data, this
function undoes its changes also.

EntryFlushXmit 9

EntryFlushXmit(entry, changeSym)

Writes the entry cache back to the specified soup entry and transmits a
change notification. This function’s return value is unspecified.

This function is intended for use in changing entries that won’t be accessed
for awhile (accessing the entry creates the cached entry). Use of this function
can result in dramatic savings of time and heap space when writing a large
frame or many smaller frames to a soup. For example, you might call this
function from within a loop that changes a slot in every entry in a soup.

The EntryFlushXmit function is similar to the EntryChangeXmit
function; however, the EntryFlushXmit function clears the entry cache
instead of updating it.

entry The entry from which the cached frame was originally
extracted.

changeSym A unique symbol identifying the application that
changed the entry; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-67

EntryIsResident 9

EntryIsResident(entry)

Returns true if the specified entry is cached; otherwise, returns nil. For
more information about the entry cache, see “Entries” (page 11-17) in Newton
Programmer�s Guide.

entry The entry to be tested.

EntryCopyXmit 9

EntryCopyXmit(entry,newSoup,changeSym)

Copies the specified entry into the specified soup, returns the copy of entry,
and transmits a change notification.

Note

This function copies the cached entry frame—not the
original soup entry—into the new soup. ◆

entry The entry to be copied.

newSoup The soup into which the specified entry is to be copied.

changeSym A unique symbol identifying the application that copied
the entry; usually this value is the application symbol or
some variation on it. Pass nil for the value of this
parameter to avoid transmitting a soup change
notification.

EntryMoveXmit 9

EntryMoveXmit(entry,newSoup,changeSym)

Moves the specified entry into the specified soup and transmits a soup
change notification message. This function copies the cached entry into the
new soup, verifies the integrity of the duplicate entry, and deletes the
original soup entry. This function’s return value is unspecified.

entry The soup entry to be moved.

newSoup The soup into which the specified entry is to be moved.

C H A P T E R 9

Data Storage and Retrieval Reference

9-68 Data Storage Functions and Methods

changeSym A unique symbol identifying the application that
moved the entry; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

EntryReplaceXmit 9

EntryReplaceXmit(original,replacement,changeSym)

Replaces the contents of the original soup entry with the replacement entry
and transmits a soup change notification. This function’s return value is
unspecified.

original The soup entry to be replaced. This value must be a
soup entry, not a normal frame.

replacement The soup entry to be added. This value can be an entry
or a normal frame. In the latter case, this function makes
the frame into a soup entry and adds the new entry to
the soup.

changeSym A unique symbol identifying the application that
replaced the entry; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

EntryRemoveFromSoupXmit 9

EntryRemoveFromSoupXmit(entry, changeSym)

Removes entry from its soup and transmits a soup change notification. The
entry frame is converted to a plain frame (unmarked as belonging to a soup).
The return value of this function is unspecified.

entry The soup entry to be removed and converted to a plain
frame.

changeSym A unique symbol identifying the application that
removed the entry; usually this value is the application

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-69

symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

EntrySize 9

EntrySize(entry)

Returns the number of bytes that entry occupies on the store. Note that
entries are compressed when resident on a store, and decompressed
automatically when they are read into the NewtonScript heap.

entry The soup entry on which this function operates.

EntrySoup 9

EntrySoup(entry)

Returns a reference to the soup in which entry resides.

entry The soup entry on which this function operates.

EntryStore 9

EntryStore(entry)

Returns a reference to the store on which entry resides.

entry The soup entry on which this function operates.

EntryTextSize 9

EntryTextSize(entry)

Returns the number of bytes of entry that are occupied by text.

entry The soup entry on which this function operates.

FrameDirty 9

FrameDirty(frameOrEntry)

Returns true if the specified frame in memory has been modified since it
was retrieved from its soup; otherwise, returns nil. Although this function

C H A P T E R 9

Data Storage and Retrieval Reference

9-70 Data Storage Functions and Methods

detects changes to nested frames, it does not discern changes to bytes within
binary objects. Because strings are implemented as binary objects, this
function does not detect changes to individual characters in a string.

frameOrEntry The frame or soup entry to be tested.

The FrameDirty function may not detect changes caused by editing string
data in clParagraphView views because these views manipulate
characters within strings as much as possible in lieu of creating new strings.
The following code fragment demonstrates this problem in the NTK
Inspector:

s := GetStores()[0]:CreateSoup("Test:NewtonDTS", []);

e := s:Add({slot: 'value, string: "A test entry",

nested: {slot: 'notherValue}})

#4410B69 {slot: value,

 String: "A test entry",

 nested: {slot: notherValue},

 _uniqueID: 0}

// the unmodified entry tests clean

FrameDirty(e)

#2 NIL

// Modify the string without changing its reference

e.string[0] := $a;

// FrameDirty doesn’t detect in-place changes to binaries

FrameDirty(e)

#2 NIL

// writing the cached entry marks it as unchanged

EntryChange(e);

// change the string reference

e.string := "A new string";

// FrameDirty detects this kind of change successfully

FrameDirty(e)

#1A TRUE

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-71

// FrameDirty also detects nested changes successfully

EntryChange(e);

e.nested.slot := 'newValue;

FrameDirty(e)

#1A TRUE

// cleanup

s:RemoveFromStore()

EntryModTime 9

EntryModTime(entry)

Returns the time when the specified entry was last modified. The time is
expressed as an integer that is the number of minutes passed since midnight,
January 1, 1904. This function gets this information directly from the soup,
which is faster than referencing the entry; the latter approach would require
that the entire entry frame be constructed.

entry The soup entry on which this function operates.

EntryChangeWithModTimeXmit 9

EntryChangeWithModTimeXmit(entry, changeSym)

Writes a cached entry back to its soup using the modification time you
specify, and transmits a soup change notification. This function’s return
value is unspecified. This special-purpose function is intended for use by
backup/restore applications only; most applications need not use it.

entry The cached entry this method writes back to its soup.

changeSym A unique symbol identifying the application that
changed the entry; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

C H A P T E R 9

Data Storage and Retrieval Reference

9-72 Data Storage Functions and Methods

EntryReplaceWithModTimeXmit 9

EntryReplaceWithModTimeXmit(original,replacement,changeSym)

Replaces the original entry with the replacement entry, sets the modification
time of the replacement entry to match that of the original entry, and transmits
a soup change notification. This function’s return value is unspecified.

This special-purpose method is intended for use by backup/restore
applications only; most applications need not use it.

original The soup entry to be replaced. This value must be an
entry, not a normal frame.

replacement The soup entry to be added. This value can be an entry
or a normal frame. In the latter case, this function makes
the frame into a soup entry and adds the new entry to
the soup.

changeSym A unique symbol identifying the application that
replaced the entry; usually this value is the application
symbol or some variation on it. Pass nil for the value
of this parameter to avoid transmitting a soup change
notification.

EntryUniqueID 9

EntryUniqueID(entry)

Returns the value that identifies the specified entry to the system. This
function gets this information without reading the entry into the cache.

Entry Alias Functions 9
An entry alias is an object that provides a standard way to save a reference
to a soup entry. A soup entry cannot save a reference to an entry that resides
in another soup, but entry aliases themselves may be stored in soups.

The functions described here allow you to work with entry aliases.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-73

MakeEntryAlias 9

MakeEntryAlias(entry)

Returns an entry alias object representing the specified soup entry. This
object can be saved in a soup and later used as input to the
ResolveEntryAlias function to retrieve the soup entry.

entry The soup entry to which this method creates a reference.

ResolveEntryAlias 9

ResolveEntryAlias(alias)

Returns the soup entry referenced by the specified alias. Returns nil if the
entry cannot be retrieved—typically because the original store, the original
soup, or the original entry is not found.

alias The alias for which this method retrieves the
corresponding soup entry.

IsEntryAlias 9

IsEntryAlias(object)

Returns true if the specified object is an entry alias.

object The object to be tested.

IsSameEntry 9

IsSameEntry(entryOralias1, entryOralias2)

This method returns the value true only if its arguments evaluate to the
same soup entry. Passing two distinct entries with identical content to this
function does not cause it to return the value true. This method can
compare soup entries, entry aliases, or combinations of the two.

entryOralias1 The soup entry or entry alias to be compared to the
value of the entryOralias2 parameter.

entryOralias2 The soup entry or entry alias to be compared to the
value of the entryOralias1 parameter.

C H A P T E R 9

Data Storage and Retrieval Reference

9-74 Data Storage Functions and Methods

VBO Functions and Methods 9
A virtual binary object or VBO is a special kind of object used to hold
binary data larger than the available space in the NewtonScript heap. For
more information, see “Virtual Binary Objects” (page 12-2) in Newton
Programmer�s Guide.

In addition to the functions described in this section, VBOs support all
standard object system functions such as ClassOf, SetClass, Length,
SetLength, Clone, BinaryMunger, and so on. VBO data is not persistent
until the VBO is put in a soup entry and the entry is written to a soup.

IMPORTANT

Store memory for VBO data is not allocated until the VBO is
written to a soup. It is strongly recommended that you
enclose in a try block any code that writes VBO data. For
more information, see “Using Virtual Binary Objects”
(page 12-8) in Newton Programmer�s Guide. ▲

NewVBO 9

store:NewVBO(class, size)

Creates on the specified store a virtual binary object of the specified class
large enough to store the specified number of bytes. This function returns a
reference to the object it creates.

IMPORTANT

Store memory for VBO data is not allocated when the VBO is
created—it is allocated when the VBO is written to a soup.
For more information, see “Using Virtual Binary Objects”
(page 12-8) in Newton Programmer�s Guide. ▲

class A symbol specifying the class of the virtual binary
object this method creates.

size The initial size of the VBO, expressed in bytes.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-75

NewCompressedVBO 9

store:NewCompressedVBO(class, size, companderName, companderArgs)

Creates on the specified store a virtual binary object large enough to store the
specified number of bytes. This function returns a reference to the object it
creates. Normally, the object returned by this function compresses and
decompresses its associated binary data on demand; however, this method
creates an object that saves binary data in uncompressed form when nil is
specified as the value of the companderName parameter.

A compander (compressor-expander) is an object that transparently
compresses data as it is stored and expands data as it is read. The compander
specified by the value of the companderName parameter is instantiated using
the values specified by the companderArgs parameter. Because both
companders provided by the current system initialize themselves
automatically, you must always pass nil as the value of the companderArgs
parameter.

IMPORTANT

Store memory for VBO data is not allocated when the VBO is
created—it is allocated when the VBO is written to a soup.
For more information, see “Using Virtual Binary Objects”
(page 12-8) in Newton Programmer�s Guide. ▲

class A symbol specifying the class of the binary object that
this method creates.

size The initial size of the VBO, expressed in bytes.

companderName A string value specifying the implementation of the
store compander protocol used when the VBO created
by this object is written to or read from a soup entry. If
the value of this parameter is nil, an uncompressed
object is created. The following strings are valid values
for this parameter:

"TLZStoreCompander"
Specifies the use of the Lempel-Ziv
compressor-expander.

C H A P T E R 9

Data Storage and Retrieval Reference

9-76 Data Storage Functions and Methods

"TPixelMapCompander"
Specifies the use of a compander
specialized for pixel map data. (A bitmap
is a pixel map having a bit depth of 1.)
This compander assumes that the data in
the VBO is a pixel map and that the pixel
map data is 32-bit aligned; that is, the
length of the rows in the pixel map is an
even multiple of 4 bytes.
For a description of the Newton bitmap
format, see “MakeBitmap” (page 10-19).

companderArgs Arguments for instantiating the specified compander. In
the current implementation, always pass nil as the
value of this parameter.

IsVBO 9

IsVBO(vbo)

Returns a non-nil value if the object to be tested is a virtual binary object;
otherwise, returns nil.

vbo The object to be tested.

GetVBOStore 9

GetVBOStore(vbo)

Returns the store object on which the specified virtual binary object resides.
This function returns nil if its argument is not a VBO.

vbo The virtual binary object to be tested.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-77

GetVBOStoredSize 9

GetVBOStoredSize(vbo)

Returns the number of bytes the specified VBO actually uses in the store; for
example, if the VBO is compressed, this function returns its compressed size.

vbo The VBO to be tested. Do not use objects other than
VBOs as the value of this parameter.

GetVBOCompander 9

GetVBOCompander(vbo)

Return the name of the compander used for the specified object. If the object
is not a VBO, this function returns an unspecified value.

vbo The VBO to be tested.

Mock Entry Functions 9
A mock entry is a NewtonScript object that mimics the behavior of a soup
entry. The mock entry is a foundation object you can use to build up a suite
of objects that acts like the system-supplied store, soup, cursor, and entry
objects. For example, you could create a mock entry object that uses a serial
communications link to retrieve a record from a remote database; additional
objects could implement methods to provide cursor-like access to these mock
entries, just as if they resided in a local soup.

The current implementation of the Newton object system provides only
mock entries; you must implement appropriate mock cursors, mock soups,
and mock stores as required.

For more information, see “Mock Entries” (page 12-4) in Newton
Programmer�s Guide.

The global functions described here create and manipulate mock entries.
They do not work on normal soup entries.

See also Chapter 23, “Utility Functions Reference,” for a description of the
NewWeakArray function.

C H A P T E R 9

Data Storage and Retrieval Reference

9-78 Data Storage Functions and Methods

NewMockEntry 9

NewMockEntry(handler, cachedFrame)

Creates a new mock entry having the specified handler and cached frame.

handler The frame implementing this mock entry’s methods.

cachedFrame The frame containing the mock entry’s data. You can
pass nil for this value and fill in the entry data later
from the EntryAccess method of this mock entry’s
handler frame.

IsMockEntry 9

IsMockEntry(object)

Returns a non-nil value if the specified object is a mock entry; otherwise,
returns nil. This function returns the value nil when the object to be tested
is a normal soup entry; in contrast, the IsSoupEntry function returns true
for mock entries and for normal soup entries.

object The object to be tested.

EntrySetCachedObject 9

EntrySetCachedObject(mockEntry, newCachedFrame)

Installs the specified cached frame in the specified mock entry. The cached
frame is the frame that holds the mock entry’s data— the system forwards
accesses of the specified mock entry to this frame transparently.

mockEntry The mock entry object for which the newCachedFrame
frame is to be entry data. If the value of this parameter
is not a mock entry (as created by the NewMockEntry
function), an error is signalled.

newCachedFrame The frame to be installed as the entry data for the
specified mock entry.

C H A P T E R 9

Data Storage and Retrieval Reference

Data Storage Functions and Methods 9-79

EntryCachedObject 9

EntryCachedObject(mockEntry)

Returns the specified mock entry’s cached frame.

EntrySetHandler 9

EntrySetHandler(mockEntry, newHandler)

Installs the specified frame as the handler for the specified mock entry.

mockEntry The mock entry in which the newHandler frame is
installed.

newHandler The handler frame to install in the mockEntry object.

EntryHandler 9

EntryHandler(mockEntry)

Returns the specified mock entry’s handler frame. This special-purpose
method is intended for debugging purposes only.

mockEntry The mock entry object to be tested.

Developer-Defined Entry Handler Methods 9
You must implement the methods described here in order to use mock
entries.

EntryAccess 9

handler:EntryAccess(mockEntry)

You supply this method, which is called when the frame system needs to
access a slot in a mock entry and the mock entry’s cached frame is not
present. This method must create a frame representing the entry and use the
EntrySetCachedObject function to assign that frame to the mockEntry
object.

handler The handler frame for the specified mock entry.

C H A P T E R 9

Data Storage and Retrieval Reference

9-80 Data Storage Functions and Methods

mockEntry The mock entry being accessed. Do not rely on this
value—it is not always passed.

Optional Developer-Defined Entry Handler Methods 9

Your mock entry handler should also implement the following methods as
necessary. These methods are the mock entry counterparts to
system-supplied entry functions.

handler:EntrySoup(mockEntry)
handler:EntryStore(mockEntry)
handler:EntrySize(mockEntry)
handler:EntryTextSize(mockEntry)
handler:EntryUniqueID(mockEntry)
handler:EntryModTime(mockEntry)
handler:EntryChange(mockEntry)
handler:EntryChangeWithModTime(mockEntry)
handler:EntryRemoveFromSoup(mockEntry)
handler:EntryReplace(original, replacement)
handler:EntryReplaceWithModTime(original, replacement)
handler:EntryUndoChanges(mockEntry)
handler:EntryCopy(mockEntry, newSoup)
handler:EntryMove(mockEntry, newSoup)
handler:EntryValid(mockEntry)

Data Structure 10-1

C H A P T E R 1 0

Drawing and Graphics
Reference 10

This chapter describes the protos, functions, and methods used by the
drawing interface.

Data Structure 10

The Drawing interface uses the following structure.

Style Frame 10
The style frame is used to specify characteristics that affect the way the shape
is imaged, such as the size of the pen or the fill pattern to be used. These
characteristics are specified by the values of slots in a style frame associated
with the shape. If the value of the style frame is nil, the view system draws
the shape using default values for these drawing characteristics.

Figure 10-0
Table 10-0

C H A P T E R 1 0

Drawing and Graphics Reference

10-2 Data Structure

Slot descriptions

The style frame contains one or more of the slots listed here. If any single slot
is not provided, the default value for that slot is used.

transferMode The drawing transfer mode for the pen (or for the text, if
text is being drawn). Specify one of these standard
constants: modeCopy, modeOr, modeXor, modeBic,
modeNotCopy, modeNotOr, modeNotXor,
modeNotBic. See “viewTransferMode Constants”
(page 2-13) for a description of these constants. The
default transfer mode is a split state: bitmaps and text
are drawn with a modeOr transfer mode, but other
items (geometric shapes, pens, and fill patterns) are
drawn with a modeCopy transfer mode. However,
when you actually specify a transfer mode (by placing a
non-nil value in the transferMode slot of the style
frame), all drawing uses the specified mode.

penSize The size of the pen in pixels. You can specify a single
integer to indicate a square pen of the specified size, or
you can specify an array giving the pen width and
height (for example, [1, 2]). This value is not used for
drawing text. The minimum and default pen size is 1.
However, no frame will be drawn for a shape if
penPattern is set to vfNone (the default
penPattern is vfBlack).

penPattern The pen pattern. You can specify the following patterns:
vfNone, vfWhite, vfLtGray, vfGray, vfDkGray, and
vfBlack. The default value is vfBlack.

To use a custom pen pattern, store a binary object of
class 'pattern in this slot. An easy way to create such
an object is to clone a binary string containing 16
Unicode hexadecimal digits, set the class of the clone to
'pattern and store the result in this slot. For more
information, see “Custom Fill and Frame Patterns”
(page 3-21) in the Newton Programmer�s Guide.

C H A P T E R 1 0

Drawing and Graphics Reference

View Classes 10-3

fillPattern The fill pattern. You can specify the same patterns as for
the penPattern slot. This value is not used for
drawing text. The default value is vfNone.

To use a custom fill pattern, store a binary object of class
'pattern in this slot. For more information, see
“Custom Fill and Frame Patterns” (page 3-21) in the
Newton Programmer�s Guide.

font The font to use for drawing text. The default is the font
selected by the user in the Styles palette. See “Fonts for
Text and Ink Display” (page 8-3) in Newton Programmer�s
Guide for details on specifying a font.

justification The alignment of text in the rectangle specified for it.
Specify one of the following symbols: 'left, 'right,
'center. The default value is 'left.

clipping Specifies a clipping region to which all drawing is
clipped in addition to the default clipping. The value of
this slot can be a primitive shape, a region, or an array
of shapes (from which a new clipping region is
constructed automatically by the system). For more
information see “Controlling Clipping” (page 13-12) in
the Newton Programmer�s Guide.

transform Used to offset or scale the shape. The value of this slot is
an array that can hold a coordinate pair or a pair of
source and destination rectangles. For more
information, see “Transforming a Shape” (page 13-13) in
the Newton Programmer�s Guide.

View Classes 10

The following view classes are used to display objects in views.

C H A P T E R 1 0

Drawing and Graphics Reference

10-4 View Classes

Shape View (clPolygonView) 10

Displays polygons or ink, or accepts graphic or ink input.

Slot descriptions

viewBounds Set to the size of the view and the view location where
you want it to appear.

points If the view contains a polygon shape, this slot contains a
binary data structure of the type 'polygonShape,
which holds the polygon data.

ink If the view contains ink, this slot contains a binary data
structure of the type 'ink, which holds the ink data.

viewFlags The default setting is vVisible. You will most likely
want to set additional flags to control the recognition
behavior of the view; for example, vShapesAllowed.

viewFormat Optional. The default setting is vfPen(2). The vfPen
setting controls the thickness of polygon lines.

Picture View (clPictureView) 10
Displays a picture. A picture can be a bitmap, graphic shape, or picture object.

Slot descriptions

icon A bitmap, graphic shape, or picture object to be
displayed in the view. A bitmap is selected from a
resource file by using the icon slot editor in NTK. A
picture object is obtained from a resource file by using
the GetResource or GetNamedResource
compile-time functions in NTK.

viewBounds Set to the size of the view and the location where you
want it to appear.

viewFlags The default setting is vVisible.
viewFormat Optional. The default setting is nil.

A picture object is simply a binary object with the class 'picture.

C H A P T E R 1 0

Drawing and Graphics Reference

Graphics and Drawing Protos 10-5

If the contents of the icon slot is a graphic shape, the style frame for
drawing the shape in the view contains the single slot transferMode. The
transferMode slot is set to the same value as the viewTransferMode slot
of the view (if this slot exists), or to the default value modeCopy if there is no
viewTransferMode slot in the view.

Your graphic shape can provide a different set of styles by including a
style frame in the shape array. In this case, any transferMode slot in
the style frame that you specify overrides the viewTransferMode setting
for the view.

Scaled View (clRemoteView) 10

Displays a scaled image of another view.

Slot descriptions

stepChildren Specify a single child view in this array. This child view
is scaled to fit inside the clRemoteView. Typically, you
set this slot at run time in the ViewSetupFormScript
method.

viewBounds Set to the size of the view and the location where it is to
appear.

viewFlags The default setting is nil.
viewFormat Optional. The default setting is nil.

Graphics and Drawing Protos 10

This section describes the protos that work with graphics and drawing. The
protos include:

■ protoImageView

■ protoThumbnail

■ protoThumbnailFloater

C H A P T E R 1 0

Drawing and Graphics Reference

10-6 Graphics and Drawing Protos

protoImageView 10

This proto provides a view in which you can display, magnify, scroll, and
annotate images. However, it depends on the use of protoThumbnail and
protoThumbnailFloater to provide controls for magnifying, scrolling,
and paging. The structure of the protoImageView is shown in Figure 10-1.

Figure 10-1 protoImageView Structure

The annotations can be selected and modified when the image is shown at
full size. The image and annotations are clipped so that only the portion of
their contents that falls within the bounds of their parent view is shown.
Annotations scroll along with the image.

In general, in this discussion, a reference to the “image” means both the
image and the annotation, while the “image plane” refers only to the image.
Also, references to the “pane” refer to the bounding box of the
protoImageView, under the assumption that the image is larger than can
be displayed in the box, so the protoImageView is a window, or pane, into
the larger image. Finally, scaling frequently refers to both size and position of
the pane in the image.

Slot descriptions

You may provide the following slots:

Image This slot should contain a NewtonScript shape. It will
be rendered by the image plane and can be provided
either by proto or parent inheritance. This slot is

C H A P T E R 1 0

Drawing and Graphics Reference

Graphics and Drawing Protos 10-7

required if the image viewer is not opened with
OpenImage or ToggleImage.

Annotations This slot should either be nil, or should contain an
array of views appropriate to be added as
viewChildren to a clEditView. This slot can be
provided either by proto or parent inheritance.

Note

Annotations is referenced during view setup (see
Setup (page 10-9) for details) and is not maintained
afterwards; to retrieve user annotations, call the
GetAnnotations method. ◆

scalingInfo This slot should either be nil or should contain a slot
similar to that returned by GetScalingInfo
(page 10-11). The scalingInfo slot can be provided by
either proto or parent inheritance.

You can override the following slots:

viewBounds The default is {top: 88, left: 0, right: 0,
bottom: -24}.

viewJustify The default setting is vjParentFullH +
vjParentFullV.

viewFlags The default setting is vfLtGray + vfFillShift.
viewFormat The default setting is vfPen(1).
zoomStops An array specifying an ordered set of zoom stops,

smallest to largest, used by the ZoomBy method. If this
slot is not provided, it is initialized to the default set.
Each item in the set should be either a number or a
symbol. If a number, zoomStops specifies the fractional
size to be displayed, where 1.0 is the size of the original
image based on the resolution. If zoomStops is a
symbol it may be 'fitInWindow, 'fullSize,
'fullResolution, or 'twiceFullResolution. The
minimal default set is ['fullSize,
'twiceFullResolution]. The symbol 'fullSize
should always be a member of the array.

C H A P T E R 1 0

Drawing and Graphics Reference

10-8 Graphics and Drawing Protos

dragCorridor An integer. When dragging the image, clinging to the
closest axis when within a specific corridor smooths
linear scrolling considerably. The dragCorridor slot
specifies the distance from the closest axis the user must
move the pen to break out of that corridor and scroll
diagonally. The default value is 7 (resulting in a 14-pixel
corridor along both axes).

grabbyHand When appropriate, a picture is painted under the pen
while pendown is executing to indicate that the image
can be dragged. The grabbyHand slot contains the
appropriate shape to render. It should have top-left
= 0, 0. The picture is automatically centered under
the pen.
Note

This slot can only be generated dynamically and must
be generated before ViewSetupDone is called. ◆

Do not change the following slot:

declareSelf This slot is set by default to 'imagebase. Do not
change it.

The following additional slots and methods are used internally. They are
listed here so that you don’t inadvertently override them.

System slots:

viewClass, declareSelf, and ViewSetupDoneScript

Additional slots:

myImage, tempImage, tempAnnotes, tempScales, tempOpen,

fXOffset, fYOffset, fMaxX, fMaxY, cHorMult, cVertMult,

fAnnotateMode, handShape, usefulSizes, currentSize,

fullSize, fZoomedTo, quiet, CalculateUsefulSizes,

SetupZoomStops, SetupSizes, ZoomByDest, DoUndo.

The following sections describe the methods of protoImageView that you
may need to use.

C H A P T E R 1 0

Drawing and Graphics Reference

Graphics and Drawing Protos 10-9

PenDown 10

myImageView:PenDown(strokeUnit)

Used to drag an image.

Called by the image view’s ViewClickScript to handle taps (except when
in 'edit mode, see “SetAnnotationMode” (page 10-12). The default script
drags the image. You can override the default to handle the click. Keep in
mind that it is not possible to override ViewClickScript as
protoImageView is composed of multiple views, any one of which can be
handling the tap.

strokeUnit Unit from the ViewClickScript method; contains
information describing the interaction of the pen with
the display.

ScalingInfoChanged 10

myImageView:ScalingInfoChanged(slot)

Called whenever a frame returned by GetScalingInfo would change due
to some programmatic action; for example, a call to ZoomTo, ScrollBy, and
so on.

slot Value varies depending on the event causing the
GetScalingInfo call:

'zoom The magnification of the image changed.
'scroll The image was scrolled.
'dragging The image is being dragged by the pen.
'dragDone The image is finished being dragged by

the pen.

Setup 10

myImageView:Setup(image, annotations, scalingInfo)

Performs appropriate initialization to display the specified image. This
method is typically used after the view is opened to let another image be
displayed (for example, when switching pages in a fax). (Note that the
ViewSetupDoneScript method calls Setup automatically.)

C H A P T E R 1 0

Drawing and Graphics Reference

10-10 Graphics and Drawing Protos

image Contains a NewtonScript shape which is rendered by
the image plane.

annotations Is either nil or contains an array of views appropriate
to add as viewChildren to a clEditView.

scalingInfo If specified, scalingInfo sets the image to the appropriate
magnification and offset.

Note

You can define your own Setup method; however, you
must then call the inherited method
(inherited:Setup();) from your own method. ◆

OpenImage 10

myImageView:OpenImage(image, annotations, scalingInfo)

Opens and initializes the view displaying the image, annotations, and
whatever scaling it was set to. If scalingInfo is nil, the image size does not
change; however the annotation may change. Otherwise, the image sets the
scaling according to the specified scaling information. If the image is already
open the imagery, annotations, and scaling (if specified) are set.

image Contains a NewtonScript shape which is rendered by
the image plane.

annotations Is either nil or contains an array of views appropriate
to add as viewChildren to a clEditView.

scalingInfo If specified, scalingInfo sets the image to the appropriate
magnification and offset.

ToggleImage 10

myImageView:ToggleImage(image, annotations, scalingInfo)

Opens or closes the view and sets the image, annotations, and scaling
information (if specified). If scalingInfo is nil, the image size does not
change. If the image is already open, the image, annotations, and scaling
information are set.

C H A P T E R 1 0

Drawing and Graphics Reference

Graphics and Drawing Protos 10-11

image Contains a NewtonScript shape which is rendered by
the image plane.

annotations Is either nil or contains an array of views appropriate
to add as viewChildren to a clEditView.

scalingInfo If specified, scalingInfo sets the image to the appropriate
magnification and offset.

GetScalingInfo 10

myImageView:GetScalingInfo()

Returns a frame of scaling information. The returned frame has the following
slots:

offsetX The horizontal offset of the pane within the image
(positive).

offsetY The vertical offset of the pane within the image
(positive).

zoomedTo The symbol or number representing the current zoom.
extent The bounding box of the image at the current scale.
viewBox The (localbox) bounding box of the pane (never

changes).

HasAnnotations 10

myImageView:HasAnnotations()

Returns non-nil if the displayed image has annotations, nil otherwise.

GetAnnotations 10

myImageView:GetAnnotations()

Returns an array of views appropriate to become clEditView children.
This array represents the current annotations drawn on the clEditView
annotation layer.

C H A P T E R 1 0

Drawing and Graphics Reference

10-12 Graphics and Drawing Protos

SetAnnotationMode 10

myImageView:SetAnnotationMode(theMode)

Sets the annotation display behavior and the pen behavior when it is tapped.

theMode Specifies the mode as follows:

'hide Annotations are not visible and a pen tap
results in a drag.

'show Annotations are made visible, and a pen
tap drags.

'edit Annotations are visible and editable.

Note

Due to system limitations, it is not possible to edit
annotations at any magnification other than 'fullSize. If
you attempt to SetAnnotationMode('edit) while at any
other magnification, an exception is thrown. ◆

GetAnnotationMode 10

myImageView:GetAnnotationMode()

Returns the symbol representing the current annotation mode.

TargetChanged 10

myImageView:TargetChanged()

Called when any annotation is added or edited.

CanScroll 10

myImageView:CanScroll()

Returns a frame indicating the direction ('left, 'right, 'up, and 'down)
in which scrolling is possible. If scrolling is not possible nil is returned.

C H A P T E R 1 0

Drawing and Graphics Reference

Graphics and Drawing Protos 10-13

ScrollT0 10

myImageView:ScrollTo(x, y)

Scrolls the scaled image within the clipping window. This method returns a
non-nil value if the image was moved or nil if it was not moved (either it
was already there, or doing so would have moved the pane past the edge of
the image). ScrollTo does not scroll the image away from the edge of the
view.

x, y The offset of the top-left corner of the pane from the top
left corner of the image.

Note

Zooming the image changes the size (and content) of the
image window, but doesn’t change the scrolling behavior. ◆

ScrollBy 10

myImageView:ScrollBy(x, y)

Scrolls the image by the specified offset amount, where deltaX and deltaY
indicate how far to move the pane within the image. This method returns a
non-nil value if the image was moved or nil if it was not moved.
ScrollBy does not scroll the image away from the edge of the view.

x The horizontal distance in which to scroll the image.

y The vertical distance in which to scroll the image.

ZoomBy 10

myImageView:ZoomBy(direction)

Makes an image larger or smaller as specified by the sizes in the zoomStops
array. If the current zoom is a number between a pair of stops, the image
increases to the nearest stop in the direction specified (where a positive
number enlarges the image; a negative number shrinks the image).

The following example shows the use of zoomStops:

['fitInWindow, 0.24, 0.5, 'fullSize, 2, 4,

'fullResolution, 'twiceFullResolution]

C H A P T E R 1 0

Drawing and Graphics Reference

10-14 Graphics and Drawing Protos

The current zoom is 0.35, ZoomBy(1) increases the image by 0.5 (that is, half
size), ZoomBy(2) makes the image 'fullSize, and so on. ZoomBy returns
non-nil if the zooming was changed.

direction A number of discrete steps by which to zoom the image.

ZoomTo 10

myImageView:ZoomTo(imageSize)

Changes the size of the image.

imageSize An positive number or symbol as described in the
scalingInfo slot on (page 10-7).

CanZoomBy 10

myImageView:CanZoomBy(imageSize)

Returns nil if ZoomBy would change the size of the image. Returns non-nil
otherwise.

imageSize A number of discrete steps by which to zoom the image.

ZoomToBox 10

myImageView:ZoomToBox(boundsFrame)

Resizes the image to the size specified with the boundsFrame parameter. Note
that you don’t need to specify the same aspect ratio as the original image;
this method allows you to stretch the image in either dimension.

boundsFrame Specifies the size to which you want the image to resize.

protoThumbnail 10
This proto is designed to be used in conjunction with protoImageView. It
displays a small copy of the image (a “thumbnail” sketch), with a rectangle
representing the location of the pane in the image.

C H A P T E R 1 0

Drawing and Graphics Reference

Graphics and Drawing Protos 10-15

In this discussion, the grey box refers to the rectangle representing the
location of the pane in the image. Scaling frequently refers to both the size
and position of the grey box in the thumbnail.

Slot descriptions

You may provide the following slots:

ImageTarget This slot should point to a view capable of responding
to both the GetScalingInfo and the ScrollTo
methods. If this slot is defined, the thumbnail proto
does not need to provide these two methods.

Image If this slot is present when the image is opened, it is
expected to contain a graphic shape or bitmap that is
used to render the background shape—the thumbnail
sketch—in the view. If this slot is present, it must not be
nil.

You can override the following slots to modify the appearance of the grey
box or thumbnail:

viewBounds The default is {top: 12, left: -50,
right: -2, bottom: -23}.

viewJustify The default setting is vjParentRightH +
vjParentFullV.

trackWhileScrolling
If non-nil, this slot causes intermediary calls to
ScrollTo while the grey box is being dragged around
the thumbnail. If nil, ScrollTo is called only when
the pen is lifted.

The following additional slots and methods are used internally. They are
listed so that you don’t inadvertently override them.

System slots:

viewClass, viewFlags, viewFormat, ViewClickScript,

ViewSetupDoneScript, ViewDrawScript

C H A P T E R 1 0

Drawing and Graphics Reference

10-16 Graphics and Drawing Protos

Additional slots:

tempImage, thumbnail, thumbnailBounds, greyBox,

greyBounds, theShape, needToUpdate, RelocateGreyBox

You can invoke the protoThumbnail methods described in the following
sections.

Setup 10

myThumbnail:Setup(image)

Prepares the thumbnail to show a new image created from
protoThumbnail. The image is scaled and rendered into an internal bitmap
image. This is useful for large images, as it reduces memory paging.

image The image to be scaled.

OpenThumbnail 10

myThumbnail:OpenThumbnail(image)

Convenience routine to open thumbnails. If image is specified and an image
slot is available, the parameter takes precedence. OpenThumbnail internally
calls Setup.

image The image to display.

ToggleThumbnail 10

myThumbnail:ToggleThumbnail(image)

Opens or closes the image. If the image is open, it is closed. If the image is
closed, ToggleThumbnail calls OpenThumbnail.

image The image to open or close.

Update 10

myThumbnail:Update()

Re-renders the thumbnail view, which can be a fairly slow process, as the
grey box is rescaled. This slot is necessary only if the scaling information (the

C H A P T E R 1 0

Drawing and Graphics Reference

Graphics and Drawing Protos 10-17

location or magnification) of the source image has changed; generally the
standard Dirty call should suffice.

GetScalingInfo 10

myThumbnail:GetScalingInfo()

Must return a frame of scaling information like that returned by the
GetScalingInfo method of protoImageView. The easiest way to do this
is simply to call the GetScalingInfo method of an instance of a
protoImageView.

PrepareToScroll 10

myThumbnail:PrepareToScroll()

Called immediately before any scrolling is performed to allow you to
perform any necessary preparation.

ScrollTo 10

myThumbnail:ScrollTo(x, y)

Called to scroll the view if a pen down event causes scrolling (the usual
case). Again, the easiest way to scroll is to call the ScrollTo method of an
instance of a protoImageView. This method must be provided if the view
can be clicked on.

x, y The position of the pen in the thumbnail scaled to the
size and extent slot in the frame returned by
GetScalingInfo. For example, if the thumbnail is
10x10 and the extent is 100x100, a pen down at
position 3,5 in the thumbnail results in a call to
ScrollTo(30, 50).

DoneScrolling 10

myThumbnail:DoneScrolling()

Called following the scroll operation to allow any necessary clean-up to be
performed.

C H A P T E R 1 0

Drawing and Graphics Reference

10-18 Functions and Methods

protoThumbnailFloater 10
This proto provides a convenient way to use a thumbnail. It follows the same
basic conventions as the protoThumbnail, with the added benefit of being
based on the protoFloatNGo proto so that it adjusts its size to reflect the
aspect ratio of the image it contains. It is always as large as possible without
getting any larger in either dimension than the original viewBounds.
Furthermore, it adjusts its bounds so that only the edges farthest away from
the parent’s closest edge move. In other words, if the floater is dragged to the
top-left, the bottom-right corner moves, if it is at the bottom-right corner of
the parent, only its top-left corner changes.

▲ W A R N I N G

This proto should not be parent full-justified, as this will
break the code that adjusts its size. ▲

All of the slots are defined and used identically to the protoThumbnail,
with the following additions that are used internally:

maxW, maxH, ViewSetupFormScript

Functions and Methods 10

This section describes drawing functions and methods. It contains the
following topics:

■ Functions to handle bitmaps

■ Functions to handle hit-testing

■ Functions to handle creating shapes

■ Functions that operate on shapes

■ General utility functions

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-19

Bitmap Functions 10
This section describes the bitmap functions and methods.

MakeBitmap 10

MakeBitmap(widthInPixels, heightInPixels, optionsFrame)

Returns a blank (white) bitmap shape of the specified size. The origin of the
bitmap returned is at (0,0); however, you can subsequently use the
OffsetShape function to modify the returned bitmap’s origin.

widthInPixels Width of the bitmap shape.

heightInPixels Height of the bitmap shape.

optionsFrame An optional frame specifying additional characteristics
of the bitmap shape created by this method. It can
contain any of the slots specified here. If this frame is
not used, the value of the optionsFrame parameter must
be nil.

rowBytes Specifies the number of bytes per row of
the bitmap; use only for a data source that
creates scan lines longer than the default
value. An exMakeBitmapBadArgs
exception is thrown if the value of
rowBytes is not a multiple of 32 bits or is
too narrow for the bitmap’s width as
specified by the widthInPixels parameter.
When no other value is specified, this slot
has the default value
BAND(widthInPixels + 31, -32) / 8.

resolution
Specifies high- or low-resolution images.
Like a pen size, the value of the
resolution slot may be an array or a
single value. If this value is an array, the
elements of the array specify the x and y
dimensions of the pixels comprising the
bitmap. If this slot stores a single value, it

C H A P T E R 1 0

Drawing and Graphics Reference

10-20 Functions and Methods

specifies that the pixels are square, having
equal values for their x and y dimensions.
Applications that display or otherwise
manipulate bitmap documents (for
example, fax pages) need to use this slot
to control scaling functionality. This slot’s
default value is [72,72] when no other
value is specified.

store By specifying a store, the bitmap is
created as a VBO (virtual binary object).
To applications, VBOs appear to be
NewtonScript binaries, but they are
actually handled directly by the system,
using automatic compression and
decompression to allow these objects to be
much larger than the available heap
space. If you are going to create a bitmap,
and you know that it will ultimately wind
up in a soup on a particular store, you can
increase the system efficiency by using
this slot to specify the store on which to
create the object.
If this slot is nil, the NewtonScript heap
is used, and the bitmap will not be a VBO.
You need to limit the use of the
NewtonScript heap to small bitmaps only.
A throw occurs in the event the
NewtonScript heap or store does not have
enough space for the bitmap.

companderName
When a VBO is written to the store, the
system uses a compander, or
compression-decompression utility. This
slot is a string that represents the name of
the compander to use when writing or
reading this bitmap from the store.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-21

The default compander is
TPixelMapCompander, which is efficient
for monochrome images. During
compression, the data is preprocessed by
XORing scan lines. It is then passed on to
the Lempel Ziv implementation contained
in the ROM.
You can supply your own compander as a
protocol. If you don’t want to compress
the data when written out to the store you
would need to supply an appropriate
protocol. If you are not writing to the
store (default), then there is no
compression, no VBO, and the data is
written out to the frames heap.

companderData
This slot is intended for optional
arguments that would be passed to the
compander. The default is nil.

DrawIntoBitmap 10

DrawIntoBitmap(shape, styleFrame, destBitmap)

Draws shapes into a bitmap in the same way that the DrawShape method
(page 10-35) draws shapes into a view. Drawing is clipped to the boundaries
of the destination bitmap.

shape Any of the shapes returned by the shape-creation
functions, or an array of such shapes intermixed with
optional style frames. If a style frame is included in the
shape array, the style frame applies to all subsequent
shapes in the array, until overridden by another style
frame.

styleFrame A style frame as specified in the description of the
DrawShape method (page 10-35).

destBitmap The bitmap in which drawing takes place.

C H A P T E R 1 0

Drawing and Graphics Reference

10-22 Functions and Methods

To perform offscreen buffering, your application’s ViewDrawScript
method can use the DrawIntoBitmap function to create a bitmap and then
draw that bitmap into the final onscreen view by sending the DrawShape
message to the view.

MungeBitmap 10

MungeBitmap(bitmap, operator, options)

Performs various bitmap operations such as rotating or flipping the bitmap.
These operations are destructive to the bitmap passed as an argument to this
function; the bitmap is modified in place and the modified bitmap shape is
returned.

bitmap A bitmap shape on which this function operates. For
convenience, the bitmap shape is modified in place and
the modified bitmap shape is returned in this slot.

operator A symbol specifying the bitmap modification to
perform; it may have any of the following values:

'flipHorizontal
Flips the image bitwise horizontally
(mirror image).

'flipVertical
Flips the image bitwise vertically (mirror
image).

'rotateLeft
Rotates the image 90 degrees left.

'rotateRight
Rotates the image 90 degrees right.

'rotate180
Rotates the image 180 degrees; unlike
'flipHorizontal, the image is not
mirrored.

The 'flipDirection operators return a shape having the
same dimensions as the source bitmap; no view bounds
or other rectangles are changed.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-23

The 'rotateDirection operators, however, change the
dimensions of the object; therefore, they change the
returned bitmap’s bounds rectangle to reflect the new
size and shape.

If the source bitmap has been offset, the coordinates of
the upper-left corner of the returned object are the same
as those of the source bitmap and the coordinates of the
bottom-right corner of the returned bitmap are changed.
See the Newton Programmer�s Guide, Figure 13-11
(page 13-19) for an illustration of the relationships
between the coordinates of the source bitmap and those
of the returned bitmap.

options The options frame contains slots for the support of
future munge operations. Only one slot is supported at
this time:

callBack A callback function provided by you to
allow display of the progress of the three
rotation operations to the user. The
munge operations call this function with
an array argument, ranging from 0 to 100
inclusive, representing the completion
percentage of the rotation operation.

ViewIntoBitmap 10

view:ViewIntoBitmap(srcRect, destRect, destBitmap)

Writes a portion of the specified view into the specified bitmap. This function
always returns nil. This function does not provide a scaling capability,
although scaling can be accomplished by passing the destBitmap bitmap
returned by this method to the DrawIntoBitmap function as the value of its
shape parameter. See the Newton Programmer�s Guide, Figure 13-10
(page 13-19) for a graphical depiction of the relationships between the view
to be captured, the source rectangle, the destination bitmap, and the
destination rectangle.

C H A P T E R 1 0

Drawing and Graphics Reference

10-24 Functions and Methods

srcRect The portion of the view that is to be captured, specified
as a rectangle in the local coordinate system of the
source view. A value of nil causes this function to use
the view bounds of the source view as the dimensions
of the source rectangle. The size of the source rectangle
is clipped to the intersection of destRect and the bounds
of the destination bitmap.

Because srcRect expects local coordinates, you may need
to call myview: localBox() to get correct coordinates
of srcRect if myView is justified relative to other views.

destRect Defines the bounds of the portion of the bitmap into
which the image is drawn. A value of nil causes the
view bounds of srcRect to be used as the default value of
destRect. The bounds of destRect are clipped to stay
within the bounds of the destination bitmap.

destBitmap The bitmap shape into which the captured view image
is written. You can use the MakeBitmap function to
create this shape.

Hit-Testing Functions 10
The following functions allow you to determine whether a point or stroke
lies within a specified shape.

HitShape 10

HitShape(shape, x, y)

Indicates whether the point described by the x and y coordinate parameters
lies within the shape.

x The x coordinate of the point to be tested, in local (view)
coordinates.

y The y coordinate of the point to be tested, in local (view)
coordinates.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-25

shape A shape returned by one of the routines that creates
shapes (such as MakeRect, MakeOval, MakeRegion,
MakePolygon, and so on.) You can specify an array of
shapes for shape, and in this case, each shape in the
array is hit-tested with the point. If a hit is found, the
function returns immediately and subsequent shapes in
the array are not tested.

When a single shape is passed to this function, it returns non-nil if the
specified point lies within the boundaries of the shape and nil if the
specified point does not lie within the boundaries of any shape passed to it.
For unclosed polygons, the result of this function is undefined. When passed
an array of shapes, this function returns an “array path” indicating the shape
within which the point lies. The “array path” is an array in which each
element represents an index into the nested array of shapes passed to
HitShape.

PtInPicture 10

PtInPicture(x, y, bitmap)

Returns non-nil if the point described by the x and y coordinates lies at a
black pixel. If no mask is defined for the specified bitmap, this function tests
whether the point lies within the bitmap itself. This function returns nil if
the point is outside the test area.

PtInPicture supports bitmaps loaded from resources using the
compile-time function GetPictAsBits or those created using MakeBitmap.

x The x coordinate of the point to be tested, in local (view)
coordinates.

y The y coordinate of the point to be tested, in local (view)
coordinates.

bitmap The bitmap object associated with the mask to be tested.

Returns non-nil if the point described by the x and y coordinates lies within
the mask associated with the specified bitmap object. If no mask is defined
for the specified bitmap, this function tests whether the point lies within the
bitmap itself. This function returns nil if the point is outside the test area.

C H A P T E R 1 0

Drawing and Graphics Reference

10-26 Functions and Methods

Shape-Creation Functions 10
These global functions create shape objects which you can draw using the
DrawShape method.

MakeLine 10

MakeLine(x1, y1, x2, y2)

Creates and returns the specified line shape.

x1 The x coordinate of the first point drawn.

y1 The y coordinate of the first point drawn.

x2 The x coordinate of the last point drawn.

y2 The y coordinate of the last point drawn.

MakeRect 10

MakeRect(left, top, right, bottom)

Creates and returns the specified rectangle shape.

left The x coordinate of the top-left corner of the rectangle.

top The y coordinate of the top-left corner of the rectangle.

right The x-coordinate of the bottom-right corner of the
rectangle’s enclosing rectangle.

bottom The y-coordinate of the bottom-right corner of the
rectangle’s enclosing rectangle.

Note

If a rectangle is drawn with four line calls, the bottom and
right sides of the rectangle will lie outside the bottom right
line coordinates by the amount of the pen width and
height. ◆

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-27

MakeRoundRect 10

MakeRoundRect(left, top, right, bottom, diameter)

Creates and returns a rounded rectangle shape (a rectangle having rounded
corners).

left The x coordinate of the top-left corner of the rectangle.

top The y coordinate of the top-left corner of the rectangle.

right The x-coordinate of the bottom-right corner of the
rounded rectangle’s enclosing rectangle.

bottom The y-coordinate of the bottom-right corner of the
rounded rectangle’s enclosing rectangle.

diameter The curvature of the rectangle’s corners, specified as if a
circle of the given diameter, in pixels, were placed in
each of the rectangle’s corners.

Note

If a rectangle is drawn with four line calls, the bottom and
right sides of the rectangle will lie outside the bottom right
line coordinates by the amount of the pen width and
height. ◆

MakeOval 10

MakeOval(left, top, right, bottom)

Creates and returns an oval shape. The oval is drawn to fit just inside the
specified rectangle. If you specify a rectangle that is square, this method
draws a circle.

left The x coordinate of the top-left corner of the oval’s
enclosing rectangle.

top The y coordinate of the top-left corner of the oval’s
enclosing rectangle.

right The x-coordinate of the bottom-right corner of the oval’s
enclosing rectangle.

C H A P T E R 1 0

Drawing and Graphics Reference

10-28 Functions and Methods

bottom The y-coordinate of the bottom-right corner of the oval’s
enclosing rectangle.

MakeWedge 10

MakeWedge(left, top, right, bottom, startAngle, arcAngle)

Draws an arc as a part of an oval that fits just within the specified rectangle.
If you draw the wedge with no fill, you see just the arc line. If you draw the
shape with a visible fill pattern, you see a solid wedge shape.

left The x coordinate of the top-left corner of the arc’s
enclosing rectangle.

top The y coordinate of the top-left corner of the arc’s
enclosing rectangle.

right The x coordinate of the bottom-right corner of the
wedge’s enclosing rectangle.

bottom The y coordinate of the bottom-right corner of the
wedge’s enclosing rectangle.

startAngle The angle at which the arc begins, in positive
(clockwise) or negative (counterclockwise) degree
values.

arcAngle The angle through which the arc extends, in positive
(clockwise) or negative (counterclockwise) degree
values.

The angles are given in positive or negative degrees; a positive angle goes
clockwise, while a negative angle goes counterclockwise. Zero degrees is at
12 o’clock high, 90 (or -270) is at 3 o’clock, 180 (or -180) is at 6 o’clock, and
270 (or -90) is at 9 o'clock. Other angles are measured relative to the enclosing
rectangle: a line from the center of the rectangle through its top-right corner
is 45 degrees, even if the rectangle isn’t square; a line through the
bottom-right corner is at 135 degrees, and so on.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-29

Figure 10-2 Angles for arcs and wedges

MakePolygon 10

MakePolygon(pointArray)

Creates and returns the specified polygon graphic object.

pointArray An array of x and y coordinate pairs specifying the
vertices of the polygon.

MakeShape 10

MakeShape(object)

Creates and returns a shape based on object. MakeShape may return a shape
that is smaller in size than what you would get if you did the equivalent
capture of a view into a bitmap with ViewIntoBitmap.

Object The following kinds of shapes are created, depending
on what kind of object is passed in object:

rectangle You can pass in a bounds frame
describing a rectangle. A bounds frame
has the following slots: left, top,
right, bottom. A rectangle shape is
created and returned.

points You can pass in the value stored in the
points slot in a view of class
clPolygonView. This is a binary data
structure that has a class of

C H A P T E R 1 0

Drawing and Graphics Reference

10-30 Functions and Methods

'polygonShape and contains data
describing a polygon shape.
A polygon shape is created and returned.

Note

This option is intended to create a shape from data you
retrieve from a clPolygonView. However, you can
manually create the points data structure by using the
ArrayToPoints routine. ◆

bitmap You can pass in a bitmap frame object. A
bitmap shape is created and returned. You
can use the compile-time function
GetPictAsBits to create a bitmap from
a PICT resource; for more information,
see Newton Toolkit User's Guide.

picture You can pass in a picture. A picture shape
is created and returned.

view You can pass in a view. A picture shape is
created and returned.

MakeRegion 10

MakeRegion(shapeArray)

Creates and returns a region of arbitrary size, shape, and complexity. You
define a region by defining its boundary with other shape-drawing
functions. The boundary can be any set of lines and shapes (even including
other regions) forming one or more closed loops. A region can be concave or
convex, can consist of one connected area or many separate areas.

shapeArray An array of shapes returned by any of the
shape-making functions described in this section.

MakePict 10

MakePict(shapeArray, styleFrame)

Creates and returns a picture shape that is made by recording a sequence of
drawing operations. This groups several drawn shapes into a single

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-31

graphical entity which is easier, smaller, and faster to use in subsequent
drawing operations than drawing each shape individually every time.

This function works exactly like the DrawShape method except that the
shapes are not drawn on the screen, but are instead drawn into a picture
shape object that is returned.

shapeArray An array of shapes to draw using the characteristics
specified in styleFrame. The shapes can be any of those
returned by the shape-creation functions, and the shape
array can include other style frames intermixed with the
shapes. If a style frame is included in the shape array, it
applies to all subsequent shapes in the array, until
overridden by another style frame.

styleFrame A frame having one or more of the slots “Style Frame”
(page 10-1). If this frame is nil, the default values are
used. If any single slot is not provided, the default value
for that slot is used.

MakeText 10

MakeText(string, left, top, right, bottom)

Creates and returns a text shape drawn within the specified rectangle. The
font used for the text is specified as the value of a slot in the style frame.
MakeText can create only one line of text at a time.

string The text string to be drawn.

left The x coordinate of the top-left corner of the text’s
enclosing rectangle.

top The y coordinate of the top-left corner of the text’s
enclosing rectangle.

right The x coordinate of the bottom-right corner of the text’s
enclosing rectangle.

bottom The y coordinate of the bottom-right corner of the text’s
enclosing rectangle.

C H A P T E R 1 0

Drawing and Graphics Reference

10-32 Functions and Methods

When drawn, the baseline of the text is placed at the bottom of the rectangle
you specify as an argument to the DrawShape method. The text is clipped
horizontally to the nearest letter boundary within the rectangle, but it is not
clipped vertically. The text is aligned to the left, right, or center of the
rectangle you specify, as controlled by the justification slot in the style
frame associated with the text shape.

MakeTextLines 10

MakeTextLines(string, bounds, lineheight, font)

Creates and returns a text shape drawn within the specified rectangle. The
text shapes are made and wrapped in relation to the dimensions of the
bounds frame specified by the value of the box parameter. Words are scanned
in until the end of a line is reached, as determined by the width of box. The
location of the next line is determined by the value of lineheight. Text shapes
are made until either the string terminates or the limits of the box are
reached. In the event that the first word on a line is longer than the width of
the box, a partial word is made on the line.

string The text string to be drawn.

bounds The dimension of the bounds frame.

lineheight The location of the next text line to be drawn, in pixels,
before the current line.

font The the font used to draw the text.

TextBox 10

TextBox(text, fontFrame, bounds)

Draws text on the screen without using shapes or creating a view for the
drawing. You generally use this call during a ViewDrawScript.

text The string to draw.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-33

fontFrame A frame contains both a font specification and,
optionally, a justification.

The format is:

{

font: <font-spec>,

justification: <justification>

}

font-spec can be a font frame or an integer
specification.

justification
a slot that is either:
['left|'center|'right]. If the slot is
not present or the slot is nil, it defaults to
'left.

 bounds The bounds frame in which to draw.

TextBox is used for single-font text or single-font text with ink; that is, you
can pass it a rich string. Multi-style text must be drawn differently, usually
with a clParagraphView.

Unlike MakeText, which can only be used for a single line of text TextBox
wraps the text within specified box. Also, unlike MakeText, it doesn't
consume frames heap space, because no shape object is created.

Note

The bounds are in local coordinates of the view that makes
the TextBox call. See the text sample code on this subject
for an example. ◆

Shape Operation Functions and Methods 10
These methods and global functions operate on shapes returned from the
shape-creation functions described in the previous section.

You also can do hit-testing on shapes using the HitShape method
(page 10-24).

C H A P T E R 1 0

Drawing and Graphics Reference

10-34 Functions and Methods

GetShapeInfo 10

GetShapeInfo(shape)

Returns a frame containing information about certain kinds of graphics
shapes.

shape Any of the shapes returned by the shape-creation
functions, or an array of such shapes intermixed with
optional style frames. If a style frame is included in the
shape array, it applies to all subsequent shapes in the
array, until overridden by another style frame.

For all shapes, the returned frame contains a bounds slot. For text shapes,
the returned frame additionally contains a text slot; modifying this string
does not affect the text shape. For bitmaps created using MakeBitmap, the
frame contains the following slots.

▲ W A R N I N G

Do not rely on GetShapeInfo or the following slots for
shape created by other applications, images stored in the
Newton ROM, images created with functions other than
MakeBitmap, or images with a depth other than 1. ▲

bits The binary object containing bitmap data. The bitmap
data can be manipulated at run time (or copied for
non-Newton use) using the other slots in the return
value of GetShapeInfo to interpret the bitmap binary
object: scanOffset, bitBounds, and rowBytes.

bitsBounds The size of the bitmap itself, expressed as the
boundaries of a rectangle having a (0,0) origin.

bounds The boundaries of the scaled and offset bitmap.

depth An integer expressing the number of bits per pixel.
Newton 2.0 OS currently supports only the value 1. See
MakeBitmap (page 10-19) for storage details.

resolution An integer specifying the resolution of the bitmap,
expressed in dots per inch. For example, the built-in fax

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-35

viewer application uses this slot to store the resolution
of the fax image.

rowBytes An integer specifying the number of bytes per
horizontal row in the bitmap image.

scanOffset An offset into the bits slots that specifies where
bitmap image data begins, expressed as the number of
bytes from the beginning of the bitmap.

store The store on which a virtual binary object’s soup
resides. The value of this slot is nil for shapes that are
in the NewtonScript heap. See “MakeBitmap”
(page 10-19) for storage details.

The following code example shows how the first bit of an image created with
MakeBitmap (with depth equal to 1) can be obtained:

 bitmapInfo := GetShapeInfo(theBitmap);

 firstByte := ExtractByte(bitmapInfo.bits, bitmapInfo.scanOffset);

 firstBit := firstByte >> 7; // 1 or 0, representing on or off.

Note that rowBytes will always be 32-bit aligned. For example, a bitmap
with depth equal to 1 with a bitBounds slot having a width of 33 pixels,
rowBytes will be 8 to indicate 8-byte offsets per horizontal line and 31 bits
of unused data at the end of every horizontal line.

DrawShape 10

view:DrawShape (shape, styleFrame)

Draws the specified shape (or shapes) in the view using the characteristics
specified in styleFrame.

shape Any of the shapes returned by the shape-creation
functions, or an array of such shapes intermixed with
optional style frames. If a style frame is included in the
shape array, it applies to all subsequent shapes in the
array, until overridden by another style frame.

C H A P T E R 1 0

Drawing and Graphics Reference

10-36 Functions and Methods

styleFrame A frame having one or more of the slots listed in “Style
Frame” (page 10-1). If this frame is nil, the default
values are used. If any single slot is not provided, the
default value for that slot is used.

Note that style frame values don’t apply to drawing shapes that are pictures;
they are drawn as is. When drawing bitmaps, only the transferMode slot
is used; the other slots in the style frame don’t apply.

OffsetShape 10

OffsetShape (shape, deltaH, deltaV)

Returns the shape with its bounds offset from the original bounds as
specified.

shape The shape to be offset.

deltaH The horizontal amount by which to offset the specified
shape from its original bounds.

deltaV The vertical amount by which to offset the specified
shape from its original bounds.

You can specify an array of shapes for shape in which case each shape in the
array will be offset. This function is destructive to the shape you pass it; that
is, it modifies and returns that shape.

ScaleShape 10

ScaleShape (shape, srcRect, dstRect)

Enlarges or reduces one or more shapes from the size specified by the
rectangle srcRect to the size specified by the rectangle dstRect and returns the
scaled shape(s). This function is destructive to the shape argument; that is, it
modifies and returns its value.

shape A shape or array of shapes to be scaled.

srcRect A view bounds frame defining a rectangle that encloses
the shape at its original size. The frame has the slots
left, top, right, bottom. If this frame is nil, the

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-37

shape’s original bounds are used as the source
rectangle, effectively scaling the shape from its current
size to the size of the destination rectangle.

dstRect A view bounds frame defining a rectangle that encloses
the shape at its modified size. The frame has the slots
left, top, right, bottom.

Note

If the widths and heights of the source and destination
rectangles are not proportionate, the returned shape is
distorted to fit exactly within the destination rectangle, even
if this means that the width and height of the shape are
scaled unequally. ◆

ShapeBounds 10

ShapeBounds (shape)

shape A shape or array of shapes.

Returns a bounds frame describing the rectangle that encloses the shape. The
bounds frame has the following slots: left, top, right, bottom. You can
specify an array of shapes for shape, and in this case, this function returns the
rectangle that encloses the entire group of shapes.

InvertRect 10

view:InvertRect(left, top, right, bottom)

Inverts the specified rectangle in the current view. It is important to send this
message to a particular view so that the inversion display can be clipped
properly.

left, top Defines the left-top corner of the rectangle, relative to
the local view.

right, bottom Defines the right-bottom corner of the rectangle, relative
to the local view.

C H A P T E R 1 0

Drawing and Graphics Reference

10-38 Functions and Methods

InsetRect 10

InsetRect(rect, deltax, deltay)

Shrinks or expands the rectangle you specify with the rect frame: the left and
right sides are moved in by the amount you specify in the deltax parameter;
the top and bottom are moved toward the center by the amount you specify
in the deltay parameter. If the value you pass in deltax or deltay is negative,
the appropriate pair of sides is moved outward instead of inward. The effect
is to alter the size by 2*deltax horizontally and 2*deltay vertically, with the
rectangle remaining centered in the same place in the coordinate pair.

aBounds The bounds of the rectangle to alter.

deltax The horizontal distance to move the left and right sides
in toward or outward from the center of the rectangle.

deltay The vertical distance to move the top and bottom sides
in toward or outward from the center of the rectangle.

IsPtInRect 10

IsPtInRect(x, y, bounds)

Checks to see if the point specified by x and y is in the bounds of the
rectangle. Returns non-nil if the point (x, y) is inside bounds. Otherwise, it
returns nil.

bounds The bounds of the rectangle to check.

x The horizontal distance to check.

y The vertical distance to check.

FitToBox 10

FitToBox(sourceBox, boundingBox, justify)

Makes a box fit into another box while maintaining the source box’s original
aspect ratio and justifying that resulting box to boundingBox’s original aspect
ratio, and justifying that resulting box to boundingBox according to the justify
parameter. The result is a bounds rectangle.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-39

sourceBox The bounds rectangle you’re trying to fit into
boundingBox.

boundingBox The area you have to display in, that is, the local box of
a view.

justify An integer encoded the same way as a viewJustify
slot.

The constants vjCenterH, vjLeftH, vjRightH, vjCenterV, vjTopV, and
vjBottomV are supported.

OffsetRect 10

OffsetRect(rect, deltaX, deltaY)

Returns a bounds frame that is rect moved to the right by deltaX and down
by deltaY.

rect The size of the rectangle and location where you want it
to appear.

deltaX How much to offset the horizontal coordinates in the
frame.

deltaY How much to offset the vertical coordinates in the frame.

SectRect 10

SectRect(rect1, rect2)

Returns a bounds frame that is the intersection of rect1 and rect2. For
example, if you pass rect1 and rect2, you get a result frame similar to {
left: 15, top: 25, right: 100, bottom: 50 }. If rect1 and rect2
do not intersect, an empty bounds frame is returned, for example:

rect1 := SetBounds(0, 0, 50, 50)

rect2 := SetBounds(100, 100, 150, 150)

sect := sectRect(rect1, rect2)

{left: 0, top: 0, right: 0, bottom: 0}

rect1 and rect2 The rectangles of which to find the intersection.

C H A P T E R 1 0

Drawing and Graphics Reference

10-40 Functions and Methods

UnionRect 10

UnionRect(rect1, rect2)

Returns a bounds frame that is determined by the smallest rectangle that
encloses both rect1 and rect2. If rect1 is nil, a bounds frame with the same
coordinates as rect2 is returned.

rect1 A bounds frame describing the first rectangle.

rect2 A bounds frame describing the second rectangle.

RectsOverlap 10

RectsOverlap(rect1, rect2)

Checks to see if there is an overlap between two specified rectangles. Returns
non-nil if the two rectangles overlap, otherwise it returns nil.

rect1 A bounds frame describing the first rectangle.

rect2 A bounds frame describing the second rectangle.

Utility Functions 10
This section describes additional drawing functions and methods.

DoDrawing 10

view:DoDrawing(drawMethodSym, parameters)

Ensures that any drawing done by the drawMethodSym method does not
overwrite other obscuring views (such as floating views that may be partially
obscuring the view in which this method draws). Using the DoDrawing
method is the preferred way to draw objects other than in a view’s
ViewDrawScript method.

DoDrawing sets the clipping according to the setting of the vClipping flag
for the specified view, invokes the view’s drawMethodSym method, and
restores clipping to what it was before the drawMethodSym method was
called. DoDrawing passes through the return value of the method called.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-41

drawMethodSym Quoted symbol specifying the method that performs
drawing operations; for example, to indicate use of the
DrawShape method, pass the symbol 'DrawShape as
the value of this parameter.

parameters An array of parameters to pass to the drawMethodSym
method. Set the value of this argument to nil if the
drawMethodSym method accepts no arguments.

Note

If the view’s vClipping flag is not set, drawing is not
clipped to the view’s bounds but to the view bounds of the
hierarchically closest parent view having its vClipping
flag set. ◆

CopyBits 10

view:CopyBits(picture, x, y, mode)

Draws a bitmap in the specified location in the view using the specified
transfer mode.

picture A reference to the bitmap object to be drawn. You can
use the compile-time function GetPictAsBits to
create a bitmap from a PICT resource; for more
information, see the Newton Toolkit User's Guide.

x The x coordinate of the top-left corner of the bitmap.

y The y coordinate of the top-left corner of the bitmap.

mode One of the standard drawing transfer modes:
modeCopy, modeOr, modeXor, modeBic,
modeNotCopy, modeNotOr, modeNotXor,
modeNotBic. If you pass nil for mode, the default,
modeCopy, is used. These constants are described in
“viewTransferMode Constants” (page 2-13).

C H A P T E R 1 0

Drawing and Graphics Reference

10-42 Functions and Methods

Note

CopyBits uses the bitmap’s bounds slot to scale the
bitmap. So, by changing the bounds of a bitmap (or more
likely, a clone of a bitmap), you can perform scaling. ◆

DrawXBitmap 10

DrawXBitmap(bounds,picture,index,mode)

Draws a bitmap extracted from the specified portion of a larger bitmap
composed of a horizontal row of equal width bitmaps.

bounds The size of the bitmap and the location in which it is to
be drawn in the current view.

picture A reference to the bitmap object to be drawn. You can
use the compile-time function GetPictAsBits to
create a bitmap from a PICT resource; for more
information, see Newton Toolkit User's Guide.

index The index in the bitmap resource of the particular
bitmap that is to be drawn.

mode One of the standard drawing transfer modes:
modeCopy, modeOr, modeXor, modeBic,
modeNotCopy, modeNotOr, modeNotXor,
modeNotBic. These constants are described in
“viewTransferMode Constants” (page 2-13).

The width of each row in the picture bitmap is assumed to be the width as
specified in the bounds parameter; thus, if you specify a width of 20 pixels
and an index of 2, the chunk of picture beginning at pixel 40 and extending
horizontally through pixel 59 will be extracted and drawn:

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-43

Figure 10-3 Row width of picture bitmap

IsPrimShape 10

IsPrimShape(shape)

Returns non-nil if the object passed in is a primitive shape (not an array of
shapes). Because a shape can have many different internal structures, this
procedure is the only way to reliably verify that an object is a shape. If the
object is not a shape, this function returns nil.

shape Any shape returned by one of the shape-creation
functions.

Note

This object fails on an array of shapes—it returns non-nil
only if the object is a single shape. ◆

LockScreen 10

view:LockScreen(lock)

Prevents the screen from updating, or reverses the effect of a previous call to
the LockScreen method.

lock A Boolean value; when set to true, the screen is locked
and no updates can occur. To unlock the screen, call the
LockScreen method again with lock set to nil.

Normally, all drawing occurs in off-screen memory and
the system periodically updates the screen bits from the
off-screen memory. This function prevents the copying

C H A P T E R 1 0

Drawing and Graphics Reference

10-44 Functions and Methods

of bits to update the screen. This allows you to make
drawing calls, or erase and redraw things without an
accompanying flicker if the screen happens to update
during your drawing sequence. When you finish
drawing, call LockScreen(nil) to unlock the screen.

Here’s how you would typically use LockScreen:

...

:LockScreen(TRUE);

:DoDrawing(myDrawFnSym, nil)

:LockScreen(nil);

...

Note

The system automatically calls LockScreen before sending
a view the ViewDrawScript message, and unlocks the
screen afterwards. Therefore, you don’t have to call
LockScreen in your ViewDrawScript method, but only
when you want to draw at some other time. ◆

PointsToArray 10

PointsToArray(polygonShape)

Converts the points data in a polygon shape between the binary data
structure in the shape view and an array. Returns an array defining the
polygon.

polygonShape A binary object of the class 'polygonShape (from the
points slot of a clPolygonView).

The first element in the returned array is an integer identifying the shape
type). The second element in the array is the number of points. Beginning
with the third array element, the remainder of the array consists of
coordinate pairs describing the points. The third element contains the x
coordinate of the first polygon point and the fourth element contains the y
coordinate, and so on. Coordinates are relative to the top-left corner (0, 0) of
the clPolygonView.

C H A P T E R 1 0

Drawing and Graphics Reference

Functions and Methods 10-45

Here is an example of an array returned from a rectangle shape:

[11, 5, 0, 0, 0, 29, 40, 29, 40, 0, 0, 0]

The first element, 11, describes the array as a rectangle; the second element,
5, indicates that there are five points in the shape; and the remaining
elements describe the five points—(0, 0), (0, 29), (29, 40), (40, 0), and (0, 0).

ArrayToPoints 10

ArrayToPoints(pointsArray)

Converts an array of points to a binary object of the class 'polygonShape
(as found in the points slot of a clPolygonView). The binary object is
returned. The shape type (element 1 of the array) can be either 4 for a closed
polygon (the ending point is the same as the starting point) and 5 if it is an
open polygon (different starting and ending points).

pointsArray An array of points in the same format as returned by
PointsToArray.

Sound Data Structures 11-1

C H A P T E R 1 1

Sound Reference 11

This chapter describes the data structures, the protoSoundChannel, ROM
sounds, and sound functions in Newton system software.

Sound Data Structures 11

Sound has two data structures: the sound frame and the sound result frame.
Each structure is described in the following sections.

Sound Frame 11
The sound frame defines a sound and contains one or more of the slots listed
here. If any single slot is not provided, its default value is used.

Slot descriptions

sndFrameType Specifies the format of this sound frame. Currently,
Newton sound frames always have the symbol
'simpleSound in this slot; future Newton devices may
store other values here. Required.

Figure 11-0
Table 11-0

C H A P T E R 1 1

Sound Reference

11-2 Sound Data Structures

samples A frame of class 'samples containing the binary
sound data. The sound data must have been sampled at
11 khz or 22 kHz. Required.

samplingRate A floating-point or integer value specifying the rate at
which to play back the sample data. The constants
kFloat11kRate and kFloat22kRate can be used to
specify standard rates of 11 kHz and 22 kHz,
respectively. If this slot is not provided, the default
value of 22 kHz is used.

compressionType
Currently, the value of this slot is always kNone,
indicating no compression.

dataType Integer. Size of samples in bits. Optional. If present, it
must be 1 (k8Bit). If missing, k8Bit is assumed.

start Integer. Index of first sample to begin play. Optional. If
missing, 0 is assumed.

count Integer. Number of samples to play. If missing,
Length(samples) / (dataType/8) is assumed.

loops Integer. Number of times to repeat the sound. For
example, setting loops to 3 means play the sound a total
of four times. Optional. If missing, 0 is assumed.

You can invoke the following method, which provides status information
about the sound that was played.

Callback 11

Callback(state, result)

Invoked when the sound frame completes.

state State is one of the following:

0 =kSoundCompleted

1 = kSoundAborted

2 = kSoundPaused

C H A P T E R 1 1

Sound Reference

Protos 11-3

result Result is an error code, if any.

Sound Result Frame 11
A sound result frame returns status information about a sound operation. It
has the following slots:

Slot descriptions

sound Reference to the soundFrame that was paused,
stopped, or completed.

index Index of the sample where the sound was paused or
stopped. This number will be between
soundFrame.start and (soundFrame.start +
soundFrame.count).

Protos 11

Sound uses one proto: protoSoundChannel.

protoSoundChannel 11
The protoSoundChannel object provides methods that implement pause,
playback, and callback of sounds. It also provides query methods that return
whether the sound is running or paused.

Open 11

soundChannel:Open()

Opens the sound channel. This method throws an|evt.ex.fr| exception if
an error occurs; otherwise, it returns nil.

C H A P T E R 1 1

Sound Reference

11-4 Protos

Close 11

soundChannel:Close()

Closes the sound channel. This method throws |evt.ex.fr| exception if
an error occurs; otherwise, it returns nil.

Note

You must call Close; because, the sound channel is not
disposed of in garbage collection. ◆

Schedule 11

soundChannel:Schedule(soundFrameRef)

Queues soundFrame for play. This method throws an |evt.ex.fr|
exception if an error occurs; otherwise, it returns nil. As each sound
completes, the sound channel sends the Callback message to the
soundFrame (if defined).

soundFrameRef The sound frame to be played. See “Sound Frame”
(page 11-1) for a list of slots and a description of the
Callback function.

Start 11

soundChannel:Start(async)

Starts the sound channel. The channel begins playing sound frames in the
order they were scheduled (see the previous description). This method
throws an|evt.ex.fr| exception if an error occurs; otherwise it returns
nil.

async A Boolean value of true or nil. If async is nil, the call
does not return until the entire play queue is empty (all
scheduled sounds have completed).

C H A P T E R 1 1

Sound Reference

Protos 11-5

Stop 11

soundChannel:Stop()

Stops the sound channel. The channel stops all scheduled sound frames,
including the currently playing one, if any. Throws an |evt.ex.fr|
exception if an error occurs. Returns a sound result frame (page 11-3)
indicating which sound frame was stopped, or nil if no sound was
currently playing. All scheduled sound frames complete (via the callback
function) with state 1 (kSoundAborted).

Pause 11

soundChannel:Pause()

Temporarily halts the current playback process in the specified sound
channel. If the sound channel is stopped when this message is sent, the
message starts the channel, pausing its operation at the beginning of the
sound data. If the sound channel is paused, the message resumes playback of
the sound.

IsPaused 11

soundChannel:IsPaused()

Returns true if the specified sound channel is paused; otherwise, returns
nil.

IsActive 11

soundChannel:IsActive()

Returns true if the channel is active (playing or paused); otherwise, returns
nil.

C H A P T E R 1 1

Sound Reference

11-6 Functions and Methods

Functions and Methods 11

The functions and methods described in this section play sounds, generate
telephone dialing tones, and allow you to get and set the playback volume.

Dial 11

Dial(numberString,where)

Dials the specified telephone number synchronously as a deferred action,
using the speaker or modem as specified. To dial asynchronously, use the
global RawDial (page 11-7) function.

This function always returns non-nil.

numberString A string specifying the number to dial. Acceptable
values for this string include only the digits 0-9, the
alphanumeric characters A-Z, and the special characters
*(asterisk), # (pound), - (dash) and, (comma). This
function maps alphabetic characters to the tones that a
standard telephone keypad generates for these
characters. The letters Q and Z, which are not present
on a standard telephone keypad, are mapped to the
digit 1. Note that the letters A - D do not generate the
specialized DTMF dialing tones used by some phone
systems; these letters are mapped to the tones that they
would produce on a standard telephone keypad. The
dash (-) character inserts a delay of 50 milliseconds
when dialing and the comma (,) character inserts a
delay of 500 milliseconds when dialing.

where A symbol, either 'speaker or 'modem specifying
whether to dial through the speaker or modem,
respectively.

For example:

GetRoot():Dial("555-1212", 'modem)

C H A P T E R 1 1

Sound Reference

Functions and Methods 11-7

GetVolume 11

GetVolume()

Returns the current volume setting for sounds. This is an integer from 0-4.

PlaySoundSync 11

PlaySoundSync(soundFrameRef)

Plays a sound defined by the specified sound frame. The sound is played
synchronously; that is, the Newton stops everything it’s doing, plays the
sound, and then this function returns. This function always returns true.

soundFrameRef The sound frame to be played. See “Sound Frame”
(page 11-1) for a list of slots.

Note

If you want to be notified when the sound completes, use the
sound channel interface instead. ◆

RawDial 11

RawDial(numberString, where)

Dials the specified telephone number asynchronously, using the speaker or
modem as specified.

This function always returns true.

numberString A string specifying the number to dial. Acceptable
values for this string include only the digits 0-9, the
alphanumeric characters A-Z, and the special characters
*(asterisk), # (pound), - (dash), and (comma). This
function maps alphabetic characters to the tones that a
standard telephone keypad generates for these
characters. The letters Q and Z, which are not present
on a standard telephone keypad, are mapped to the
digit 1. Note that the letters A - D do not generate the
specialized DTMF dialtones used by some phone
systems; these letters are mapped to the tones that they

C H A P T E R 1 1

Sound Reference

11-8 Functions and Methods

would produce on a standard telephone keypad. The
dash (-) character inserts a delay of 50 milliseconds
when dialing and the comma (,) character inserts a
delay of 500 milliseconds when dialing.

where A symbol, either 'speaker or 'modem, specifying
whether to dial through the speaker or modem,
respectively.

SetVolume 11

SetVolume(volume)

Sets the output level for all sounds. The default level is 4, which is the
highest volume level. This function always returns nil.

volume An integer value from 0 to 4, specifying the level at
which sound is to be played. The value 0 turns sound
output off completely and the value 4 specifies the
highest available sound output level.

PlaySoundAtVolume 11

PlaySoundAtVolume(soundFrameRef, volume)

Plays a sound defined by the specified sound frame. The sound is played
asynchronously; that is, this function returns immediately and the sound is
played as a background process. This function always returns true. The
sound sets the volume before playing and restores it when it is complete.

soundFrameRef The sound frame to be played. See “Sound Frame”
(page 11-1) for a list of slots.

volume An integer value from 0 to 4 specifying the level at
which sound is to be played. The value 0 turns sound
output off completely and the value 4 specifies the
highest available sound output level. If volume is nil,
the current sound volume is used.

C H A P T E R 1 1

Sound Reference

Functions and Methods 11-9

PlaySoundIrregardless 11

PlaySoundIrregardless(soundFrameRef)

Plays a sound, independent of the user sound preference settings (action and
pen sound effects). The sound is played asynchronously; that is, this function
returns immediately and the sound is played as a background process. This
function always returns true.

soundFrameRef The sound frame to be played. See “Sound Frame”
(page 11-1) for a list of slots.

PlaySoundIrregardlessAtVolume 11

PlaySoundIrregardlessAtVolume(soundFrameRef, volume)

Plays a sound at the specified volume, independent of the user sound
preference settings (action and pen sound effects), and restores the sound
when it completes. The sound is played asynchronously; that is, this function
returns immediately and the sound is played as a background process. This
function always returns true.

soundFrameRef The sound frame to be played. See “Sound Frame”
(page 11-1) for a list of slots.

volume The volume at which to play the sound.

PlaySoundEffect 11

PlaySoundEffect(soundFrameRef, volume, type)

Plays the sound at the specified volume, if user preferences allow the sound,
and restores the sound volume when it completes.

volume The volume at which to play the sound.

soundFrameRef The sound frame to be played. See “Sound Frame”
(page 11-1) for a list of slots.

type Can be one of 'pen, 'alarm, or 'action.

C H A P T E R 1 1

Sound Reference

11-10 Sound Resources

Clicker 11

Clicker()

Plays a different “click” sound each time you call it. Use this for pen sounds
instead of PlaySound.

Sound Resources 11

The system provides a number of sounds in ROM that are available to
accompany various events; these sounds are referenced by the following
constants.

Note

Don't rely on anything about these sound objects except
being able to play them. Sound characteristics such as
sampling rate and format, and the sounds themselves, will
change in future system versions. ◆

ROM_alarmWakeup
The sound played when the Newton powers on
automatically to display an alarm.

ROM_click The sound played when the user taps items such as
buttons and close boxes.

ROM_crumple The first sound played when deleting an item from the
Notepad; it accompanies an animated simulation of the
note being wadded into a ball.

ROM_drawerClose
The sound played as the Extras Drawer closes.

ROM_drawerOpen The sound played as the Extras Drawer opens.

ROM_flip The sound played when turning pages in a Book Maker
book.

ROM_funBeep The Trill sound in the user preferences Sound panel.

C H A P T E R 1 1

Sound Reference

Sound Resources 11-11

ROM_hiliteSound
The sound played to indicate to the user that the
Newton device is in highlight mode, rather than inking
mode. This sound plays when the user presses the
stylus against the screen continuously; it is
accompanied by the display of the highlighting mark.

ROM_plinkBeep The Xylo sound in the user preferences Sound panel.

ROM_simpleBeep The Bell sound in the user preferences Sound panel.

ROM_wakeupBeep The sound played when the Newton is powered on.

ROM_plunk The second sound played when deleting an item from
the Notepad; it depicts the sound of the crumpled note
hitting the Trash.

ROM_poof The sound played when an item is scrubbed; it
accompanies the animated cloud that depicts the item
“going up in smoke.”

12-1

C H A P T E R 1 2

Filing Reference 12

This section describes data structures, system prototypes, functions, and
methods your application can use to support the Filing service.

Target Information Frame 12
The frame returned by the GetTargetInfo method. The root view supplies
a default version of this method that returns frames used by the Filing and
Routing services. The built-in applications override this method to return
their own target information frames. You can override this method to return
your own information frame as well. In addition to any slots that you supply,
the frame your override method returns must contain the slots described
here.

Slot descriptions

target The data item that is the object of the operation in
progress; that is, the item to be filed, routed, or
otherwise manipulated. The default version of the
GetTargetInfo method retrieves this value from the
target slot in the view that receives this message,
using full proto and parent inheritance to find the slot.

Figure 12-0
Table 12-0

C H A P T E R 1 2

Filing Reference

12-2

targetView The view to which the Filing service sends messages; for
example, the view to which Filing sends the FileThis
message. For Routing, this is the view that contains the
target item. The default version of the GetTargetInfo
method retrieves this value from the targetView slot
in the view that receives this message, using full proto
and parent inheritance to find the slot.

targetStore The store selected when the Filing slip is opened. This
value must be the store on which the target entry
resides or nil. For Routing, this slot identifies the store
on which the target entry resides. The default version of
the GetTargetInfo method returns nil for this value.

Filing Protos 12
This section describes system-supplied button and folder tab prototypes that
you can use to implement filing support.

protoFilingButton 12

Used to create the filing button that appears on your application’s status bar
or title bar, as shown in Figure 12-1. This proto is used in conjunction with
the protoNewFolderTab or protoClockFolderTab system prototype to
implement filing for an application.

Figure 12-1 Two examples of filing button views

C H A P T E R 1 2

Filing Reference

12-3

When the user taps the filing button, the system displays a Filing slip similar
to the one shown in Figure 12-2. The Filing slip contains radio buttons that
the user can tap to specify the filing category with which the target is to be
associated. When appropriate, this slip can also display buttons that specify
the store on which a soup entry is to reside when it is filed. This slip also
contains buttons that allow the user to create new filing categories and edit
or delete existing categories. When the user taps the File button in this slip,
the system sends the FileThis message to your application’s target view.

Figure 12-2 The Filing slip

C H A P T E R 1 2

Filing Reference

12-4

IMPORTANT

Do not override the ViewClickScript method that the
protoFilingButton proto supplies; this method is for
system use only. Your filing button view can supply
a ButtonClickScript method instead of a
ViewClickScript method. Your filing button
view’s ButtonClickScript method must call the
inherited ButtonClickScript method that the
protoFilingButton proto supplies. ▲

The protoFilingButton uses the protoPictureButton as its proto.
The protoPictureButton proto is based on a view of the
clPictureView class.

Slot descriptions

viewBounds Set to the size and location where you want the filing
button to appear. If your application provides a status
bar or title bar, it is recommended that you put the filing
button on one or both of these bars.

viewJustify Optional. The default setting is vjCenterH +
vjCenterV + vjSiblingLeftH.

viewFormat Optional. The default setting is vfFillWhite +
vfFrameBlack + vfPen(2) + vfRound(4).

The Filing slip provides default versions of the ViewSetupFormScript,
ButtonClickScript, and Update methods. If you provide your own
version of one of these methods, be sure that it calls the inherited method;
otherwise, the Filing slip may not work correctly. To call the inherited
method only when it is defined, use the conditional message-send operator
(:?), as shown in the following code fragment:

inherited:?ViewSetupFormScript()

protoNewFolderTab 12

The protoNewFolderTab proto provides a folder tab view that displays an
optional text string, as shown in Figure 12-3. This proto is used with the
protoFilingButton proto to support the Filing service.

C H A P T E R 1 2

Filing Reference

12-5

The folder tab view is positioned at the top of your application’s base view.
You can supply an optional text string that is displayed at the left of the
folder tab; when the user taps this text, the folder tab view sends the
TitleClickScript message to the target view.

Figure 12-3 A protoNewFolderTab view with optional title text

When the user taps the folder tab, it displays a picker that includes all
currently available filing categories (folders) as well as the “Unfiled” and
“All Items” categories. Optionally, this picker may include items allowing the
user to specify the store on which displayed items must reside. A check mark
appears next to the currently selected filing category and store in this picker,
as shown in Figure 12-4.

C H A P T E R 1 2

Filing Reference

12-6

Figure 12-4 The picker displayed by a protoNewFolderTab view

The user can tap an item in the list to display a different filing category or
store. When the user chooses a filing category or store from the picker, the
system sends the NewFilingFilter message to your application, collapses
the picker, and updates the folder tab text to display the currently selected
filing category.

To include title text in a protoNewFolderTab view, create a child view that
is declared to the folder tab view and include in the child view a title slot
containing the string that is the optional text.

▲ W A R N I N G

Do not create a title slot in your folder tab view. Optional
title text must reside in the text slot of the title child
view provided by the protoNewFolderTab view. ▲

The protoNewFolderTab proto provides the following slots of interest to
developers:

Slot descriptions

viewBounds Optional. The default view bounds supplied by this
proto position it at the top of its parent. Do not set this
slot unless you need to change the normal positioning
of the protoNewFolderTab view.

C H A P T E R 1 2

Filing Reference

12-7

title Optional. Do not create this slot yourself; it holds the
child view that images an optional text string at the left
side of the protoNewFolderTab view.This view
contains a text slot that holds your optional title text
string. This view is declared to the folder tab view.
text Optional. The string that is your folder tab

view’s optional title text.

TitleClickScript 12

myFolderTabView:TitleClickScript

Optional application-defined method that is invoked when the user taps the
title text at the left of the folder tab. The default version of this method does
nothing.

myFolderTabView A view based on the protoNewFolderTab or
protoClockFolderTab system prototype.

ViewDrawScript 12

myFolderTabView:ViewDrawScript

For internal use. If you provide your own version of this method, make sure
it calls the inherited version; otherwise the folder tab view may not work as
expected.

myFolderTabView A view based on the protoNewFolderTab or
protoClockFolderTab system prototype.

protoClockFolderTab 12

The protoClockFolderTab proto provides a folder tab view that displays
the current time, as shown in Figure 12-5. This illustration also depicts the
built-in Clock application that is opened by this proto’s default
TitleClickScript method. This proto is used with the
protoFilingButton proto to support the Filing service.

C H A P T E R 1 2

Filing Reference

12-8

Figure 12-5 The protoClockFolderTab view

The folder tab view is positioned at the top of your application’s base view.
When the user taps the time displayed at the left of the folder tab, the folder
tab view sends the TitleClickScript message to the target view. The
default version of this method opens the built-in Clock application. You can

C H A P T E R 1 2

Filing Reference

12-9

override the TitleClickScript method to take other action in response to
this event. Do not attempt to replace the display of the current time in this
view; to provide your own text here, use a protoNewFolderTab view
(page 12-4) instead of a protoClockFolderTab view.

When the user taps the folder tab, it displays a picker that includes all
currently-available filing categories (folders) as well as the “Unfiled” and
“All Items” categories. Optionally, this picker may include items allowing the
user to specify the store on which displayed items must reside. A check mark
appears next to the currently selected filing category and store in this picker,
as shown in Figure 12-6.

Figure 12-6 Selecting a filing category and store in a protoClockFolderTab
view

The user can tap an item in the list to display a different filing category or
store. When the user chooses a filing category or store from the picker, the
system sends the NewFilingFilter message to your application, collapses
the picker, and updates the folder tab text to display the currently selected
filing category.

▲ W A R N I N G

Do not attempt to replace the title text that displays the
current time in protoClockFolderTab views. ▲

C H A P T E R 1 2

Filing Reference

12-10

The protoNewFolderTab proto provides the following slots of interest to
developers:

Slot descriptions

viewBounds Optional. The default view bounds supplied by this
proto position it at the top of its parent. Do not set this
slot unless you need to change the normal positioning
of the protoNewFolderTab view.

title Optional. Do not create this slot yourself. The child view
that images an optional text string to the left of the
folder tab child view. This view contains a text slot
that holds your optional title text string.
text Optional. The string that is your folder tab

view’s optional title text.

TitleClickScript 12

myFolderTabView:TitleClickScript

Optional application-defined method invoked when the user taps the time
displayed at the left of the folder tab. The default version of this method
opens the built-in Clock application.

myFolderTabView A view based on the protoNewFolderTab or
protoClockFolderTab system prototype.

ViewDrawScript 12

myFolderTabView:ViewDrawScript

For internal use. If you provide your own version of this method, make sure
it calls the inherited version; otherwise the folder tab view may not work as
expected.

myFolderTabView A view based on the protoNewFolderTab or
protoClockFolderTab system prototype.

C H A P T E R 1 2

Filing Reference

12-11

System-Supplied Filing Methods 12
This section describes the functions and methods you can use to provide
Filing features.

GetTargetInfo 12

view:GetTargetInfo(reason)

Returns a target information frame required by system services such as
Filing and Routing. The frame this method returns specifies the item that is
the object of the action (such as the item to file or route), the view to which
the system service sends messages (usually your application’s base view) or
which contains the target item and, when necessary, the store on which the
target item resides.

The default version of this method is provided by the root view; the built-in
applications override this method. You can override this method to provide
additional information in your target info frame or to define additional
values for the reason parameter. If you override this method, your override
method must call the inherited version of the GetTargetInfo method.

reason A symbol specifying the operation for which the target
information is required. The default method recognizes
the symbols 'filing and 'routing as valid values
for this parameter. This parameter is useful if you
override this method. It is provided as a hook for you to
implement special behavior depending on its value.

For descriptions of the slots in the target information frame that this method
returns, see the section “Target Information Frame” beginning on page 12-1.

When using this method for routing, it must return only a single target item.
If multiple items are selected for routing, you need to create a single object
that encapsulates them. You can use the function CreateTargetCursor
(page 18-24) to create a multiple-item target object that can be stored in a
soup. (Normal soup cursors can’t be stored in a soup.)

C H A P T E R 1 2

Filing Reference

12-12

MoveTarget 12

targetView:MoveTarget(target, destStore)

Moves or copies the specified target to the specified store. If the target is an
entry in a read-only soup, its data is copied rather than moved to the
destination soup; that is, the original entry is not deleted from the source
soup.

The default version of this method moves a soup entry to the same-named
soup on the specified store; it is used by the system-supplied filing service.
You can override this method to move data other than soup entries. Your
override method should call the default method supplied by the root view to
move soup entries.

target The target data to be moved. If this argument is not a
soup entry, the default MoveTarget method does
nothing; thus, your override method can call the default
MoveTarget method to handle soup entries.

destStore The store to which this method moves the target data,
expressed as an index into the stores array; for example,
GetStores()[0]; // the internal store

RegFolderChanged 12

RegFolderChanged(callbackID,callBackFn)

Registers a callback function to execute when the user adds, removes, or
edits a folder. The return value of this method is unspecified; do not rely on it.

callbackID Unique symbol identifying the callBackFn function to
the folder change mechanism. Because this symbol must
be unique among all symbols registered with the folder
change registry, your application’s appSymbol or some
variation on it is normally used as this parameter’s
value.

callBackFn A function object that is executed when a folder
changes. The function must be of the form
func(oldFolder,newFolder);

C H A P T E R 1 2

Filing Reference

12-13

Its parameters are

oldFolder A string that is the name of the folder that
changed.

newFolder A string that is the new name of the folder
specified by the oldFolder parameter. The
value of this parameter is nil if the
oldFolder folder was deleted.

The value returned by the callBackFn function is ignored.

UnRegFolderChanged 12

UnRegFolderChanged(callbackID)

Unregisters the specified callback function from the folder change
notification mechanism. The value returned by this function is unspecified.

callbackID A unique symbol identifying the closure to be
unregistered. This symbol was passed to the
RegFolderChanged function to register this callback
function with the folder change notification mechanism.
Normally, the value of this parameter is the application
symbol or some variation on it.

AddFolder 12

AddFolder(newFolderStr, appSymbol)

Creates a local folder having the specified name for the specified application,
transmits a folder change notification, and returns the tag that represents the
new folder. If a folder having the specified name already exists, this function
returns that folder’s tag without creating a new folder.

This function returns nil without creating a new folder when the addition
of another folder would exceed the number of unique folders allowed by the
system. Version 2.0 of the Newton operating system allows twelve global
folders system-wide and twelve local folders per application. Only the user
can create global folders; however, applications can use the AddFolder
function to create local folders.

C H A P T E R 1 2

Filing Reference

12-14

Note that the symbol this function returns may differ from the one that the
Intern global function would create from the newFolderStr string. In
particular, note that the AddFolder function accepts non-ASCII string
values, while the Intern function does not.

newFolderStr String displayed to the user as the name of the new
folder.

appSymbol Symbol of the application to which the new folder is
local.

RemoveFolder 12

RemoveFolder(folderSym, appSymbol)

Removes the specified folder from the specified application’s list of local
folders. Items formerly filed in the removed folder are marked as unfiled.
Such items may be viewed by selecting “All Items” or “Unfiled Items” from
the folder list displayed by a protoNewFolderTab or
protoClockFolderTab view.

The return value of this function is unspecified; do not rely on it.

folderSym Symbol identifying the folder to delete

appSymbol Symbol of the application to which the removed folder
is local.

GetFolderStr 12

GetFolderStr(folderSym)

Returns the user-visible string associated with the specified symbol. Returns
nil when passed a symbol not associated with a folder or a symbol that is
not found. Returns the string "Unfiled" when passed nil as its argument.

folderSym The symbol for which this function returns a folder
name string.

C H A P T E R 1 2

Filing Reference

12-15

RemoveAppFolders 12

RemoveAppFolders(appSym)

Removes all folders local to the specified application. Any folder used by an
application other than the specified application is untouched. Items filed in
the removed folders are subsequently considered unfiled; however, no
change notification message is broadcast because the change presumably
affects only the caller of this function. Unless your application uses global
folders only, you normally call this function from your application’s
DeletionScript method. (The DeletionScript method is invoked
when the application package is scrubbed from the Extras Drawer; for more
information, see the description of this method in Chapter 2, “Getting
Started,”in Newton Programmer�s Guide.)

GetFolderList 12

GetFolderList(appSymbol, localOnly)

Returns an array of symbols representing the folders available for use by the
specified application; the symbols are ordered according to an alphabetic sort
of the user-visible folder strings associated with them. The localOnly
parameter can be used to specify whether this function includes global
folders in its result.

appSymbol Symbol identifying the application for which this
function returns local folders.

localOnly Set to true to specify that this function not return the
symbols of global folders.

RenameFolder 12

RenameFolder(folderSym,newFolderStr)

Generates a new folder symbol from the specified string, associates this
string with the specified folder, and notifies applications of the change.
Returns the new folder symbol if successful; otherwise, returns the value
nil.

folderSym Symbol identifying the folder to rename.

C H A P T E R 1 2

Filing Reference

12-16

newFolderStr String specifying the folder’s new user-visible name.

Application-Defined Filing Methods 12
You must provide these methods to support the Filing service.

FileThis 12

targetView:FileThis(target, labelsChanged, newLabels, storesChanged,
newStore)

This developer-defined method must do everything required to file the
current data item. This message is sent to the view specified by the
GetTargetInfo method when an item is filed or moved to another store by
the Filing service.

target The item(s) to be filed, as specified by your application’s
GetTargetInfo method.

labelsChanged This value is non-nil when the target’s filing category
has changed. When the value of this parameter is nil,
the value of the newLabels parameter is undefined.

newLabels When the value of the labelsChanged parameter is
non-nil, this argument is the symbol that is the new
value of the target’s labels slot. When the value of the
labelsChanged parameter is nil, the value of the
newLabels parameter is undefined.

storesChanged This value is non-nil when the store specified for filing
the target has changed. When the value of this
parameter is nil, the value of the newStore parameter is
undefined.

newStore The new store only when the value of the storesChanged
parameter is non-nil; otherwise, this value is
undefined.

C H A P T E R 1 2

Filing Reference

12-17

IMPORTANT

If you support FileThis you are responsible for
performing all tasks necessary to file the entry. That is, you
must change the value of its labels slot and move the entry
to the new store as necessary. The Filing service does not
handle these changes for you. ▲

NewFilingFilter 12

targetView:NewFilingFilter(newFilterPath)

The system sends the NewFilingFilter message to the target view when
the user picks a new category of items in a folder tab. This
developer-supplied method must perform any actions necessary to display
items in the filing category specified by the labelsFilter and
storesFilter slots. Typically, this method queries the application’s soups
for items in the new filing category and then redraws views affected by the
change in the filing filter.

The value of the newFilterPath parameter specifies which of the
storesFilter or labelsFilter slots changed, but does not provide the
new value of the specified slot. Your implementation of this method must
test the value of the appropriate slot for use in the construction of a query
spec.

This method replaces the FilterChanged method. If the
NewFilingFilter method is defined, the FilterChanged message is not
sent at all. If the NewFilingFilter method is not defined, the
FilterChanged message is sent to the target view. The system uses proto
and parent inheritance to find your implementation of the
NewFilingFilter method.

newFilterPath The filter path that changed, as specified by either
the'storesChanged or 'labelsChanged symbol.

Finder Protos 13-1

C H A P T E R 1 3

Find Reference 13

This describes system prototypes (protos), functions, methods, and data
structures used by the Find service.

Finder Protos 13

The system supplies two finder protos on which to base your application’s
finders.

ROM_SoupFinder 13
System-supplied prototype that supports the enumeration of found items in
soup-based data. If your application stores its data in soups, base the finder
frame resulting from your search method on the ROM_SoupFinder proto.

Your finder frame, based on this proto, must contain the slots described in
this section. The slots in the frame returned by a date find are the same as
those in the returned finder frame for a text find. You can also add your own
slots to this frame; the Find service ignores them.

Figure 13-0
Table 13-0

C H A P T E R 1 3

Find Reference

13-2 Finder Protos

Slot description

owner Required. Set to a view that receives the
ShowFoundItem message (usually your application’s
base view).

cursor Required. The cursor returned by your search method’s
query.

title Required. A string that is your application’s user-visible
name. The system uses this string in the Find overview
to separate matches found in each application when
conducting global or selected finds. You can omit this
slot if the frame referenced by owner has a title slot.

findType Required. Specifies whether the search is for text or
date. The value of this slot is always one of these
symbols: 'text, 'dateBefore, 'dateOn, or
'dateAfter.

findWords Required. A n array of strings that specify the text to
match or the date to compare.

The following slot is used by the system:

selected An array of currently-selected items. The format of this
array is not documented. You may determine the
number of selected items in it by passing this array to
the Length function.

The following methods are defined in the ROM_SoupFinder proto.

Count 13

soupFinder:Count()

Returns an integer value representing the total number of found items.

Note

Do not override this method. ◆

C H A P T E R 1 3

Find Reference

Finder Protos 13-3

Delete 13

soupFinder:Delete()

Deletes all currently selected items from writeable stores.

If you override this method, items can still be deleted and the crumple effect
still occurs, even if your override method does not call the inherited method.

FileAndMove 13

soupFinder:FileAndMove(labelsChanged,newLabel,storeChanged,newStore)

Files and/or moves the selected items.

labelsChanged When this parameter is true, it signals that a new label
is being assigned.

newLabel The new value for the label slot when the
labelsChanged parameter has the value true. This value
is undefined when the value of the labelsChanged
parameter is not true.

storeChanged When true, a new store is being assigned.

newStore The new store when the storeChanged parameter has the
value true. This value is undefined when the value of
the storeChanged parameter is not true.

You can override this method to perform additional application-specific
tasks; however, it is suggested that your version of this method call the
inherited method to actually file or move items. Note that the FileAndMove
message may be sent when no items are selected; thus, your override method
must check whether any items are selected before doing any work.

C H A P T E R 1 3

Find Reference

13-4 Finder Protos

ForEachSelected 13

soupFinder:ForEachSelected(callbackFunction)

Calls the callback function with each of the currently selected items as a
parameter.

callbackFunction A function object you supply. This function must accept
one argument that is a soup entry, as in:

func(soupEntry) begin ... end;

Note

Do not override this method. ◆

GetTarget 13

soupFinder:GetTarget()

Returns a cursor for use by routing. You may override this method.

IsSelected 13

soupFinder:IsSelected(item)

Returns true if the specified item is selected in the Find overview.

item The found item to test.

Note

Do not override this method. ◆

Reset 13

soupFinder:Reset()
Resets a soup finder’s cursor to the first found entry. This method performs
none of the housekeeping tasks that the ReSync method does. In general,
you should use the ReSync method for resetting a soup finder.

Note

Do not override this method. ◆

C H A P T E R 1 3

Find Reference

Finder Protos 13-5

ReSync 13

soupFinder:ReSync()

Returns the finder to its initial state and resets the cursor to the first entry in
the set of found items. Generally, you should use this method to reset a soup
finder, rather than using the Reset method, which only resets the soup
finder’s cursor.

Call this method when disposing of the Find overview or when the user
changes items in the Find overview, to update and redisplay the overview.
For example, you need to call this method when moving or deleting an item
from the overview. You can also use this method to recover from errors
encountered when the attempt to display an item fails, such as when
advancing the cursor to an item returns nil or the 'deleted symbol.

Note

Do not override this method. ◆

SelectItem 13

soupFinder:SelectItem(item)

Marks the specified item as selected in the Find overview.

Your soup finder can replace this method with a slot containing the value
nil to suppress the display of checkboxes in the Find overview.

item The found item to mark as selected.

ShowFoundItem 13

soupFinder:ShowFoundItem(item, finder)

Displays the overview item passed to it as a parameter.

item An item returned as a result of a Find operation.

Þnder A frame that enumerates the items found via the Find
slip. Usually finder frames are based on the system
protos ROM_SoupFinder or ROM_CompatibleFinder.

C H A P T E R 1 3

Find Reference

13-6 Finder Protos

ShowEntry 13

soupFinder:ShowEntry(entry)

Causes the finding application to display the specified entry, opening the
application if necessary. This method does not close the Find overview.

entry The soup entry to display.

Note

Do not override this method. ◆

ShowOrdinalItem 13

soupFinder:ShowOrdinalItem(ordinal)

Shows an entry that is specified by an ordinal integer or symbol; it can be
used to scroll items in the Find overview. For example, to scroll to the next
item in the overview, you may increment or decrement the currentItem
index appropriately, call the appropriate cursor function to set the current
item to the new index, and then redisplay the overview.

ordinal One of the symbols 'first, 'prev, or 'next, or an
integer; it is used to call the appropriate cursor method
to retrieve the specified entry.

For more information on cursor methods see “Data Storage and Retrieval”
(page 11-1) in Newton Programmer�s Guide

ZeroOneOrMore 13

soupFinder:ZeroOneOrMore()

Returns 0 if no entries were found, 1 if one entry was found, or another
number if more than one entry was found.

Note

Do not override this method. ◆

C H A P T E R 1 3

Find Reference

Finder Protos 13-7

ROM_CompatibleFinder 13
This system-supplied prototype supports finder frames for data that is not
stored in soups. If your application stores its data in arrays, for instance, you
should base your result frame on the ROM_CompatibleFinder proto. The
finder frame resulting from your searches must contain the slots described
here. You can also add your own slots to this frame; the Find service ignores
them.

Slot description

owner Required. The view that receives the ShowFoundItem
message; usually your application’s base view.

title Required. A string that is your application’s user-visible
name. In the Find overview, this string groups items
returned by applications that participated in a global or
selected find. You can omit this slot if the frame
referenced by owner has a title slot.

findType Required. Specifies whether the search is for text or
date. The value of this slot is always one of the symbols
'text, 'dateBefore, 'dateOn, or 'dateAfter.

findWords Required. A n array of strings that specify the text to
match or the date to compare.

items Required. An array of found items returned by your
search method.

Each frame in the items array must contain these slots:

_proto Optional. However, it is recommended that you
reference the data item rather than using the data item
directly, because global searches alter the items frame
destructively. Referencing the application data frame
through the _proto slot ensures that the original data
remains intact.

title Required. The string that represents this item in the
Find overview.

C H A P T E R 1 3

Find Reference

13-8 Finder Protos

Your items frame should look like the following code sample, which depicts
the frame returned by a search that found two items, currently stored in an
array named foundItems:

items := [

{ // protect data by putting in proto chain

_proto:foundItems[0],

// string displayed in the Find overview

title:"First",

// create as many slots as needed for

// application-specific information

slotName: "some more data"
},

{_proto: foundItems[1],

 title: "Second",

 slotName: "some more data"
}

];

IMPORTANT

Global searches destructively alter the items frame. Because
your application’s Find method (the same one used for local
searches) is called by the system when the user requests a
global search, each element of your items array should use
a _proto slot to reference the data found in the search,
rather than accessing the data directly. ▲

The following slot is used by the system:

selected An array of currently-selected items. The format of this
array is not documented. You may determine the
number of selected items in it by passing this array to
the Length function.

C H A P T E R 1 3

Find Reference

Finder Protos 13-9

The following methods are defined in the ROM_CompatibleFinder proto.

ConvertToSoupEntry 13

compatibleFinder:ConvertToSoupEntry(item)

Returns a soup entry corresponding to the specified item from the found
items array.

item An element of the items array in the finder frame.

Count 13

compatibleFinder:Count()

Returns an integer value representing the total number of found items.

Delete 13

compatibleFinder:Delete()

Deletes all currently selected items from writeable stores.

You should override this method if your data is stored in anything other than
a single soup. If you do not want to override this method, you should
considering not allowing the checkbox to appear by your found items. This
is done by including a SelectItem slot set to nil in your finder frame.

If you override this method, items can still be deleted and the crumple effect
still happens, even if your override method does not call the inherited
method.

FileAndMove 13

compatibleFinder:FileAndMove(labelsChanged,newLabel,storeChanged,
newStore)

Files and/or moves the selected items.

You should override this method if your data is stored in anything other than
a single soup. If you do not want to override this method, you should
considering not allowing the checkbox to appear by your found items. This
is done by including a SelectItem slot set to nil in your finder frame.

C H A P T E R 1 3

Find Reference

13-10 Finder Protos

labelsChanged When this parameter is true, it signals that a new label
is being assigned.

newLabel The new value for the label slot when the
labelsChanged parameter has the value true. This value
is undefined when the value of the labelsChanged
parameter is not true.

storeChanged When true, a new store is being assigned.

newStore The new store when the storeChanged parameter has the
value true. This value is undefined when the value of
the storeChanged parameter is not true.

You can override this method to perform additional application-specific
tasks; however, it is suggested that your version of this method call the
inherited method to actually file or move items. Note that the FileAndMove
message may be sent when no items are selected; thus, your override method
must check whether any items are selected before doing any work.

ForEachSelected 13

compatibleFinder:ForEachSelected(callbackFunction)

Calls the callback function with each of the currently selected items as a
parameter. Note that for a compatible finder, you must override this method
since the callback function expects a soup entry as a parameter.

callbackFunction A function object you supply. This function must accept
one argument that is a soup entry.

GetTarget 13

compatibleFinder:GetTarget()

Returns a cursor for use by routing. You may override this method.

C H A P T E R 1 3

Find Reference

Finder Protos 13-11

IsSelected 13

compatibleFinder:IsSelected(item)

Returns true if the specified item is selected in the Find overview.

item The found item to test.

ReSync 13

compatibleFinder:ReSync()

Resets the finder to its initial state. Call this method when disposing of the
Find overview or when the user changes items in the Find overview, to
update and redisplay the overview. For example, you need to call this
method when moving or deleting an item from the overview.

SelectItem 13

compatibleFinder:SelectItem(item)

Marks the specified item as selected in the Find overview.

Your soup finder can replace this method with a slot containing the value
nil to suppress the display of checkboxes in the Find overview. If you store
your data in something other than a single soup, you must either disable the
checkbox or override the Routing methods in your finder.

item The found item to mark as selected.

ShowFakeEntry 13

compatibleFinder:ShowFakeEntry(index)

You should override this method to show the found item referenced by the
integer value index. This method should open your application and send it a
ShowFoundItem message.

index An integer index that references an item returned as a
result of a Find operation.

C H A P T E R 1 3

Find Reference

13-12 System Functions and Methods

System Functions and Methods 13

The following functions and methods are supplied by the system.

RegFindApps 13

RegFindApps(appSymbol)

Registers an application for Global finds; that is, after the RegFindApps
function executes, the Find service sends messages to the
GetRoot().(appSymbol) view.

appSymbol The application symbol for the application that you
want to register for global finds.

Note

To ensure your application’s compatibility with future
versions of Newton System Software, use this function to
register for global and selected finds. Applications running
on older Newton devices can use the kRegFindAppsFunc
function provided by NTK for this purpose. ◆

UnRegFindApps 13

UnRegFindApps(appSymbol)

Unregisters an application for global finds; that is, after the UnRegFindApps
function executes, the system no longer sends Find messages to the view
GetRoot().(appSymbol) when the user taps the All button in the Find slip.

appSymbol The application symbol for the application that you
want to unregister for global finds.

C H A P T E R 1 3

Find Reference

System Functions and Methods 13-13

Note

To ensure compatibility with future versions of Newton
System Software, use this function to unregister for Global
and Selected finds. Applications running on older Newton
devices can use the kUnregFindAppsFunc function
provided by NTK for this purpose. ◆

SetMessage 13

statusView:SetMessage(message);

Displays the message string in the Find Progress slip. The message string
should be similar to those displayed by the built-in applications, that is
"Searching in applicationName...".

statusView The Find Progress slip. A reference to this view is
passed to your search method in the statusView
parameter.

message The message string to display.

StandardFind 13

view:StandardFind(what,soupName,results,statusView,indexPath)

Uses a finder frame based on the ROM_SoupFinder proto to search for
strings beginning with the specified text. This method reports status to the
user and appends the finder frame resulting from the search to the
system-supplied results frame.

what The user-specified string for which this method is to
search your application’s data.

soupName A string that is the name of your application’s data
soup. StandardFind uses this name to call
GetUnionSoup for you.

results The system-generated results array, passed to the
StandardFind method by the system. The
StandardFind method appends the finder frame
resulting from your search to this array. The content of

C H A P T E R 1 3

Find Reference

13-14 Application-Defined Methods

your finder frame depends on the kind of finder proto
used. If a global find is in progress, the results array
may contain slots created by other applications’ search
methods.

statusView The frame to which the SetMessage message should
be sent to.

indexPath The index path used in the query that this method
makes against your application’s soup data. Pass nil
for this value if you don’t want to sort the entries in the
cursor on this value. For more information, see “Data
Storage and Retrieval” (page 11-1) in Newton
Programmer�s Guide.

You must call the GetUnionSoupAlways function, saving the result, before
calling StandardFind. The following example illustrates the use of this
method in an application’s Find method:

MyApplicationBase.Find :=

func(what, results, scope, statusView)

begin
local temp := GetUnionSoupAlways (kMySoupName);

:StandardFind(what, kMySoupName, results,
 statusView, nil);

end;

Application-Defined Methods 13

The following methods should be included in your application’s base view.
you must supply at least a ShowFoundItem and either Find or DateFind.
If you are using the ROM_SoupFinder you must also supply a
FindSoupExerpt method. If you wish to support targeted finds, you must
also supply an AppFindTargets and the targeted version of your search
method (FindTargeted or DateFindTargeted). Supply a CustomFind

C H A P T E R 1 3

Find Reference

Application-Defined Methods 13-15

method if you wish to override the system-supplied find slip when your
application is frontmost.

AppFindTargets 13

myAppBase.AppFindTargets()

Returns an array of frames of the form:

{name: "userVisibleText", target: thisDataForYourUse},

Each frame in this array represents an item that is displayed in the view
which allows the user to pick applications for a Selected find. The string in
the name slot is shown as thought it were an application, allowing your
application to search different data sets independently. The object in the
target slot is entirely for your use. This object will be passed to your
FindTargeted (or DateFindTargeted) method as a parameter.

DateFind 13

myAppBase.DateFind(findTime, compareHow, results, scope, statusView)

Appends a frame containing entries that meet the specified date comparison
criteria to the system supplied results array, which is passed in as the results
argument. If you wish to support text finds you must also supply a Find
method.

The return value of this method is ignored.

ÞndTime Specifies the date selected by the user. The date is
represented as an integer that is the number of minutes
passed since midnight, January 1, 1904.

compareHow Specifies whether the user chose to find items before,
on, or after the date specified by the value of the
findTime parameter. The value of the compareHow
parameter is always one of the symbols 'dateBefore,
'dateOn, or 'dateAfter.

results An array of frames passed to your DateFind method
by the system; your DateFind method appends a
finder frame to this array. The content of your finder

C H A P T E R 1 3

Find Reference

13-16 Application-Defined Methods

frame depends on the kind of finder proto used to
create the frame returned by your search method. If you
used the ROM_SoupFinder proto, the frame contains a
cursor. If you used the ROM_CompatibleFinder
proto, the frame contains an array of found items. If a
global find is in progress, the results array may contain
slots created by other applications’ search methods.

scope Either 'localFind or 'globalFind. The value of this
parameter indicates whether the search is local or
global, allowing you to handle these two cases
differently, if you prefer.

statusView A frame to which you send the message SetMessage.
The SetMessage method accepts as its sole argument a
string to display to the user while the search is in
progress.

DateFindTargeted 13

myAppBase.DateFindTargeted(findTime, compareHow, results, scope,
statusView, target)

Finds data in a particular data set, and appends a frame containing entries
that meet the specified date comparison criteria to the system supplied
results array, which is passed in as the results argument. The particular data
set to search is specified by the target parameter, which is the object your
AppFindTargets returned in the target slot. If you supply this method
you must define a DateFind method.

The return value of this method is ignored.

findTime Specifies the date selected by the user. The date is
represented as an integer that is the number of minutes
passed since midnight, January 1, 1904.

compareHow Specifies whether the user chose to find items before,
on, or after the date specified by the value of the
findTime parameter. The value of the compareHow

C H A P T E R 1 3

Find Reference

Application-Defined Methods 13-17

parameter is always one of the symbols 'dateBefore,
'dateOn, or 'dateAfter.

results An array of frames passed to your Find method by the
system; your Find method appends a finder frame to
this array. The content of your finder frame depends on
the kind of finder proto used to create the frame
returned by your search method. If you used the
ROM_SoupFinder proto, the frame contains a cursor. If
you used the ROM_CompatibleFinder proto, the
frame contains an array of found items. If a global find
is in progress, the results array may contain slots created
by other applications’ search methods.

scope Always the symbol 'globalFind.

statusView A frame to which you send the message SetMessage.
The SetMessage method accepts as its sole argument a
string to display to the user while the search is in
progress.

target The object your AppFindTargets returned in the
target slot.

Find 13

myAppBase.Find(what,results,scope,statusView)

Appends a frame containing instances of the specified string beginning to
the array passed in the results argument.

The system supplies the global function, StandardFind, that you can use to
implement your application’s Find method for soup-based text data. If you
want to support date finds, you must implement your application’s
DateFind method yourself.

C H A P T E R 1 3

Find Reference

13-18 Application-Defined Methods

The return value of this method is ignored.

what Contains the user-specified string for which to search
your application’s data.

results An array of frames passed to your Find method by the
system; your Find method appends a finder frame to
this array. The content of your finder frame depends on
the kind of finder proto used to create the frame
returned by your search method. If you used the
ROM_SoupFinder proto, the frame contains a cursor. If
you used the ROM_CompatibleFinder proto, the
frame contains an array of found items. If a global find
is in progress, the results array may contain slots created
by other applications’ search methods.

scope Either 'localFind or 'globalFind. The value of this
parameter indicates whether the search is local or
global, allowing you to handle these two cases
differently, if you prefer.

statusView A frame to which you send the message SetMessage.
The SetMessage method accepts as its sole argument a
string to display to the user while the search is in
progress.

FindTargeted 13

myAppBase.FindTargeted(what, results, scope, statusView, target)

Finds text data in a particular data set, and appends a frame containing
entries that meet the specified date comparison criteria to the system
supplied results array, which is passed in as the results argument. The
particular data set to search is specified by the target parameter, which is the
object your AppFindTargets returned in the target slot. If you supply
this method you must define a Find method.

C H A P T E R 1 3

Find Reference

Application-Defined Methods 13-19

The return value of this method is ignored.

what Contains the user-specified string for which this method
is to search your application’s data.

results An array of frames passed to your Find method by the
system; your Find method appends a finder frame to
this array. The content of your finder frame depends on
the kind of finder proto used to create the frame
returned by your search method. If you used the
ROM_SoupFinder proto, the frame contains a cursor. If
you used the ROM_CompatibleFinder proto, the
frame contains an array of found items. If a global find
is in progress, the results array may contain slots created
by other applications’ search methods.

scope Always the symbol 'globalFind.

statusView A frame to which you send the message SetMessage.
The SetMessage method accepts as its sole argument a
string to display to the user while the search is in
progress.

target The object your AppFindTargets returned in the
target slot.

FindSoupExcerpt 13

ownerView.FindSoupExcerpt(entry,finderFrame) // for
ROM_SoupFinder

Extracts the name of a specified item from the result frame and returns it as a
string. The system displays this string to identify the item in the Find
overview. If no items are found, the FindSoupExcerpt message is not sent.

ownerView The view specified by the owner slot in the result frame
returned by the search method, usually your
application’s base view. For more information, see the

C H A P T E R 1 3

Find Reference

13-20 Application-Defined Methods

section “Returning Search Results” (page 16-21) in
Newton Programmer�s Guide.

entry Soup entry whose title is needed.

finderFrame The finder frame your application added to the system’s
results array.

ShowFoundItem 13

ownerView.ShowFoundItem(foundItem,finderFrame)

Locates the specified item in your application’s data and displays it,
performing any scrolling or highlighting that is appropriate. A typical
ShowFoundItem method may need to do the following:

■ open a view appropriate for displaying the target

■ set the cursor or the target slot to reference the target

■ scroll the contents of the display view to make the target visible

■ highlight the target in the display view

ownerView The view specified by the owner slot in the result frame
returned by the search method, usually your
application’s base view. For more information, see the
section “Returning Search Results” (page 16-21) in
Newton Programmer�s Guide.

foundItem Found item to display. This is a soup entry if using
ROM_SoupFinder, and an element of the items array
if using ROM_CompatibleFinder.

finderFrame Finder frame your application added to the system’s
results array.

CustomFind 13

myAppBase.CustomFind()

Application-defined method that opens your own customized Find slip and
does anything else required to implement a customized search and display
its results.

Undo Reference 14-1

C H A P T E R 1 4

System Services Reference 14

This chapter describes functions, methods, and data structures that support
the system services described in Chapter 17, “Additional System Services,”
in Newton Programmer�s Guide. Items are grouped according to the system
service they support; for example, all functions, methods, and data structures
pertaining to the Undo service are described in the “Undo Reference” section.

Undo Reference 14

This section describes functions and methods your application can use to
provide Undo/Redo behavior.

AddUndoCall 14

AddUndoCall(callBackFn, argArray)

Registers a function object to be called unconditionally when the user taps
Undo. The return value of this function is unspecified—do not rely on it.

Figure 14-0
Table 14-0

C H A P T E R 1 4

System Services Reference

14-2 Undo Reference

callBackFn A function object that performs the undo operation of
the form:

func (args)

begin

//do something

end;

argArray Array of arguments to pass to the function object
specified by the function parameter.

AddUndoSend 14

AddUndoSend(receiver, message, argArray)

Registers a message and arguments to be sent to a specified receiver
unconditionally when the user taps Undo. The return value of this function
is unspecified—do not rely on it.

receiver Frame to which the specified message is sent.

message Symbol that is the message to send.

argArray Array of arguments to pass with the message.

AddUndoAction 14

view:AddUndoAction(methodName, argArray)

Registers an undo action for the specified view with the system.

view View for which this method is registering an undo
action.

methodName A symbol (it must be preceded by a single quotation
mark) that is the name of the method to be called when
the user taps the Undo button. This method must
always return true.

argArray An array of parameters to be passed to the method
specified by the methodName parameter.

C H A P T E R 1 4

System Services Reference

Idler Reference 14-3

ClearUndoStacks 14

ClearUndoStacks()

Removes all pending undo actions from the system, including those destined
for other applications; use this function sparingly and cautiously. It is
recommended that applications call this method from their
ViewQuitScript method, but only if they have previously called the
AddUndoAction function.

IMPORTANT

Do not call this function from the application’s
RemoveScript function. ▲

Idler Reference 14

This section describes functions and methods you can use to perform
periodic tasks.

SetupIdle 14

view:SetupIdle(milliseconds)

Installs or changes an idler object for the specified view. (An idler object calls
the specified view’s ViewIdleScript method periodically.) The
SetupIdle method always returns nil.

view The view to which an idler object is to be installed.

milliseconds The number of milliseconds to wait before calling the
ViewIdleScript method for the first time. After the
first time, the view’s ViewIdleScript method returns
an integer which is the delay until this method is next
called. This number should be no less than 100.

You can call the SetupIdle method at any time to reset the idle time
immediately.

C H A P T E R 1 4

System Services Reference

14-4 Alerts and Alarms Reference

To remove the idler object, call this method again, passing 0 as the value of
the milliseconds parameter. You can also remove the idler by returning nil
from the view’s ViewIdleScript method. The idler object is removed in
any case when the view is closed.

Note

When you install an idler for a view, the time the
ViewIdleScript message is sent next is not guaranteed to
be the exact interval you specify. This is because the idler
may be delayed if a method is executing when the interval
expires. The ViewIdleScript message cannot be sent until
an executing method returns. ◆

Note

The clParagraphView class internally uses the idle event
mechanism to implement some of its features.
Unfortunately, any ViewIdleScript methods provided by
developers also execute when the system idle events are
processed. Only the “heavyweight” views do this,
“lightweight” paragraph views (in other words, simple static
text views) do not.

There is no workaround available in the Newton 1.x OS or
Newton 2.0 OS. You can either accept the extra idle script
calls, or use some other non-clParagraphView based view
to implement your idle functions. ◆

Alerts and Alarms Reference 14

This section describes the alert and alarm functions, and the proto used to
edit periodic alarms.

C H A P T E R 1 4

System Services Reference

Alerts and Alarms Reference 14-5

Alerts and Alarms Proto 14
This section describes the proto used to edit periodic alarms.

protoPeriodicAlarmEditor 14

Provides a view used to schedule periodic (repeating) alarms. You must use
this proto to allow your application’s user to set the periodic alarms.

Slot descriptions

title A string displayed at the top of the view.
ownerSymbol Your application symbol. The alarm messages are sent

to this frame.
ownerApp A string that is your application’s name shown in the

user interface.
viewBounds The bounds frame for the view. Do not change the size

of the view from what is defined in ROM, though
different ROMs may have different viewBounds
defined. You may change its position on the screen
while leaving the size constant. Use LocalBox to check
the size of the proto.

IMPORTANT

Do not add child views to any views which proto from
protoPeriodicAlarmEditor. ▲

The following application-defined methods must be included in your
application’s base view: AlarmsEnabled and PeriodicAlarm. They are
described in the following subsections.

AlarmsEnabled 14

myApp:AlarmsEnabled()

Return true if the PeriodicAlarm message should be sent, nil otherwise.
If the alarms are not a feature that can be disabled, you may define this
method simply as

func() true;

C H A P T E R 1 4

System Services Reference

14-6 Alerts and Alarms Reference

PeriodicAlarm 14

myApp:PeriodicAlarm(alarm)

The method that implements a periodic alarm. This method is invoked when
the alarm executes.

alarm A frame with information about the alarm, containing
the following slots:

Slot descriptions

owner The symbol in the ownerSymbol slot of
the protoPeriodicAlarmEditor that
set this periodic alarm.

ownerName The string in the ownerApp slot of the
protoPeriodicAlarmEditor that set
this periodic alarm.

time The time this alarm executed expressed in
the number of minutes since midnight,
January 1, 1904.

hours An integer expressing the hour at which
this alarm executed. This number is an
integer in the range 0...23.

minutes An integer expressing the minute at
which this alarm executed. This number is
an integer in the range 0...59.

name A string (displayed in the view created
from protoPeriodicAlarmEditor)
representing the times the alarm is to go
execute. The format of this string is:
hours:minutes am|pm and a designation
for the days on which the alarm is set.
This day designator can be the strings
"Everyday", "Weekdays", or
"Weekends" if these labels apply;
otherwise it is either the first three letters
of the unique day for which it is set, or the
first letter of each of the multiple days for
which it’s set.

C H A P T E R 1 4

System Services Reference

Alerts and Alarms Reference 14-7

Note

This frame may contain additional slots. Do not rely on
the value of any undocumented slots. ◆

Alerts and Alarm Functions 14
This section describes in detail the alarm and notification functions.

Notify 14

view:Notify(level, headerStr, messageStr)

Uses the system notification facility to display a message or otherwise notify
the user.

level Specifies the notification level to use; it can be one of the
following constants:

kNotifyLog
The notice is only entered into the
notification log; the user is not alerted.

kNotifyMessage
The user is alerted by blinking the notify
icon that a message is pending. Tapping
the icon causes pending messages to be
displayed in an alert view.

kNotifyAlert
The notice is immediately displayed to
the user in an alert view and the system
beep is played.

kNotifyQAlert
The notice is immediately displayed to
the user in an alert view.

headerStr A string displayed as a title on the notification slip.
Usually this is the name of your application or a major
component of it.

messageStr A string that is the message to the user.

C H A P T E R 1 4

System Services Reference

14-8 Alerts and Alarms Reference

AddAlarm 14

AddAlarm(alarmKey,timeSpec,argsArray,cbFn,cbParms)

Registers an alarm to execute at a specified time and returns its alarm key.
When the alarm executes, it wakes the Newton if necessary, and displays a
specified notification message. You can take additional action by specifying a
callback function and its arguments.

alarmKey A string that uniquely identifies the alarm; only the first
24 characters of an alarm key are significant. Use your
developer signature or application symbol as a suffix to
ensure the uniqueness of this string; for example,
"wakeUp2:llamaApp:NewtDTS" specifies the
wakeUp2 alarm set by the llamaApp application from
the developer NewtDTS. If an alarm having the
specified key already exists, this function removes it and
replaces it with the new alarm.

timeSpec The time the alarm is to execute, specified as either an
integer or a date frame. If specified as an integer, the
value represents the alarm time in minutes since
midnight, January 1, 1904 (similar to the encoding of the
value returned by the Time function). To specify as a
date frame, use the value returned by the Date global
function.

argsArray An array of either two or three arguments passed to the
function that actually displays the notification slip to the
user. Two-element arrays [title,message] are passed to
the AlarmUser function when the alarm goes off. See
the description of the AlarmUser function for details.
Three-element arrays [level, title,message] are passed
to the Notify function. See the description of the
Notify function for details.

If the value of argsArray is nil, the alarm does not call
the Notify or AlarmUser functions when it executes.

C H A P T E R 1 4

System Services Reference

Alerts and Alarms Reference 14-9

cbFn A function object to be executed when your alarm goes
off. Passing nil as the value of this argument specifies
that no function object is to be executed.

cbParms Arguments to be passed to cbFn. Pass nil for this
argument if no callback function is being used. If you
have a callback function that takes no arguments, pass
in the empty array, [], for this parameter.

AddAlarmInSeconds 14

AddAlarmInSeconds(alarmKey,timeSpec,argsArray,cbFn,cbParms)

Registers an alarm to execute at a specified time and returns its alarm key.
This function is the same as the AddAlarm function except that it allows you
to specify the alarm’s execution time more precisely. See the description of
the AddAlarm function for additional information.

alarmKey A string that uniquely identifies the alarm; only the first
24 characters of an alarm key are significant. Use your
developer signature or application symbol as a suffix to
ensure the uniqueness of this string; for example,
"wakeUp2:llamaApp:NewtDTS" specifies the
wakeUp2 alarm set by the llamaApp application from
the developer NewtDTS. If an alarm having the
specified key already exists, this function removes it and
replaces it with the new alarm.

timeSpec The time the alarm is to execute, specified as either an
integer or a date frame. If specified as an integer, the
value represents the alarm time in seconds since
midnight, January 1, 1993 (similar to the encoding of the
value returned by the TimeInSeconds function). To
specify this value as a date frame, use the value
returned by the Date global function.

argsArray An array of either two or three arguments passed to the
function that actually displays the notification slip to the
user. Two-element arrays [title,message] are passed to

C H A P T E R 1 4

System Services Reference

14-10 Alerts and Alarms Reference

the AlarmUser function when the alarm goes off. See
the description of the AlarmUser function for details.
Three-element arrays [level, title,message] are passed
to the Notify function. See the description of the
Notify function for details.

If the value of argsArray is nil, the alarm does not call
the Notify or AlarmUser functions when it executes.

cbFn A function object to be executed when your alarm goes
off. Passing nil as the value of this argument specifies
that no function object is to be executed.

cbParms Arguments to be passed to cbFn. Pass nil for this
argument if no callback function is being used. If you
have a callback function that takes no arguments, pass
in the empty array, [], for this parameter.

AlarmUser 14

AlarmUser(title, message)

Plays an alarm sound and displays a notification slip with a snooze button;
this notification slip is illustrated in Figure 17-2 in Newton Programmer�s Guide.

Normally, the AlarmUser function is called by the AddAlarm function
rather than the application. The AlarmUser function respects the user’s
settings for the alarm sound and volume when executing the alarm. The
return value of this function is unspecified; do not rely on it.

title The string that is the title of the notification slip this
function displays.

message The string that is the body text of the notification slip
this function displays.

RemoveAlarm 14

RemoveAlarm(alarmKey)

Unschedules an alarm that has not yet executed. This function returns nil if
it is unable to find an alarm having the specified key. If the alarm is found

C H A P T E R 1 4

System Services Reference

Alerts and Alarms Reference 14-11

and removed, this function returns an unspecified non-nil value. If you
want your application’s alarms to execute only when your application is
installed, you need to call this function in your application’s RemoveScript
function.

alarmKey A string that uniquely identifies the alarm; it is passed
to the AddAlarm function when the alarm is created.
See the description of the AddAlarm function for more
information.

GetAlarm 14

GetAlarm(alarmKey)

Returns a frame containing information about the alarm associated with the
specified key; this frame and its contents must not be modified.

IMPORTANT

Do not modify the frame this function returns. ▲

alarmKey A string that uniquely identifies the alarm; it is passed
to the AddAlarm function when the alarm is created.
See the description of the AddAlarm function for more
information.

The alarm frame returned by this function contains the slots described
immediately following; do not rely on the values of any other
(undocumented) slots that you may find in this frame.

key The alarm key. For more information, see the
description of the AddAlarm function.

time The time at which the alarm is to execute, expressed as
the number of minutes since midnight, January 1, 1904.

notifyArgs Array of arguments to be passed to the Notify or
AddAlarm functions when this alarm executes.

callBackFn Function object specifying a callback function to be
executed with this alarm (or nil).

callBackParams Array of arguments to this alarm’s callback function (or
nil).

C H A P T E R 1 4

System Services Reference

14-12 Progress-Reporting Reference

GetAppAlarmKeys 14

GetAppAlarmKeys(alarmKeySuffix)

Returns an array of all alarm key strings having the specified suffix; if the
alarm keys are implemented according to Newton DTS recommendations,
this array contains all alarm keys associated with the application using the
specified suffix. The returned keys are sorted in execution order, with the key
representing the first alarm to execute occupying the first position in the
array.

alarmKeySuffix A string used as the suffix in all alarm keys created by a
particular application; for example
":AlarmSample1:NewtDTS" .

RemoveAppAlarms 14

RemoveAppAlarms(alarmKeySuffix)

Removes all alarms having key strings ending in the specified suffix; if the
alarm keys are implemented according to Newton DTS recommendations,
this function can be used to remove all alarms created by a particular
application. This function returns an integer value specifying the number of
alarms it removed. If your application’s alarms can’t execute meaningfully
when the application is not installed, you need to remove them by calling
this function from the application’s RemoveScript function.

alarmKeySuffix A string used as a suffix in all alarm keys created by a
particular application; for example
":AlarmSample1:NewtDTS".

Progress-Reporting Reference 14

This section describes the protos and methods used for progress reporting.

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-13

Progress-Reporting Proto 14
This section describes the protoStatusTemplate.

protoStatusTemplate 14

The protoStatusTemplate is a configurable status view used to report
the progress of lengthy operations to the user. You can use this proto to
create views containing animated graphical elements and status messages
similar to those used by the built-in applications and the system itself.

Note

Many applications can use the DoProgress function to report
progress to the user. The DoProgress function handles much
of the work that you must take care of yourself if creating your
own protoStatusTemplate view. For a list of criteria to use
in making this decision, see “Using DoProgress or Creating
Your Own protoStatusTemplate” beginning on page 17-18 in
Newton Programmer�s Guide. ◆

The protoStatusTemplate view is a container view based on
protoFloater that itself supplies a protoStatusIcon view and a
protoStatusCloseBox view as its view children. The system supplies
several special child protos to add graphical elements to this basic container
view, which declares itself as the base of this view hierarchy. These child
protos are described in the section “Status View Components,” immediately
following.

The protoStatusTemplate view provides two methods, ViewSet and
UpdateIndicator, that you can use to initialize or update the set of child
views displayed by a protoStatusTemplate view.

Slot description

initialSetup A frame specifying initial values for configuring the
status slip and its components. For a complete
description this frame, see the description of the
ViewSet method.

C H A P T E R 1 4

System Services Reference

14-14 Progress-Reporting Reference

The following subsections discuss the status view components, the built-in
status view configurations, and the following methods: ViewSet,
UpdateIndicator, and CancelRequest.

Status View Components 14

Figure 14-1 illustrates the system-supplied protos used to add view
components to a protoStatusTemplate slip.

Figure 14-1 Status view components

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-15

Figure 14-1 Status view components (continued)

Table 14-1 names the slot each component checks to update its screen
display. To update a particular view, include the slot specified in the “Name
of slot” column in the values slot of the setup argument to the ViewSet or
UpdateIndicator methods.

Table 14-1 Status view components

Proto Name of slot Description

protoStatusIcon icon An icon.

protoStatusText statusText Text.

protoTitleText titleText Text.

protoStatusProgress progress A thumbnail gauge.

protoStatusGauge gauge A horizontal gauge.

C H A P T E R 1 4

System Services Reference

14-16 Progress-Reporting Reference

The values you supply for the slots specified by Table 14-1 must follow the
rules described here for each proto:

protoStatusIcon
The value in the icon slot must be a bitmap frame, as
returned from GetPictAsBits function. Save this
value in the icon slot of your values frame.

protoStatusText
The value in the statusText slot must be a string.
Save this value in the statusText slot of your values
frame.

protoTitleText
The value in the titleText slot must be a string. Save
this value in the titleText slot of your values frame.

protoStatusProgress
The value in the progress slot must be either a single
integer (for example, 50) that reflects the current value
of the gauge, or an array of integers giving the current
value, minimum and maximum (for example, [50, 0,
100]). By default, the minimum value is 0 and the
maximum value is 100. Save this value in the progress
slot of your values frame.

protoStatusButton primary (in a
vConfirm view
this may be
secondary)

A button.

protoStatusCloseBox closeBox A close box.

protoStatusBarber barber A horizontal animated
barber pole.

Table 14-1 Status view components (continued)

Proto Name of slot Description

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-17

protoStatusGauge
The value in the gauge slot must be either a single
integer (for example, 50) that reflects the current value
of the gauge, or an array of integers giving the current
value, minimum and maximum (for example, [50, 0,
100]). By default, the minimum value is 0 and the
maximum value is 100. Save this value in the gauge slot
of your values frame.

protoStatusBarber
Always set the value of the barber slot to true.

protoStatusButton
The value in the primary slot must be a frame with a
required text slot (the button’s text) and an optional
script slot (the button’s ButtonClickScript
method). If only the text slot is included, the default
ButtonClickScript method calls the status slips, or
the application’s base view’s CancelRequest method.

If you specify nil, or if you specify a frame and its
text slot is nil, the button is not drawn.

Also, if you include a ShiftItem method that returns
another view, the button “adjusts” its view if the view
returned by ShiftItem is not visible.

Save this value in the primary slot of your values
frame, or in the secondary slot in vConfirm view.

protoStatusCloseBox
The value in the closeBox slot must be either nil or
the close box’s ButtonClickScript method. If nil,
then the close box is not drawn. Note that the default
behavior is base:Close. Your ButtonClickScript
should hide the view and add an action to the notify
icon to reopen the status view. This way the user is still
made aware that the operation is in progress, and can
reopen the status view to cancel the operation.

C H A P T E R 1 4

System Services Reference

14-18 Progress-Reporting Reference

For more information, see the sections “Notify Icon”
beginning on page 17-5 and “Using the Notify Icon”
beginning on page 17-15, both in the Newton
Programmer�s Guide.

Save this value in the closeBox slot of your values
frame.

IMPORTANT

The templates of each component view have viewBounds
and viewJustify slots defined. Many of these templates
use sibling justification. This can cause views to be drawn
improperly if they are defined in a particular order within
the kids array of the status template. This is because the
sibling order is determined by the position of these
component views within this kids array.

You may override the viewBounds and viewJustify slots
of any component view as necessary, however. Table 14-2
lists the internally defined viewBounds and viewJustify
slots for each component view template. ▲

Table 14-2 Internally defined viewBounds and viewJustify slots

proto viewBounds viewJustify

protoStatusIcon SetBounds (3,0,35,32) None.

protoStatusText RelBounds (42,4,138,25) vjParentLeftH+
vjParentTopV+
vjTopV+vjLeftH

protoTitleText RelBounds (10,6,170,25) vjParentLeftH+
vjSiblingBottomV
+vjTopV+vjLeftH

protoStatusProgress RelBounds (0,7,32,40) vjParentCenterH+
vjSiblingBottomV

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-19

Built-in Status View Configurations 14

There are six built-in configurations of the protoStatusTemplate:
vGauge, vBarber, vStatus, vStatusTitle, vConfirm, and vProgress.
Figure 14-2, “Built-in status view configurations” on page 14-20 shows each
type of status view as it appears on a Newton device. The arrows in this
graphic point to the name of the slot in the values frames by which you
would refer to each particular element in a status view. The values frame is
used in the setup parameter to the ViewSet and UpdateIndicator
methods, or in the InitialSetup frame. For example, to set the value of
the string in a vStatus view called myView, use the following code:

myView:ViewSet({name:'vStatus,

values:{statusText:theStringToDisplay}
});

To change the value of the string displayed under the gauge in a vGauge
view called myOtherView, use the following code:

myOtherView:ViewSet({ name:'vGauge,

values:{titleText:theStringToDisplay}
});

protoStatusGauge RelBounds (0,6,166,14) vjParentCenterH+
vjSiblingBottomV

protoStatusBarber RelBounds (0,8,166,10) vjParentCenterH+
vjSiblingBottomV

protoStatusButton SetBounds (-25 -
StdButtonWidth(theStringShown),
 -18,-25,-5)

vjParentRightH+
vjParentBottomV+
oneLineOnly+
vjCenterV

Table 14-2 Internally defined viewBounds and viewJustify slots

proto viewBounds viewJustify

C H A P T E R 1 4

System Services Reference

14-20 Progress-Reporting Reference

Figure 14-2 Built-in status view configurations

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-21

Figure 14-2 Built-in status view configurations (continued)

C H A P T E R 1 4

System Services Reference

14-22 Progress-Reporting Reference

Figure 14-2 Built-in status view configurations (continued)

Any element not included in the initial call to ViewSet or in the
InitialSetup frame is not included in the status view. The close box is an
exception to this rule, however. It is included unless explicitly omitted (by
including a closebox slot with the value nil in the values frame).

ViewSet 14

statusView:ViewSet(setup)

Initializes or updates status view components and values as specified by the
setup frame. When this message is sent to a closed status view it must be
followed by the Open message to display the view. When this message is
sent to an open status view, it redraws the view hierarchy in addition to
setting up the view children.

When using this method to initialize the status view—in other words, the
first time you invoke this method, before actually opening the status view—
you must supply all the values the status view requires, including those
specifying the components of the view (such as a vGauge indicator) and any
others that are appropriate (such as the indicator’s position). Once the status
view is open, you need only pass those values you need to update, such as

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-23

the position of the vGauge indicator—values that are not changed remain in
effect. See also the description of UpdateIndicator method on 14-24.

setup A frame specifying the set of view templates and other
values used to instantiate or update the status view.
This frame can contain the following slots:

appSymbol The application symbol of the application
displaying the status slip.

name A symbol specifying the template that
provides one or more components of the
status view, such as a gauge, title text,
message text, an icon, and so on. This
symbol can be one of the system-supplied
values 'vGauge, 'vBarber, 'vStatus,
'vStatusTitle, 'vConfirm,
'vProgress, or a symbol representing
your own template. If you provide your
own template, be sure to declare all its
component views to the
protoStatusTemplate view.

values A frame containing the values to be set or
updated in the view component specified
by the name slot. This frame may contain
slots that supply text, an icon, and other
configurable elements of the specified
view component. This frame should
contain a slot for each view component
you wish to update. The name of the slot
must be one of the names listed under the
“Name of slot” column of Table 14-1. The
value of this slot should be set as
described in the list immediately
following Table 14-1.
For example, Table 14-1 states that the
value of a protoStatusText view is
held in its statusText slot. Thus, your
values frame needs to contain a
statusText slot. The list following

C H A P T E R 1 4

System Services Reference

14-24 Progress-Reporting Reference

Table 14-1 states that the value stored in
this slot must be a string, so your
values.statusText slot must contain
a string.

IMPORTANT

You cannot change the minimum and maximum values
of a gauge by calling ViewSet once initial values have
been declared. However you may use the following
code to convert a three element [minValue, currValue,
maxValue] array into an integer with the proper gauge
setting:

theInteger := Floor(((value - minValue)/
(maxValue - minValue)) * (oldMax - oldMin) +
oldMin); ▲

UpdateIndicator 14

statusView:UpdateIndicator(setup)

Updates values and redraws protoStatusGauge, protoStatusBarber,
and protoStatusProgress views. Using this method is faster than
performing the same action with the ViewSet method. Use this method
only on views that are already open.

setup See the description of the ViewSet method on
page 14-22. You need only include in this frame the
values that have changed, rather than the entire set-up
frame you would pass to the ViewSet method.

CancelRequest 14

myAppBaseOrMyStatusSlip:CancelRequest(why)

Provides an opportunity for you to perform any necessary housekeeping
when the user cancels an operation in progress. This method is only called if
you do not provide a ButtonClickScript (via the script slot) in your
protoStatusButton.

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-25

myAppBaseOrMyStatusSlip
Your status slip or application base view. This method is
sent to your status slip if it has a CancelRequest
method, otherwise it is sent to your application base
view (or transport object).

why A symbol specifying why the operation was aborted. If
the user tapped a protoStatusButton the symbol
'userCancel is passed. If the operation was cancelled
for power-related reasons, the symbols 'powerOff or
'emergencyPowerOn might be sent.

Progress-Reporting Functions 14
This section describes the progress-reporting methods and functions.

DoProgress 14

DoProgress(kind, options, workFunc)

Displays a status slip, calls the function object you pass as one of its
arguments, and returns a value indicating how the slip was dismissed. The
slip can optionally include a title, message text, and an animated bar gauge
or barber pole progress indicator. This method returns the 'cancelled
symbol when the user cancels the operation; otherwise, this method returns
nil.

kind The kind of gauge view component to display in the
status slip. The 'vGauge symbol specifies that a
horizontal progress gauge is to be displayed. The
'vBarber symbol specifies that a barber pole gauge is
to be displayed. The value nil specifies that no gauge is
to be displayed.

C H A P T E R 1 4

System Services Reference

14-26 Progress-Reporting Reference

options A frame specifying optional characteristics of the
progress slip. This frame contains the following slots:

closebox Required. You must place the value nil
in this slot to hide the close box normally
provided by the status slip.

gauge Required when the kind parameter has the
'vGauge value. An integer specifying the
percentage of the operation completed.

barber Required when the kind parameter has the
'vBarber value. The value true
specifies that the barber pole gauge is to
be animated when the workFunc function
calls the SetStatus method.

icon Optional. A bitmap icon displayed in the
upper-left corner of the status slip.
Typically it identifies the operation (such
as Find) or the application displaying the
progress slip.

statusText
Optional. A string displayed at the top of
the status slip. It displays the name of the
operation in progress or the name of the
application that displays the slip. If the
slip displays an optional icon, the
statusText string is displayed to the
right of it.

titleText Optional. A string displayed at the bottom
of the status slip. This string can be used
to provide additional information
regarding the operation’s progress.

workFunc A function object accepting as its sole argument the
view that is the status slip. This function object
performs the operation on which DoProgress reports
status. As the operation proceeds, this function updates
the progress slip’s gauge and title text periodically by
calling the SetStatus method of the object passed as

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-27

its argument. For example, the following code fragment
does some work and updates the progress gauge and
title text with each iteration of the loop:

local myOpts :=

{closebox:nil,

icon: kMyIcon,

statusText: kAppName,

gauge: 10,

titleText:"One moment, please…"}

workFunc := func (contextView) begin

for x := 1 to 10 do begin

myOpts.gauge := :SomeWork();

contextView:SetStatus('vGauge,myOpts);

end; // for loop

end; // workFunc

The following variation displays a barber pole gauge
instead of a progress gauge; the only difference is the
substitution of the barber slot for the gauge slot in the
frame passed as the second argument to the
SetStatus method:

func (contextView) begin

for x := 1 to 10 do begin

local busyStr := :SomeWork();

contextView:SetStatus('vGauge,

{ titleText:busyStr,

barber: True}

end; // loop

end; // workFunc

The parameters to the SetStatus method are the same
as the first two parameters to the DoProgress

C H A P T E R 1 4

System Services Reference

14-28 Progress-Reporting Reference

function. Any slots specified in options passed to the
SetStatus method override the original slot values
passed to the DoProgress function; those that are not
specified remain as originally passed to the
DoProgress function.

Your workFunc function must be of the form:

func (contextView) begin ... end

contextView The view that is the status slip containing
the gauge, text, and icon displayed by the
DoProgress method.

SetStatus 14

contextView:SetStatus(kind, options)

Updates the status view provided by the DoProgress method. The
SetStatus method must be called from within the work function passed as
an argument to the DoProgress method. If the user taps the Stop button,
the SetStatus function throws an exception. It is very important that your
own error handling code passes this exception on to the system. For details
see “Using the DoProgress Function” beginning on page 17-16 in Newton
Programmer�s Guide.

See also the description of the workFunc parameter to the DoProgress
method, beginning on page 14-25.

kind The kind of gauge view component being displayed in
the status slip. The 'vGauge symbol specifies that a
horizontal progress gauge is being displayed. The
'vBarber symbol specifies that a barber pole gauge is
being displayed. The value nil specifies that no gauge
is being displayed.

C H A P T E R 1 4

System Services Reference

Progress-Reporting Reference 14-29

options A frame specifying optional characteristics of the
progress slip. This frame contains the following slots:

gauge Required when the kind parameter has the
'vGauge value. An integer specifying the
percentage of the operation completed.

barber Required when the kind parameter has the
'vBarber value. The value true
specifies that the barber pole gauge is to
be animated when the workFunc function
calls the SetStatus method.

icon Optional. A bitmap icon displayed in the
upper-left corner of the status slip.
Typically it identifies the operation (such
as Find) or the application displaying the
progress slip.

statusText
Optional. A string displayed at the top of
the status slip. It displays the name of the
operation in progress or the name of the
application that displays the slip. If the
slip displays an optional icon, the
statusText string is displayed to the
right of it.

titleText Optional. A string displayed at the bottom
of the status slip. This string can be used
to provide additional information
regarding the operation’s progress.

ShowBusyBox 14

ShowBusyBox(showIt) //platform file function

Shows or hides the automatic busy cursor.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kShowBusyBoxFunc with (showIt); ▲

C H A P T E R 1 4

System Services Reference

14-30 Progress-Reporting Reference

showIt A Boolean that specifies whether to show or hide the
automatic busy cursor. Specify true to show the busy
icon until control returns to the system. Specify nil to
hide the busy icon for the rest of the current iteration of
the system event loop.

The return value of this function is undefined; do not rely on it.

AddAction 14

notifyIcon:AddAction(title, cbFn, args)

Registers the specified callback function with the notify icon, adds a text item
to the notify icon’s menu and returns an object representing the callback
function that was added. Your application should save this object to pass to
the KillAction method.

If no actions were present when the AddAction method is called, the notify
icon appears. If the menu is displayed when this method is called, its
behavior is undefined. (Currently this function closes the menu but you must
not rely on this behavior.)

notifyIcon The notify icon view. You can get a reference to this
view by using code similar to the following example:

local icon := GetRoot().notifyIcon

title String that appears in the notify icon’s pop-up menu.

cbFn Function object to be executed when the user chooses
the title item from the notify icon’s menu.

args Array of arguments to the cbFn function. Pass nil for
this value if the cbFn function accepts no arguments.

C H A P T E R 1 4

System Services Reference

Power Registry Reference 14-31

KillAction 14

notifyIcon:KillAction(obj)

Removes an action from the notify icon’s menu. If the action removed is the
last action, the notify icon disappears. If the menu is displayed when this
method is called, its behavior is undefined.

notifyIcon The notify icon view. You can get a reference to this
view by using code similar to the following example.

local icon := GetRoot().notifyIcon

obj Saved object returned when this action was added by
the AddAction method.

Power Registry Reference 14

This section describes functions that provide power-management
information and that register callback functions to be executed when the
Newton device is powered on or off.

BatteryCount 14

BatteryCount()

Returns the count of installed battery packs. Battery 0 is always the primary
cell pack. Battery 1 is always the backup battery.

BatteryStatus 14

BatteryStatus(which)

Returns a status frame for the specified battery.

which An integer identifying the battery for which to return
status information. The value 0 specifies the primary
battery pack. The value 1 specifies the backup battery.

C H A P T E R 1 4

System Services Reference

14-32 Power Registry Reference

The status frame returned contains the following slots:

batteryType Contains one of the following symbols, or an integer:
'alkaline Battery is standard alkaline.
'nicd Battery is nickel-cadmium.
'nimh Battery is nickel-metal hydride.
'lithium Battery is lithium.

batteryVoltage A real number giving the current battery voltage.
batteryCapacity

An integer, indicating the percentage of a full charge
that the battery contains.

batteryLow An integer, indicating the percentage of a full charge at
which the “low battery” warning should be triggered by
the system.

batteryDead An integer, indicating the percentage of a full charge at
which the “dead battery” warning should be triggered
and the unit shut down by the system.

acPower Contains a symbol ('yes or 'no) indicating whether or
not the unit has AC power applied. Note that this does
not imply that the battery is charging. See
chargeState to determine that.

acVoltage A real number giving the AC voltage being supplied by
an AC adapter, or nil if AC power is not supplied.

chargeState Contains one of the following symbols, or an integer:
'discharging

The battery is not charging.
'trickleCharging

The battery is trickle-charging.
'fastCharging

The battery is fast-charging.
'fullyCharged

The battery is fully charged.
chargeRate An integer giving the number of minutes until the

battery is charged or discharged, depending on
chargeState.

C H A P T E R 1 4

System Services Reference

Power Registry Reference 14-33

chargeCurrent A real number indicating the current, in milliamps,
being supplied to charge the battery, if it is charging. If
the battery is discharging, this is the current supplied
from the battery to the system.

ambientTemp A real number indicating the ambient temperature in
degrees Celsius.

batteryTemp A real number indicating the battery temperature in
degrees Celsius.

Note

A nil value for a slot means the underlying hardware
cannot supply this information. The slots containing symbol
values (batteryType, chargeState, acPower) may
contain integers if the battery driver returned something
other than the values listed here. ◆

RegPowerOff 14

RegPowerOff(callbackID,callBackFn)

Registers a function object to be executed when the Newton powers off. The
arguments passed by the system to your callback function indicate the
reason for the shutdown operation and its current state. Your callback must
respond to all cases and must return a value indicating to the system
whether to proceed with shutdown.

The value returned by the RegPowerOff function is unspecified and may
change in the future; do not rely on values returned by this function.

callbackID A unique symbol identifying the function object to be
registered; normally, the value of this parameter is the
application symbol or some variation on it.

callBackFn The function object to be executed when the Newton
powers off. This function object accepts two arguments
and must be of the form

func(what,why) begin... end;

C H A P T E R 1 4

System Services Reference

14-34 Power Registry Reference

IMPORTANT

This callback function must not call the RegPowerOff
or UnRegPowerOff functions. ▲

This function object must return a value indicating
whether to continue the power-off sequence or delay it.
When responding to the 'okToPowerOff symbol, the
value true specifies that shutdown may continue and
the value nil cancels the shutdown process. Returning
the value 'holdYourHorses delays the impending
shutdown until you call the PowerOffResume function.

what The state of the shutdown sequence, as
indicated by the 'okToPowerOff and
'powerOff symbols. Table 14-3
summarizes the meanings of these
symbols.

why The reason for the shutdown operation, as
indicated by one of the symbols 'user,
'idle, or 'because. Table 14-4
summarizes the meanings of these
symbols.

Table 14-3 Values for what parameter to RegPowerOff function

Argument Meaning Possible response Meaning

'okToPowerOff Shutdown
requested.

nil Cancel shutdown.

'okToPowerOff Shutdown
requested.

true Continue shutting down.

'powerOff Shutdown
imminent.

'holdYourHorses Delay shutdown until
PowerOffResume is
called.

'powerOff Shutdown
imminent.

nil Continue shutting down.

any other value Unspecified. nil N/A

C H A P T E R 1 4

System Services Reference

Power Registry Reference 14-35

For more information, see “Registering Power-Off Functions” beginning on
page 17-25 in Newton Programmer�s Guide.

UnRegPowerOff 14

UnRegPowerOff(callBackID)

Unregisters the specified callback function from the power-off notification
mechanism. The value returned by this function is unspecified; do not rely
on it.

callbackID A unique symbol identifying the function object to be
unregistered. This symbol was passed to the
RegPowerOff function to register this callback function
with the power-off notification mechanism. Normally,
the value of this parameter is the application symbol or
some variation on it.

PowerOffResume 14

PowerOffResume(callbackID)

Used to resume a final power-off sequence which you have temporarily
delayed. For details, see the description of the RegPowerOff function
beginning on page 14-33. The value returned by the PowerOffResume
function is unspecified and may change in the future; do not rely on values
returned by this function.

callbackID A unique symbol identifying the power-off handler that
delayed the power-off sequence. This symbol was
passed to the RegPowerOff function to register the

Table 14-4 Values for why parameter to RegPowerOff function

Argument Meaning

'user User cycled power switch.

'idle Going to sleep.

'because Unspecified.

C H A P T E R 1 4

System Services Reference

14-36 Power Registry Reference

handler with the power-off notification mechanism.
Normally, the value of this parameter is the application
symbol or some variation on it.

RegPowerOn 14

RegPowerOn(callbackID,callBackFn)

Registers a function object to be executed when the Newton powers on. The
arguments passed by the system to your callback function indicate the
reason the Newton device was powered on.

The value returned by the RegPowerOn function is unspecified and may
change in the future; do not rely on values returned by this function.

callbackID A unique symbol identifying the function object to be
registered; normally, the value of this parameter is the
application symbol or some variation on it.

callBackFn The function object to be executed when the Newton
powers on. This function object accepts a single
argument and must be of the form

func(why) begin... end;

IMPORTANT

This callback function must not call the RegPowerOn or
UnRegPowerOn functions. ▲

why The reason the Newton device was
powered on, as indicated by one of the
symbols 'user, 'emergencyPowerOn,
'serialgpi, 'alarm, or 'cardlock.
Table 14-5 summarizes the meanings of
these symbols. For more information, see
“Registering Power-On Functions”
beginning on page 17-24 in Newton
Programmer�s Guide.

C H A P T E R 1 4

System Services Reference

Power Registry Reference 14-37

UnRegPowerOn 14

UnRegPowerOn(callbackID)

Unregisters the specified callback function from the power-on notification
mechanism. The value returned by this function is unspecified; do not rely
on it.

callbackID A unique symbol identifying the function object to be
unregistered. This symbol was passed to the
RegPowerOn function to register this callback function
with the power-on notification mechanism. Normally,
the value of this parameter is the application symbol or
some variation on it.

RegLogin 14

loginScreen:RegLogin(callbackID, callBackFn)

Registers a function object to be executed when the user gets past the login
screen—either by entering the correct password or because no password is in
use. For tasks involving human interface, use of the login screen script is
usually more appropriate than using a power-on script. The value returned
by the RegLogin method is unspecified and may change in the future; do
not rely on values returned by this function.

Table 14-5 Values for why parameter to RegPowerOn function

Symbol Meaning

'user User cycled power switch.

'emergencyPowerOn Last shutdown did not complete correctly.

'serialgpi +5 volts on serial port GPI Pin (pin 7).

'alarm Power-on caused by alarm.

'cardlock Card inserted or removed.

C H A P T E R 1 4

System Services Reference

14-38 Power Registry Reference

For related information, see the description of the RegPowerOn function
beginning on page 14-36.

loginScreen The view displayed just after the Newton is powered
on. If the Newton device is password protected, this
view will contain a number pad to enter the password
into. You can use code similar to the following fragment
to obtain a reference to the login screen:

local login := GetRoot().sleepScreen;

callbackID A unique symbol identifying the function object to be
registered; normally, the value of this parameter is the
application symbol or some variation on it.

callBackFn The function object to be executed when the Newton
powers on. This function object accepts no arguments
and must be of the form

func () begin ... end;

IMPORTANT

This callback function must not call the RegLogin or
UnRegLogin functions. ▲

UnRegLogin 14

loginScreen:UnRegLogin(callbackID)

Removes the specified callback function from the registry of functions called
by the login screen. The value returned by this function is unspecified; do not
rely on it.

loginScreen The view that is displayed just after the splash screen
when the Newton is powered on. You can use code
similar to the following fragment to obtain a reference
to the login screen:

local login := GetRoot().sleepScreen;

C H A P T E R 1 4

System Services Reference

Power Registry Reference 14-39

callbackID A unique symbol identifying the function object to be
unregistered. This symbol was passed to the
RegPowerOn function to register this callback function
with the power-on notification mechanism. Normally,
the value of this parameter is the application symbol or
some variation on it.

Data Structures 15-1

C H A P T E R 1 5

Intelligent Assistant
Reference 15

This chapter describes slots, frames, templates, functions, and methods used
by the Assistant.

Data Structures 15

This section describes templates (action templates, task templates, and target
templates) used by the Intelligent Assistant, including system-supplied
templates for implementing Assistant support in your own application. This
section also describes the task frame that the Assistant creates by matching
user input strings to registered templates.

Task Frame 15
This frame, which is returned by the ParseUtter function, contains the
following slots, as well as any created by your PostParse method:

Figure 15-0
Table 15-0

C H A P T E R 1 5

Intelligent Assistant Reference

15-2 Data Structures

Slot descriptions

origPhrase Holds the original user input phrase as an array of
strings. Each element of this array is a single word from
the user input phrase, and the words appear in the
array in the order in which they appeared in the user
input phrase.

phrases A simple array of strings derived from the inputString
string. Each element of this array is a string that
matches a template currently registered with the
Assistant. These elements may be phrases themselves;
under certain conditions, for example, the full name of
the fax recipient ("Bob Dobbs") may be stored as a single
element in this array. For more information, see “The
Phrases Slot” (page 18-11) in Newton Programmer�s Guide.

noiseWords An array of strings derived from the inputString string.
Each element of this array is a string that did not match
any template currently registered with the Assistant.
Because the parser breaks unmatched phrases on word
delimiters such as spaces, tabs, and return characters,
the elements of this array are always single words.

entries Aliases to soup entries that were matched. Your
PostParse method can use these aliases to retrieve
matched soup entries instead of querying for them. Do
not access this slot directly; instead, use the
GetMatchedEntries function to retrieve these entries.
For more information about entry aliases, see

value An optional slot that holds formatted strings such as
phone numbers, currency values, and dates. The
Assistant typically uses the value slot to return the
results of a parse conducted using a lexical dictionary.
Your PostParse method can use the value slot for
this purpose as well. An example describing the use of

C H A P T E R 1 5

Intelligent Assistant Reference

Data Structures 15-3

the value slot appears in “The Value Slot” (page 18-12)
in Newton Programmer�s Guide.

PostParse Your task template supplies this method.

Action Template 15
The action template defines to the Assistant a frame representing a single
action such as to call, pay, or remind. The completion of a complex task may
require the use of several action templates, each defining a discrete task that
is completed as part of the primary task. The action template also stores a list
of words or phrases, called the lexicon, that the Assistant uses to match this
template with words or phrases from user input.

The Assistant provides several predefined action templates. They are
summarized in “System-Supplied Action Templates” (page 15-4). You use the
system-supplied dyna_user_action template to define new actions to the
Assistant.

Your action template must provide the following required slots:

value The Assistant uses this slot only when using a lexical
dictionary to parse a special-format string such as a
phone number. You can use this slot to hold a comment
string that indicates the name of this template.

isa The value of this slot identifies the object type of the
frame created from this template. You must store a
symbol in this slot that identifies this template as being
an action that you defined (as opposed to one defined
by the system). The symbol 'dyna_user_action is
acceptable, as would be the symbol for any template
derived from a template having the value
'dyna_user_action in its isa slot. For more
information, see “Defining Your Own Frame Types to
the Assistant” (page 18-16) in Newton Programmer�s
Guide.

C H A P T E R 1 5

Intelligent Assistant Reference

15-4 Data Structures

lexicon This slot holds an array of one or more words or
phrases to match with this template. The Assist slip
displays the first value in this array as an item in the
Please pop-up menu when this template is matched as
the primary action.

System-Supplied Action Templates 15

This section describes the system-supplied action templates, which are the
templates at the top level of the action template hierarchy.

dyna_user_action
Generic action template having no lexicon. All your
action templates must descend from this template to
enable the Assistant to resolve verb matching conflicts.

call_act Action template for using the built-in Call application.
This template’s lexicon includes the strings "call",
"phone", "ring", and "dial".

find_act Action template for invoking the Find service. This
template’s lexicon includes the strings "find",
"locate", "search for", and "look for".

fax_act Action template for faxing the target data item. This
template’s lexicon includes the string "fax".

print_act Action template for printing the target data item. This
template’s lexicon includes the string "print".

about_act Action template for displaying the About box. This
template’s lexicon includes the string "about
newton".

time_act Action template for retrieving time values from the
Time Zones application. This template’s lexicon
includes the strings "time", "time in", "the
time in", "what time is it", "what time is
it in", "the time in", "what time", "what is
the time", and "what is the time in".

C H A P T E R 1 5

Intelligent Assistant Reference

Data Structures 15-5

remind_act Action template for creating To Do items. This
template’s lexicon includes the strings "remember",
"remind", "remind me", "to do", "todo",
"don't forget to", and "don't let me
forget to".

mail_act Action template for sending electronic mail. This
template’s lexicon includes the strings "mail",
"send", and "email".

schedule_act Action template for scheduling meetings and events in
the Dates application. This template’s lexicon includes
the string "schedule".

meet_act Action template for scheduling meetings and events in
the Dates application. This template is based on the
schedule_act template. Its lexicon includes the
strings "meet", "meet me", "see", and "talk to".

meal_act Action template for scheduling meals in the Dates
application. Because meals are considered meetings
(events with a beginning and ending time), this
template is based on the schedule_act template.

Meals 15

These system-supplied action templates are used to schedule meals in the
built-in Dates application. All of these templates provide a string (such as
"breakfast") that is used as the default title of the meeting. These templates
also define a usualTime slot that provides a default value for the starting
time of the meal. These templates are based on the meal_act template.

breakfast_act Action template for scheduling breakfast in the Dates
application. Its lexicon includes the string
"breakfast". The default starting time for this
meeting is 7:00 A.M.

brunch_act Action template for scheduling brunch in the Dates
application. Its lexicon includes the string "brunch".
The default starting time for this meeting is 10:00 A.M.

C H A P T E R 1 5

Intelligent Assistant Reference

15-6 Data Structures

lunch_act Action template for scheduling lunch in the Dates
application. Its lexicon includes the string "lunch".
The default starting time for this meeting is 12:00 P.M.
(noon).

dinner_act Action template for scheduling dinner in the Dates
application. Its lexicon includes the string "dinner".
The default starting time for this meeting is 7:00 P.M.

Special Events 15

This section describes templates that define special_event_act frames.
These action frames define methods used to schedule events in the Dates
application. With the exception of the holiday template, all these action
frames schedule events that recur annually on a specified date. The event
that the holiday template schedules does not repeat because holidays do not
necessarily fall on the same date each year. The special_event_act
template is derived from the schedule_act template.

birthday Action template for scheduling an annual repeating
birthday event in the Dates application and adding this
information to an appropriate Names soup entry if one
exists. Its lexicon includes the strings "birthday",
"bday", and "b-day".

anniversary Action template for scheduling an annual repeating
anniversary event in the Dates application and adding
this information to an appropriate Names soup entry if
one exists. Its lexicon includes the string
"anniversary".

holiday Action template for scheduling a non repeating holiday
event in the Dates application. Its lexicon includes the
string "holiday".

Developer-Supplied Action Templates 15

You must supply the action template specified by the value of your task
template’s primary_act slot.

C H A P T E R 1 5

Intelligent Assistant Reference

Data Structures 15-7

You must also supply any additional action templates specified by the
signature slot of the task template.

Target Template 15
The target template defines a frame that represents to the Assistant the target
of an action; targets are generally people, places, or things. The target
template also stores a list of words or phrases, called the lexicon, that the
Assistant uses to match the template with words or phrases from user input.

The Assistant provides several predefined target templates. They are
summarized in “System-Supplied Target Templates” (page 15-8). You need to
use the dyna_user_obj template to define new targets to the Assistant.

Your target template must provide the following required slots:

value Currently unused, but required for compatibility with
future versions of the Assistant. You can put a comment
string indicating the name of the template in this slot.

isa The value of this slot identifies the object type of the
frame created from this template. You must store a
symbol in this slot that identifies this template as a
target that you defined (as opposed to one defined by
the system). The symbol 'dyna_user_obj is
acceptable, as is the symbol for any template derived
from a template having the value 'dyna_user_obj in
its isa slot. For more information, see “Defining Your
Own Frame Types to the Assistant” (page 18-16) in
Newton Programmer�s Guide.

lexicon Required unless your template is derived from a
system-supplied template, in which case your template
can use the system-supplied lexicon. This slot holds an
array of one or more words or phrases to match with
this template.

C H A P T E R 1 5

Intelligent Assistant Reference

15-8 Data Structures

System-Supplied Target Templates 15

The Assistant provides the predefined target templates described in this
section. You use the dyna_user_obj template to define new targets to the
Assistant.

Places 15

The following system-supplied templates define where_obj templates:

address, city, region, country, postal_code, phone,
parsed_phone, phone_tag, faxPhone, homePhone, workPhone,
carPhone, mobilePhone, beeper, places, company, city,
county, state, country, town, and province

No lexicons are associated with these templates because the Assistant uses
lexical dictionaries to match them. The where_obj template is derived from
the user_obj template.

Note that in addition to the items you would expect to be treated as places
(such as postal codes and the names of cities, states, and provinces), the
Assistant treats phone numbers as places.

Times 15

The templates described here define when_obj frames. The when_obj
template is derived from the parsed_number template.

time, date

User Object Template 15

The system-supplied user object template provides the basis for the
Assistant’s conflict resolution mechanism. This section describes
system-supplied templates for persons, groups, titles, and custom targets, all
of which are based on the user object template. You must use the
dyna_user_obj template to define new targets to the Assistant.

For more information, see “Resolving Template-Matching Conflicts”
(page 18-13) in Newton Programmer�s Guide.

C H A P T E R 1 5

Intelligent Assistant Reference

Data Structures 15-9

dyna_user_obj Generic target template having no lexicon. All of your
target templates must descend from this template to
enable the Assistant to resolve conflicts. This template is
derived from the system-supplied user object template.

who_obj Abstract target template having no lexicon, descended
from the system-supplied user object template. Do not
base your templates on the who_obj template. Instead,
base your target templates on the dyna_user_obj
template.

what_obj Abstract target template having no lexicon, descended
from the system-supplied user object template. Do not
base your templates on the what_obj template. Instead
base your target templates on the dyna_user_obj
template.

where_obj Abstract target template having no lexicon, descended
from the system-supplied user object template. Do not
base your templates on the where_obj template.
Instead, base your target templates on the
dyna_user_obj template.

People 15

The system-supplied person template defines a who_obj frame. The
title, affiliate, custom, and group templates are based on the
person template. These templates have no lexicons associated with them
because they are the equivalent of abstract classes—you do not instantiate
frames based on these templates but derive your own templates from them
or use system-supplied templates derived from them.

person Target template for frames representing an individual
person. You can base your own templates representing
individual persons on this template.

title Target template for frames representing the title of an
individual person, such as "Manager", "Owner", and
so on. You can base your own templates representing
titles of individual persons on this template.

C H A P T E R 1 5

Intelligent Assistant Reference

15-10 Data Structures

affiliate Target template for frames representing a person
affiliated with an individual, such as a friend,
co-worker, and so on. You can use this template to
create your own templates representing affiliated
persons.

group Target template for frames representing groups of
people, such as "writers", "engineers", and so on.
You can base your own templates representing groups
of people on this template.

custom Target template for frames representing customized
categories of persons, such as those taller than a
specified height. You can base your own customized
categories of individual persons on this template.

Miscellaneous Templates 15

This section describes the salutationPrefix template, which is derived
from the system-supplied parser_obj template.

salutationPrefix
Action template for creating parser_obj frames.
These frames are used to assign meaning to words that
would normally be parsed as noise words. This
template’s lexicon includes the strings "dear", "to",
"attention", "attn", "attn.", and "hey".

Developer-Supplied Target Templates 15

You must supply any required target template not supplied by the system.
Required target templates are specified by the task template’s signature
slot.

C H A P T E R 1 5

Intelligent Assistant Reference

Data Structures 15-11

Task Template 15
The task template defines an application behavior to the Assistant. A
behavior consists of an action, such as "call", "pay", or "remind", that is
generally directed at a target, such as "Bob" or "Apple". An action and its
target are defined by an action template and a target template, respectively.

All task templates must define the following required slots:

Slot descriptions

isa This slot identifies the object type of the frame created
from this template. Task templates must store only the
value 'task_template in this slot. You cannot use the
symbol for another template derived from this one
instead.

primary_act This slot stores the name of the action template that
defines an application behavior to the Assistant. The
action template that this slot identifies may itself require
the use of additional action templates and target
templates.

preConditions This slot stores an array of symbols specifying the
names of slots that the Assistant creates to store action
frames and target frames. The preConditions array
must have the same number of elements as the
signature array because the Assistant uses these two
arrays in parallel. For more details, see “The Signature
and PreConditions Slots” (page 18-10) in Newton
Programmer�s Guide.

signature This slot holds an array of frame types that may be
stored in the slots specified by the preConditions
array. The signature array must hold the frame type
of at least one action frame and zero or more target
frames. The signature array must have the same
number of elements as the preConditions array
because the Assistant uses these two arrays in parallel.

C H A P T E R 1 5

Intelligent Assistant Reference

15-12 Data Structures

For more details, see “The Signature and PreConditions
Slots” (page 18-10) in Newton Programmer�s Guide.

PostParse The method to be invoked after the Assistant parses the
user input. Frequently, the task template’s primary
action is actually invoked by the PostParse method—
for example, if the user asks to "fax Bob" and Newton
cannot do so until the Assistant has retrieved Bob’s fax
number, the primary action of sending the fax would
correctly be invoked after the ParseUtter function
returns the task frame.

Another common use for the PostParse method is to
display a task slip view that provides the user with an
opportunity to confirm, modify, or dismiss the primary
action before it is executed.

taskslip Optional. This slot holds a view template associated
with the task template. Commonly this view is a task
slip that displays information about the primary action
for confirmation or editing by the user.

score Used internally by the Assistant. Place the value nil in
this slot.

Developer-Supplied Task Template 15

You must always supply a task template, which defines the application
behavior made available through the Assistant.

Help Topic Slot 15
Your application’s base view can supply a viewHelpTopic slot that the
Assistant uses to open a help book to the appropriate topic.

viewHelpTopic: // slot specifying your app’s help topic

C H A P T E R 1 5

Intelligent Assistant Reference

Assistant Functions and Methods 15-13

Assistant Functions and Methods 15

This section describes functions and methods used by the assistant. The first
part of this section describes system-supplied functions and methods. The
second part describes application-defined functions and methods.

RegTaskTemplate 15

RegTaskTemplate(theTemplate)

Registers a specified task template with the Assistant.

theTemplate The template to register.

UnRegTaskTemplate 15

UnRegTaskTemplate(theTemplate)

Unregisters a specified task template with the Assistant.

theTemplate The template to unregister.

ParseUtter 15

ParseUtter(inputString);

This function takes the following actions and calls your PostParse method:

■ parses the input string passed as its argument. If this string contains more
than 15 words, the ParseUtter function returns nil and takes no further
action.

■ matches words and phrases in the input string to templates currently
registered with the Assistant

■ creates action frames and target frames from the matched templates

■ creates a task frame based on matching an action frame to a task template

■ creates slots holding action frames and target frames in the task frame

C H A P T E R 1 5

Intelligent Assistant Reference

15-14 Assistant Functions and Methods

■ as necessary, creates the origPhrase, phrases, noiseWords, entries,
and value slots in the task frame

See “Programmer’s Overview” (page 18-5) in Newton Programmer�s Guide for
a detailed description of these tasks.

inputString The string this function attempts to match with
registered templates.

GetMatchedEntries 15

GetMatchedEntries(which, entries);

Returns an array of entry aliases to soup entries that were matched by the
Assistant.

which Symbol specifying a subset of entries to return.
Acceptable values are any of the 'person, 'places, or
'allEntries symbols.

entries The entries slot from the result frame returned by the
Assistant.

Typically you would call this function from your PostParse method,
passing to it the entries slot of the result frame as in the following code
fragment.

// self is the task frame

local candidates := GetMatchedEntries('allEntries,

self.entries);

Developer-Supplied Assistant Functions and Methods15
This section describes functions, methods, and templates that you must
supply.

C H A P T E R 1 5

Intelligent Assistant Reference

Assistant Functions and Methods 15-15

PostParse 15

taskFrame:PostParse();

Your PostParse method must do anything necessary to perform the action
specified by the frame in the primary_act slot of taskFrame, such as
handling error conditions, extracting further information from the result
frame returned by the ParseUtter function or displaying a task slip to the
user. The Assistant calls your PostParse function after matching all the
templates specified by the task template.

taskFrame The frame created by the Assistant from the task
template.

Names Reference 16-1

C H A P T E R 1 6

Built-in Applications and
System Data Reference 16

This chapter describes the constants, data structures, protos, functions, and
soup formats used to interface with the built-in applications and other
system data.

Names Reference 16

This section describes the constants, data structures, protos, methods,
functions, and soup formats of the Names application.

Names Constants 16
The constants described in this section are used by the Names application.

Figure 16-0
Table 16-0

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-2 Names Reference

Names Data Structures 16
This section describes the special slots used in Names dataDefs and
viewDefs.

Names Data Definition Frame 16

Names data definition frames contain the following special slots, in addition
to the standard data definition slots. For information on the standard set of
dataDef slots, see “newtStationery” (page 4-3).

Slot descriptions

overviewIcon A tiny version of the icon in the icon slot, to use when
displaying this kind of card in an overview. You should
keep the icon smaller than 11x11 pixels; a larger icon
looks awkward in the overview. Nil values are not
allowed.

viewsToDisplay An array of symbols for the names of viewDefs
registered for this data definition. This is needed so that
all the viewDefs will show up in the All Info view.

Table 16-1 Names card layouts

Constant Value Description

kSquiggle 0 Layout that uses squiggly line.

kPlain 1 Plain layout.

kSeparate 2 Layout with dashed lines.

kCross 3 Layout with crossed lines.

None Available 4 Layout with bullet holes all over.

None Available 5 Layout with dotted fading line.

None Available 6 Layout with big bullet holes in a
single line.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-3

Names View Definition Frame 16

Names view definition frames contain a special slot called infoFrame, in
addition to the standard view definition slots; see “viewDef Frame”
(page 4-1).

The infoFrame should have the following slots:

Slot descriptions

checkPaths An array of paths to data collected by this layout.
checkPrefix An array of two path expressions. The first is the path

for the first data set, or true if the first data set should
be stored at the top level of the soup entry. The second
is the path for subsequent data sets (or nil if no
multiple data sets are allowed). If the second path is
nil, the viewDef appears in the Add picker until the
user chooses it and adds data to it. At that point, no
more data of that type can be added, and the item is
removed from the Add picker.

stringData Set to true if the data sets consist of single strings. A
nil value means frames are created for each item rather
than strings.

format A string to be passed to the ParamStr utility function
along with the data set. The string returned by
ParamStr is used to display in the All Info view.
Alternatively, you can define a FormatFunc method in
this frame.

FormatFunc Instead of including a format slot, you may define this
method, but you must do one or the other.
This method is passed one argument, pathArray, an
array of the data in the data set, corresponding to the
paths in the checkPaths slot. It should return a string
to be displayed in the All Info view.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-4 Names Reference

Names Protos 16
The protoPersonaPopup and protoEmporiumPopup protos provide
pickers for personae and emporia.

protoPersonaPopup 16

Lets the user maintain and switch between different owner cards, or
“personae.” Here’s an example:

The diamond appears only if there is more than one owner card; otherwise
you see just a name without a diamond. Tapping the name produces a picker
showing the names of all owner cards stored by the Names application in
this Newton device.

The methods JamIt and SetupText described below are defined in this
proto.

JamIt 16

myPersonaPopup:JamIt()

Calls SetupText and updates the screen. This method should be called if
the current settings change.

SetupText 16

myPersonaPopup:SetupText()

Returns a string to display as the current persona. If more than one persona
is available, a diamond is appended to the beginning of the string.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-5

protoEmporiumPopup 16

This proto is used for a picker that lets the user maintain and switch between
different information relevant to various places she may be in. Here’s an
example:

When the user chooses a different emporium or city, information like time
zone, area code, and so on is changed to reflect the different location.
Choosing “Other City” allows the user to pick a different city anywhere in
the world.

The methods JamIt and SetupText described below are defined in this
proto.

JamIt 16

myEmporiumPopup:JamIt()

Calls SetupText and updates the screen. This method should be called if
the current settings change.

SetupText 16

myEmporiumPopup:SetupText()

Returns a string to display as the current emporium. If more than one
emporium is available, a diamond is appended to the beginning of the string.

Names Functions and Methods 16
This section lists the Names functions and methods. To obtain a reference to
the Names application to send one of these messages, use this code:

GetRoot().cardfile

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-6 Names Reference

Note that future Newton devices may not include the Names application.
You should therefore check for the existence of the Names application before
trying to access it. Use the following code to test for this:

if GetRoot().cardfile then ...

AddCard 16

cardfile:AddCard(dataDefType, entryFrame)

Creates a new card in the Names application.

dataDefType A symbol giving the data definition type for the new
Names entry. The following symbols are allowed for the
built-in dataDefs: 'person, 'owner, 'group,
'company, or 'worksite.

entryFrame A frame containing any number of those slots listed
under “Names Soup Format” (page 16-15) for the type
of soup entry specified in the dataDefType parameter. See
“Person Entries” (page 16-15), “Owner Entries”
(page 16-18), “Group Entries” (page 16-20), “Company
Entries” (page 16-21), or “Worksite Entries” (page 16-22).

This function returns the newly created entry, or nil if none was created.
(The entry is not created if dataDefType is invalid.)

AddCardData 16

cardfile:AddCardData(entry, layoutSym, newData)

Adds information to a Names soup entry. It allows you to specify an entry
and add a string or frame to it.

entry The entry in the Names soup to which you want to add
data.

layoutSym A symbol giving the data definition type for the
additional Names layout symbol. The possible values of
this parameter depend on the dataDefType of entry.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-7

This parameter can be the name registered with the
Names application for a custom viewDef.

If the dataDefType of entry is 'person, layoutSym can be
'name, 'company, 'address, 'phone, 'email, 'pager,
or 'personal.

If the dataDefType of entry is 'owner, layoutSym can be
'name, 'company, 'address, 'phone, 'email, 'pager,
'personal, 'signature, 'creditCard, or
'bankAccount.

If the dataDefType of entry is 'company, layoutSym can
be 'name, 'address, 'phone, or 'email.

If the dataDefType of entry is 'worksite, layoutSym can
be 'connection or 'mailInfo.

newData The data you wish to add. The type of this parameter
must be appropriate for the value of layoutSym. See the
description under the appropriate section of “Names
Soup Format” (page 16-15).

This parameter can be an object of the proper format for
a custom viewDef.

Note that some of the possible values for layoutSym do
not have a corresponding slot in the description of the
soup entries.

The symbols 'phone, 'pager, 'creditCard, and
'bankAccount are elements of the arrays described in
the soup format. That is, if you pass in 'phone for
layoutSym, newData should be an element to add to the
'phones array.

If you pass in 'personal for layoutSym, newData
should be a frame with either an 'anniversary or a
'bday slot (or both). These slots have the same
meaning as the soup entry slots.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-8 Names Reference

Similarly, if you pass in 'connection for layoutSym,
newData should be a frame with a 'connectionPhone
and 'connectionNetwork slots. These slots have the
same meaning as the soup entry slots.

And, if you pass in 'emailInfo for layoutSym, newData
should be a frame such as that returned by the
BcEmailNetwork method (page 16-10). That is, it
should have the following three slots: 'mailPhone,
'baud, and 'mailNetwork.

For example, to add a new affiliate to a person card:

GetRoot().cardfile:AddCardData(aPersonEntry, 'name,

{first: "Test", last: "This"});

To add a fax number to a company:

GetRoot().cardfile:AddCardData (aCompanyEntry, 'phone,

SetClass(MakePhone({areacode: "617",

phone:"555-1212"}), 'faxPhone));

AddLayout 16

cardfile:AddLayout(layout)

Adds a layout to the Show picker, under a line below Card and All Info. The
layout should be based on the newtLayout proto. Remove layouts added
with this method by using the Names method SafeRemoveLayout.

layout The layout you want to add. This layout must have the
following slots:

name A string shown in the Show picker.
symbol A symbol, which includes your developer

signature, uniquely identifying this
layout. This symbol must be passed to the
EnsureInternal function.

type Set this slot to the symbol 'viewer.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-9

protection
Set this slot to the symbol 'private.

BcCreditCards 16

cardfile:BcCreditCards(inEntry, inWhich)

Returns the frame stored in the creditCards slot (page 16-19) of an owner
soup entry.

inEntry An owner entry in the Names soup.

inWhich The class of the string in the
creditCards.creditCardName slot of owner entries
to find. Or an array of class symbols, in which case an
array of matches for each symbol is returned.

Phone card classes begin with a
'|string.card.phoneCard| prefix. Credit card
classes begin with a '|string.card.creditCard|
prefix. For a full list of the built-in classes see the
description of the creditCards.creditCardName
slot of owner entries in “Owner Entries” (page 16-18).

BcCustomFields 16

cardfile:BcCustomFields(inEntry, inWhich)

Returns an array containing frames with custom field information. These
frames have two slots: the label slot contains the label for the custom
field, and the value slot contains the value stored in the slot of that
custom field. The method returns nil if no frames are found.

inEntry An entry in the Names soup.

inWhich The name of the custom slot. Nil returns all custom
fields. If this parameter is an array of symbols instead of
a single symbol, the matches for all the symbols are
returned.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-10 Names Reference

BcEmailAddress 16

cardfile:BcEmailAddress(entry, which)

Takes a soup entry and an e-mail type, and returns an array of frames with
e-mail information. The email slot in these frames is a string representing
the e-mail address. If the entry is an owner card, the frame may also contain
an emailPassword slot, which holds the password string. The method
returns nil if no frames are found.

entry An entry in the Names soup.

which The class of the e-mail address to find. The built-in
e-mail address classes are listed under the email slot of
person entries in “Person Entries” (page 16-15).

If this parameter is an array of symbols instead of a
single symbol, matches for all symbols are returned.

BcEmailNetwork 16

cardfile:BcEmailNetwork(entry, type)

Takes a soup entry and the type of e-mail network, and returns information
about the entry’s e-mail network.

entry An entry in the Names soup.

type The type of network ('sprint or 'concert). If this
parameter is an array of symbols instead of a single
symbol, matches for all the symbols are returned.

This method returns an array of frames with the following slots:

Slot description

mailNetwork A network type symbol.
mailPhone A string for a phone number.
baud An integer, the baud rate.

The method returns nil if no frames are found.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-11

BcPhoneNumber 16

cardfile:BcPhoneNumber(inEntry, inWhich)

Returns an array of phone numbers, as strings, for the soup entry specified in
inEntry.

inEntry An entry in the Names soup.

inWhich The class of the phone numbers to return. The built-in
phone address classes are listed under the phones slot
of person entries in “Person Entries” (page 16-15). For
example, to get voice numbers pass in 'phone; to get
fax numbers, pass in 'faxPhone.

OpenTo 16

cardfile:OpenTo(entry,nil)

Opens the card specified by the entry parameter. This method opens the
Names application if necessary. If Names is open, you should use the
ShowFoundItem method.

entry The Names soup entry to show.

nil Always pass nil for the second parameter.

The return value of this function is undefined.

ReplaceInkData 16

cardfile:ReplaceInkData(entry, layoutSym, oldString, checkPath,
newString)

Replaces a specified ink string in a Names soup entry with a recognized
string.

entry The entry in the Names soup to which you want to add
data.

layoutSym A symbol identifying the data definition of entry. See the
layoutSym parameter to the AddCardData method.

oldString The ink string to replace.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-12 Names Reference

checkPath The additional path where the data is found; see
“Names View Definition Frame” (page 16-3).

newString The recognized string to replace oldString.

RegNamesRouteScript 16

RegNamesRouteScript(symbol, routeScriptFrame) // platform
file function

Adds an application-defined action to the Action picker in the Names
application. The companion to this function is UnRegNamesRouteScript
(page 16-14).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kRegNamesRouteScriptFunc with (symbol, routeScriptFrame);
▲

symbol A unique symbol identifying the action you are adding.
You should append your developer signature to ensure
that this symbol is unique.

routeScriptFrame A frame describing the routing action, as described in
Chapter 21, “Routing Interface,” of Newton Programmer�s
Guide. This frame is summarized below:

{

title: string, // string name of picker item

icon: bitmap object, // icon for picker item

RouteScript: symbol, // func called if this action chosen

appSymbol: symbol, // symbol for context of RouteScript

GetTitle: function // supplied instead of title slot

... // other slots used by your app

}

Here’s an example of using the RegNamesRouteScript function:

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-13

call kRegNamesRouteScriptFunc with

('|EntryDumper:PIEDTS|,

{ GetTitle: func(target) begin

if GetTargetCursor(target, nil):entry() then

"Dump entry";

else

nil;// no selections, so don't show in list

end,

icon: nil,

RouteScript: func(target, targetView) begin

local curs:=GetTargetCursor(target, nil);

local e := curs:Entry();

while e do begin

print(e);

e:=curs:Next();

end;

end

});

Note

The return value of this function is undefined; do not rely
on it. ◆

SafeRemoveLayout 16

cardfile:SafeRemoveLayout(layout) // platform file function

Safely removes a cardfile layout added by AddLayout (page 16-8) from the
Names application.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kCardFileSafeRemoveLayoutFunc with (layout);
▲

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-14 Names Reference

layout A symbol identifying the cardfile layout you want to
remove. This is the same symbol you passed to the
cardfile method AddLayout to add the layout.

The return value of this function is undefined; do not rely on it.

ShowFoundItem 16

cardfile:ShowFoundItem(entry,nil)

Opens the card specified by the entry parameter. This method requires that
the Names application be open. If Names is closed, you should use the
OpenTo method.

entry The Names soup entry to show.

nil Always pass nil for the second parameter.

The return value of this function is undefined.

UnRegNamesRouteScript 16

UnRegNamesRouteScript(symbol)// platform file function

Removes an application-defined action from the Action picker in the Names
application. It removes only actions added by RegNamesRouteScript
(page 16-12).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kUnRegNamesRouteScriptFunc with (symbol);
▲

symbol A symbol identifying the action you are removing.

Note

The return value of this function is undefined; do not rely
on it. ◆

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-15

Here’s an example of using the UnRegNamesRouteScript function:

call kUnRegNamesRouteScriptFunc with

('|EntryDumper:PIEDTS|);

Names Soup Format 16
This section describes the format of entries in the Names soup. Five different
types of entries are stored in this soup: persons, owners, groups, companies,
and worksites. You can identify an entry by calling the ClassOf function on
the entry. ClassOf(entry) returns one of the following symbols: 'person,
'owner, 'group, 'company, or 'worksite.

The slots contained in these entry frames are described in “Person Entries”
(page 16-15), “Owner Entries” (page 16-18), “Group Entries” (page 16-20),
“Company Entries” (page 16-21), and “Worksite Entries” (page 16-22).

Person Entries 16

Person entries consist of a frame with the following slots:

Slot descriptions

version The version number of the Names application.
class The symbol 'person.
cardType An integer; see Table 16-1 “Names card layouts.”
name A frame with the following slots:

honorific A string or rich string for an honorific
title; e.g., “Ms.” or “Dr.”

first A string or rich string for a first name.
last A string or rich string for a last name.
title A string or rich string for a job title.

names An array of affiliated names, such as company contacts,
family members, and so on, added by the user by
picking “Affiliate” from the “Add” picker. This array
contains frames such as that for the name slot.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-16 Names Reference

company A string or rich string for the company name.
title A string or rich string representing this person’s title at

the company stored in company.
companies An array of frames of type {company:

stringOrRichString, title: stringOrRichString}.
address A string or rich string for the first line of an address.
address2 A string or rich string for the second line of an address.
addresses An array of frames for additional addresses. These

frames contain the following slots: address,
address2, city, region, postal_code, and
country.

city A string or rich string for a city.
region A string or rich string for region (a state in the U.S.).
postal_code A string or rich string for postal code (zip code in U.S.).
country A or rich string naming the country. If this is a standard

(not rich) string that is recognized by the system as the
name of a country, it will have a class as set by
SetCountryClass; for more information on this, see
the description of SetCountryClass.

phones An array that contains strings or rich strings for phone
numbers. The user can set the class of this string by
picking from the Phones popup. The built-in phone
classes are:
phone

homePhone

workPhone

faxPhone

carPhone

mobilePhone

homefaxPhone

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-17

email A string or rich string for an e-mail address. The user
can set the class of this string by picking from the Email
popup. The built-in e-mail classes are:
|string.email|

|string.email.internet|

|string.email.aol|

|string.email.compuserve|

|string.email.mcimail|

|string.email.attmail|

|string.email.easylink|

|string.email.prodigy|

|string.email.genie|

|string.email.delphi|

|string.email.msn|

|string.email.interchange|

|string.email.radiomail|

emailAddrs An array of frames of additional e-mail addresses with
the following slot:
email A string or rich string. The user can set

the class of this string by picking from the
Email popup. The built-in e-mail classes
are listed under the email slot.

emailPassword Always nil.
pagers An array of pager information frames. Each frame can

have the following slots:
pagerNum A string or rich string for a pager number.

The user can set the class of this string by
picking from the Pagers popup. The
built-in pagers classes are:
|string.pager|

|string.pager.skytel|

|string.pager.mobilcomm|

|string.pager.embarc|

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-18 Names Reference

pagerPIN A string or rich string for a pager PIN.
bday Either an integer for the date the user entered for the

birthday in the number of minutes passed since
midnight, January 1, 1904, or a string or rich string.

bdayEvent An alias to a Dates event. For more information on
entry aliases, see Chapter 11, “Data Storage and
Retrieval,” in Newton Programmer�s Guide.

anniversary Either an integer for the date the user entered for the
anniversary, in the number of minutes passed since
midnight, January 1, 1904, or a string or rich string.

anniversaryEvent
An alias to a Dates event. For more information on
entry aliases, see Chapter 11, “Data Storage and
Retrieval,” in Newton Programmer�s Guide.

notes An array of note objects. Each element in this array is a
frame with the same format as the data slot in a soup
entry in the Notes application; see “Notes Soup Format”
(page 16-82).

sorton A string (not a rich string because of sorting).

Owner Entries 16

Owner entries consist of a frame with the same slots as in “Person Entries”
(page 16-15). However, three of the slots hold different values, and there is an
additional slot. The following three slots exist in person entries, but have
different meanings:

Slot descriptions

class The symbol 'owner.
emailPassword A string for the owner’s e-mail password.
emailAddrs An array of frames of additional e-mail addresses with

the following slots:
email A string or rich string. The user can set

the class of this string by picking from the
Email popup. The built-in e-mail classes

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-19

are listed under the email slot for person
entries.

emailpassword
A string.

There is one additional slot in owner entries:

owner A frame with the slots shown below.

Slot descriptions for owner frame

bankAccounts An array of frames corresponding to bank accounts.
These frames contain the following slots:
bankAcctNum

A string or rich string that contains the
account number.

bankContactNum
A phone number string or rich string for
the bank account contact.

creditCards An array of frames corresponding to credit card
accounts. These frames contain the following slots:
creditCardName

A string or rich string for the credit card’s
name. The user can set the class of this
string by picking from the Card popup.
The built-in credit card classes are:

 |string.card|

 |string.card.phonecard|

 |string.card.creditcard|

 |string.card.phonecard.att|

 |string.card.phonecard.mci|

 |string.card.phonecard.sprint|

 |string.card.creditcard.visa|

 |string.card.creditcard.mastercard|

 |string.card.creditcard.amex|

 |string.card.creditcard.discover|

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-20 Names Reference

creditCardNum
A string or rich string for the account
number.

creditCardExpDate
Either an integer for the expiration date,
in number of minutes since midnight,
January 1, 1904, or a string or rich string.

creditCardContactNum
A string or rich string for the phone
number of the credit card account contact.

signature The signature the user entered in the signature slip. It is
an ink frame.

Group Entries 16

A group entry consists of a frame with the following slots:

version The version number of the Names application.
class The symbol 'group.
cardType An integer; see Table 16-1 “Names card layouts.”
group A string or rich string for the group’s name.
groupInfo Contains a frame with the following slot:

nowShowing Either the value 'selected or 'all.
This reflects whether the user has checked
the Selected Only box in the view that
adds people to the group.

members An array containing name reference frames representing
the members of the group. These frames are described
in “Name References” (page 5-1) in Newton
Programmer�s Reference.

notes An array of note objects. Each element in this array is a
frame with the same format as the data slot in a soup
entry in the Notes application; see “Notes Soup Format”
(page 16-82).

sorton A string (not a rich string because of sorting).

C H A P T E R 1 6

Built-in Applications and System Data Reference

Names Reference 16-21

Company Entries 16

Company entries consist of a frame with the following slots:

version The version number of the Names application.
class The symbol 'company.
name The name the user added by picking “affiliate” from the

Add picker. It is a frame with the following slots:
honorific A string or rich string for an honorific

title, e.g., “Ms.” or “Dr.”
first A string or rich string for a first name.
last A string or rich string for a last name.
title A string or rich string for a job title.

names An array of affiliated names; as added by the user by
picking “Affiliate” from the “Add” picker, such as
company contacts, family members, and so on. This
array contains frames such as that for the name slot.

cardType An integer; see Table 16-1 “Names card layouts.”
company A string or rich string for the company name.
address A string or rich string for the first line of the address.
address2 A string or rich string for the second line of the address.
addresses An array of frames for additional addresses. These

frames contain the following slots: address,
address2, city, region, postal_code, and
country.

city A string or rich string containing the name of a city.
region A string or rich string for region (state in U.S., province

in Canada).
postal_code A string or rich string for postal code (zip code in U.S.).
country A or rich string naming the country. If this is a standard

(not rich) string that is recognized by the system as the
name of a country, it will have a class as set by
SetCountryClass; for more information on this, see
the description of SetCountryClass.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-22 Names Reference

phones An array of strings or rich strings containing phone
numbers. The user can set the class of these string by
picking from the Phone popup. The built-in phone
classes are listed under the phones slot for person
entries.

email A string or rich string for an e-mail address. The user
can set the class of this string by picking from the Email
popup. The built-in e-mail classes are listed under the
email slot for person entries.

emailAddrs An array of frames of additional e-mail addresses of the
format {email:stringOrRichString}.

notes An array of note objects. Each element in this array is a
frame with the same format as the data slot in a soup
entry in the Notes application; see “Notes Soup Format”
(page 16-82).

sorton A string (not a rich string because of sorting).

Worksite Entries 16

Worksite entries consist of a frame with the following slots:

version The version number of the Names application.
class The symbol 'worksite.
cardType An integer; see Table 16-1 “Names card layouts.”
place A string or rich string for the place name.
dialingPrefix A string or rich string for dialing prefix needed to get an

outside line from this worksite.
areaCode A string or rich string for the area code of this worksite.
printer A string representing the printer the user has chosen

from among network printers.
mailAccess An array of frames of the following form:

{mailPhone:stringOrRichString,
mailNetwork:'concert,

baud:1200}

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-23

connectionPhoneA phone number string to access e-mail at this site.
connectionNetwork

A string for the AppleTalk Name Binding Protocol
(NBP) address. The format of this string is
"computerName:Docker@zone".

cityAlias An alias to an entry from an undocumented soup
which contains informations about the closest city. The
soup entry contains slots for the city name, its country,
latitude and longitude, etc.
For more information on entry aliases, see Chapter 11,
“Data Storage and Retrieval,” in Newton Programmer�s
Guide.

countrySymbol A symbol representing the country.
country A or rich string naming the country. If this is a standard

(not rich) string that is recognized by the system as the
name of a country, it will have a class as set by
SetCountryClass; for more information on this, see
the description of SetCountryClass.

notes An array of note objects. Each element in this array is a
frame with the same format as the data slot in a soup
entry in the Notes application; see “Notes Soup Format”
(page 16-82).

sorton A string (not a rich string because of sorting).

Dates Reference 16

This section describes the variables, constants, and protos used by the Dates
application. Also covered are all the Dates methods and functions, and the
exceptions they throw, and the Dates soup format.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-24 Dates Reference

Dates Variables and Constants 16
This section lists two variables you may set, and the constants used by the
Dates application.

Table 16-2 Dates variables

Variable Description

firstDayOfWeek Specifies what the first day of the week should be, for
display purposes. It holds an integer value from 0 to
6, where 0 means Sunday, 1 means Monday, and so
on. The default value is 0; that is, display all months
with Sunday as the first day of the week. This
variable is either part of the user configuration data,
or in the locale bundle frame.

useWeekNumber If non-nil, the Dates application displays the week
number in the upper-left corner of its view. The first
week of the year is number 1 and the last week is
number 52. This variable is a slot in the locale bundle
frame.

Table 16-3 Dates constants for the day of the week

Constant Value Description

kSunday 0x00000800 Sunday

kMonday 0x00000400 Monday

kTuesday 0x00000200 Tuesday

kWednesday 0x00000100 Wednesday

kThursday 0x00000080 Thursday

kFriday 0x00000040 Friday

kSaturday 0x00000020 Saturday

kEveryday 0x00000FE0 Every day in the week

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-25

Table 16-4 Dates constants for repeatType

Constant Value Description

kDayOfWeek 0 Meeting recurs on a specific week
day of any week in the month.

kWeekInMonth 1 Meeting recurs in a specified week
of the month.

kDateInMonth 2 Meeting recurs on a certain day of
each month.

kDateInYear 3 Meeting recurs on a certain day of
each year.

kPeriod 4 Meeting recurs on a specific day
every two weeks.

kNever 5 Meeting does not recur.

6 Reserved for internal use.

kWeekInYear 7 Meeting recurs in a specified week
of the year.

Table 16-5 Other date constants

Constant Value Description

kForever 0x1FFFFFFF A special value.

kMaxyear 2919 The largest year value handled.

kYearMissing 2920 The nearest leap year before
kForever. The string parser uses it
to indicate that the year is missing
in the date string.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-26 Dates Reference

Dates Protos 16
The Dates application uses the two protos protoRepeatPicker displays
and protoRepeatView to allow the user to pick how a meeting or event
repeats. You may wish to use these if you are creating your own meeting slip.

Table 16-6 Dates constants for the weeks in a month

Constant Value Description

kFirstWeek 0x00000010 The first week in the month.

kSecondWeek 0x00000008 The second week in the month.

kThirdWeek 0x00000004 The third week in the month.

kFourthWeek 0x00000002 The fourth week in the month.

kLastWeek 0x00000001 The last week in the month.

kEveryWeek 0x0000001F Any week in the month.

Table 16-7 Compatible icon and meeting/event types

Icon type Compatible meeting/event types

'Meeting Any type of meeting, but not events.

'WeeklyMeeting Only meetings that repeat on the same day
each week.

'Event Any type of event.

'MultiDayEvent Only events that repeat every day.

'AnnualEvent Only events that repeat on the same day
each year.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-27

protoRepeatPicker 16

Based on protoLabelPicker, protoRepeatPicker displays a picker of
repeating meeting types. This proto assumes the existence of a declared child
of an ancestor of the protoRepeatPicker proto named RepeatingView
that derives from protoRepeatView. Picking Other from the choice of
repeating meeting types opens the RepeatingView.

The following graphic shows this picker after it’s been tapped:

The protoRepeatPicker has the following slots:

Slot descriptions

selectedMeeting
Required. This slot must be in the template or inherited
by the template. The slot’s value is typically a meeting
frame; see “Meeting Frames” (page 16-57). The
protoRepeatPicker uses the mtgStartDate slot of
the meeting, and the repeatType, mtgInfo, or
repeatTemplate slots if they are present.

originalMtgDate
Required. If the selectedMeeting value is a
repeating Meeting soup entry, this slot must contain the
date of an instance of that repeating meeting; otherwise,
the slot is ignored. The slot should be in the template or
inherited by the template.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-28 Dates Reference

newMtgDate Required. The value of this slot must be the value of the
mtgStartDate slot of the selectedMeeting slot.
The slot should be in the template or inherited by the
template.

viewBounds The bounds of the system prototype.

The protoRepeatPicker provides its own ViewSetupFormScript and
LabelActionScript methods. If you override these methods, be sure to
call inherited:ViewSetupFormScript() and
inherited:LabelActionScript().

In addition, protoRepeatPicker provides default TextSetup and
PickerSetup methods.

protoRepeatView 16

This proto displays choices like those in the protoRepeatPicker, and a
calendar that makes these choices more intuitive. The protoRepeatView is
displayed when the user chooses Other from the protoRepeatPicker. A
view that contains a protoRepeatView child should also have a
protoRepeatPicker.

This is a protoFloatNGo system prototype that is displayed in its parent to
create a draggable view. Its default justification is centered horizontally and
flush with the top of the parent. The view is 204 pixels wide by 190 pixels
high, so the parent should be at least that wide and high.

The following graphic shows a protoRepeatView:

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-29

The protoRepeatView has the following slots:

Slot descriptions

viewFlags Defaults to vClickable+vFloating.
viewFormat Defaults to vfFillWhite + vfFrameDragger +

vfPen(7) + vfInset(1) + vfRound(5).
viewJustify Defaults to vjParentCenterH.
viewBounds Defaults to RelBounds(0, 0, 204, 190)

This proto contains a single method of interest, GetRepeatSpec.

GetRepeatSpec 16

protoRepeatView:GetRepeatSpec()

Returns a repeatTemplate containing the repeat information. In
particular, the repeatTemplate returned has the slots: mtgStartDate,
repeatType, and mtgInfo.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-30 Dates Reference

If the selectedMeeting slot of protoRepeatPicker is a repeating
meeting and if the repeat settings (in the protoRepeatPicker and
protoRepeatView) have not changed, GetRepeatSpec returns the
repeatTemplate of selectedMeeting.

If selectedMeeting is a repeating meeting and the repeat settings have
been changed to “Don’t repeat,” GetRepeatSpec returns nil.

Dates Methods and Functions 16
This section includes a description of the methods supplied by the Dates
application, which is called calendar. To get a reference to the Dates
application, use the following code:

GetRoot().calendar

Note that future Newton devices may not include the Dates application. You
should therefore check for the existence of the Dates application before
trying to access it. Use the following code to test for this:

if GetRoot().calendar then ...

AddAppointment 16

calendar:AddAppointment(mtgText, mtgStartDate, mtgDuration,
repeatPeriod, repeatInfo)

Creates a meeting and adds it to the appropriate Dates soup. It also updates
the Dates display, if necessary.

mtgText A string or rich string that is the meeting text.

mtgStartDate An integer specifying the start date and time of the
meeting, in the number of minutes passed since
midnight, January 1, 1904. If the meeting repeats, this is
the start date and time of its first occurrence.

mtgDuration A positive integer specifying the duration of the
meeting in minutes.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-31

repeatPeriod Used to indicate a repeating meeting. Specify one of the
following symbols, or nil:

nil Meeting is not repeating.
'daily Meeting repeats daily.
'weekly Meeting repeats weekly on the same day.
'biweekly Meeting repeats biweekly on the same day.
'monthly Meeting repeats monthly on the same day.
'monthlyByWeek

Meeting repeats monthly by the week in
the month.

'yearly Meeting repeats yearly on the same day.
'yearlyByWeek

Meeting repeats yearly by the week in the
month.

repeatInfo Used only if repeatPeriod is 'weekly,
'monthlyByWeek, or 'yearlyByWeek, to specify
when the meeting repeats. If not used, this parameter
must be set to nil.

If repeatPeriod is 'weekly, this parameter must be an
array of one or more numbers between 0 and 6 (where
0 = Sunday, 1 = Monday, etc.) These numbers specify on
which days of each week the meeting repeats. You can
also specify nil, which means the meeting repeats on
the same day in which it was originally scheduled.

If repeatPeriod is 'monthlyByWeek, this parameter
must be an array of one or more numbers between 1
and 5 (1 is the first week of each month, 2 is the second
week of each month, and so on, up to 5, which is the last
week of each month). These numbers specify in which
weeks each month the meeting repeats. You can also
specify nil, which means the meeting repeats on the
same week in which it was originally scheduled.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-32 Dates Reference

If repeatPeriod is 'yearlyByWeek, you can usually
specify nil, since the week in the month is
predetermined by the date you pick for the first instance
of the meeting. However, if the day falls during the
fourth or fifth week of a month, it is not always possible
to determine in exactly which week subsequent
instances of the meeting will occur. In this case, you
should specify an array containing the single number 4
or 5, to indicate the week. For example, November 1994
had only four Thursdays, so Thursday, November 24th,
1994 could be interpreted as the fourth Thursday or as
the last Thursday.

This method returns the soup entry added for the new meeting.

AddEvent 16

calendar:AddEvent(mtgText, mtgStartDate, repeatPeriod, repeatInfo)

Creates an event and adds it to the appropriate Dates soup. It also updates
the Dates display, if necessary.

mtgText A string or rich string that is the event text.

mtgStartDate An integer specifying the start date of the event, in the
number of minutes passed since midnight, January 1,
1904. If the event repeats, this is the start date of its first
occurrence. Note that events don’t have a specific time
during the day, so by convention, they must always be
created at midnight. The Dates application expects this,
so don’t create events at other times.

AddEvent automatically sets mtgStartDate to midnight
at the beginning of the day.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-33

repeatPeriod Used to indicate a repeating event. Specify one of the
following symbols, or nil:

nil Event is not repeating.
'daily Event repeats daily.
'weekly Event repeats weekly on the same day.
'biweekly Event repeats biweekly on the same day.
'monthly Event repeats monthly on the same day.
'monthlyByWeek

Event repeats monthly by the week in the
month.

'yearly Event repeats yearly on the same day.
'yearlyByWeek

Event repeats yearly by the week in the
month.

repeatInfo Used only if repeatPeriod is 'weekly,
'monthlyByWeek, or 'yearlyByWeek, to specify
when the event repeats. If not used, this parameter must
be set to nil.

If repeatPeriod is 'weekly, this parameter must be an
array of one or more numbers between 0 and 6 (where
0 = Sunday, 1 = Monday, etc.) These numbers specify on
which days each week the event repeats. You can also
specify nil, which means the event repeats on the same
day on which it was originally scheduled.

If repeatPeriod is 'monthlyByWeek, this parameter
must be an array of one or more numbers between 1
and 5 (1 is the first week of each month, 2 is the second
week of each month, and so on, up to 5, which is the last
week of each month). These numbers specify in which
weeks each month or year the event repeats. You can
also specify nil, which means the event repeats in the
same week in which it was originally scheduled.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-34 Dates Reference

If repeatPeriod is 'yearlyByWeek, you can usually
specify nil, since the week in the month is
predetermined by the date you pick for the first instance
of the event. However, if the day falls during the fourth
or fifth week of a month, it is not always possible to
determine in exactly which week subsequent instances
of the event will occur. In this case, you should specify
an array containing the single number 4 or 5 to indicate
the week.

This method returns the soup entry added for the new event.

Here is an example:

GetRoot().calendar:AddEvent("Mother's Day",

StringToDate("5/14/95 12:00am"), 'yearlyByWeek, nil)

DeleteAppointment 16

calendar:DeleteAppointment(mtgTextOrFrame, mtgStartDate,
deleteOneOnly)

Finds the meeting(s) at the given date and time, with the given meeting text,
and deletes them all. If an instance of a repeating meeting is found, only that
single instance is deleted. If a meeting frame is passed as a parameter, the
method ignores the other parameters and deletes that meeting frame.

This method updates the Dates display, if necessary.

mtgTextOrFrame Either a string or rich string that is the meeting text of
the meeting you want to delete, or a meeting frame. A
meeting frame can be either a soup entry that contains a
meeting frame; see “Dates Soup Formats” (page 16-56),
or the frame returned by the FindAppointment or
FindExactlyOneAppointment method.

mtgStartDate An integer specifying the start date and time of the
meeting, in the number of minutes passed since
midnight, January 1, 1904. If mtgTextOrFrame is a
meeting frame, the value of mtgStartDate is ignored.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-35

deleteOneOnly A Boolean value that specifies whether to delete just one
or multiple meetings (if multiple meetings are found). If
you specify nil and more than one meeting is found,
all found meetings are deleted. If you specify true and
more than one meeting is found, this method throws an
exception.

This method’s return value is unspecified.

DeleteRepeatingEntry 16

calendar:DeleteRepeatingEntry(mtgTextOrFrame, mtgStartDate,
deleteOneOnly)

Finds the repeating meeting(s) or event(s) at the given date and time, with
the given meeting text, and deletes them all. All instances of the repeating
meeting/event are deleted, not just the instance at the given time and date. If
a meeting frame is passed as a parameter, the method ignores the other
parameters and deletes that meeting frame. This method also updates the
Dates display, if necessary.

mtgTextOrFrame Either a string or rich string that is the meeting text of
the repeating meeting or event you want to delete, or a
meeting frame. A meeting frame can be either a soup
entry that contains a meeting frame; see “Dates Soup
Formats” (page 16-56), or the frame returned by the
FindAppointment or
FindExactlyOneAppointment method.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. Note that events don’t have a
specific time during the day, so this method finds all
events scheduled during the day of mtgStartDate.

deleteOneOnly A Boolean value that specifies whether to delete just one
or multiple meetings/events (if multiple meetings or
events are found). If you specify nil and more than one
meeting or event is found, all found meetings/events

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-36 Dates Reference

are deleted. If you specify true and more than one
meeting or event is found, this method throws an
exception.

This method’s return value is unspecified.

DeleteEvent 16

calendar:DeleteEvent(mtgTextOrFrame, mtgStartDate, deleteOneOnly)

Finds the event(s) on the given date and time, with the given text, and
deletes them all. If an instance of a repeating event is found, only that single
instance is deleted. If a meeting frame is passed as a parameter, the method
ignores the other parameters and deletes that meeting frame. This method
updates the Dates display, if necessary.

mtgTextOrFrame Either a string or rich string that is the meeting text of
the event you want to delete, or a meeting frame. A
meeting frame can be either a soup entry that contains a
meeting frame; see “Dates Soup Formats” (page 16-56),
or the frame returned by the FindAppointment or
FindExactlyOneAppointment method.

mtgStartDate An integer specifying the start date and time of the
event, in the number of minutes passed since midnight,
January 1, 1904. Note that events don’t have a specific
time during the day, so this method finds all events
scheduled during the day of mtgStartDate.

deleteOneOnly A Boolean value that specifies whether to delete just one
or multiple events (if multiple events are found). If you
specify nil and more than one event is found, all found
events are deleted. If you specify true and more than
one event is found, this method throws an exception.

This method’s return value is unspecified.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-37

DisplayDate 16

calendar:DisplayDate(date, format)

Displays the Dates meetings, To Do List items, or the agenda for the specified
date. Executing this method is equivalent to the user tapping that date in the
month view. Note that this method is meant to be called only when the
calendar is open.

date An integer specifying a date, in the number of minutes
passed since midnight, January 1, 1904.

format A symbol specifying what is to be displayed, as follows:

'Day The day view.
'ToDoList The To Do List.
'Agenda The day’s agenda.
nil The calendar continues showing the

current view, after closing any overviews.

These views are equivalent to the similarly named
views listed on the Show button picker in the Dates
application.

This method’s return value is unspecified.

FindAppointment 16

calendar:FindAppointment(mtgText, findWords, dateRange, type,
maxNumberToFind)

Finds one or more meetings and/or events using the appointment title,
specific words, and/or a date range as search criteria. Note that if multiple
instances of a repeating meeting or event match the search criteria, all those
instances are returned.

mtgText A string or rich string that is the meeting text or event
text of the item(s) you want to find. Specify nil to
match all entries satisfying the other search criteria
(findWords, dateRange, and type).

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-38 Dates Reference

findWords An array of words or word beginnings (specified as
strings) used as search criteria to find meetings or
events. If the text of the meeting or event, or of the
notes, contains all the words in this array, it satisfies this
criterion. The words in the array can be split between
the meeting text and the meeting notes. The word
search is not case sensitive, and it searches only word
beginnings; it will not find a string that occurs inside a
word. Specify nil if you do not want to use this search
criterion.

dateRange A single time, an array of two times, or nil. A time is
specified as the number of minutes passed since
midnight, January 1, 1904.

If you specify a single time, all meetings scheduled at
that time satisfy the search criteria. In the case of events,
all events on the day containing that time satisfy the
search criteria.

If you specify an array of two times, all meetings and
events between the two times satisfy the search criteria.

Specify nil if you do want not use this search criterion.

type Used to limit the found items to meetings, repeating
meetings, events, or repeating events. Specify one of the
following symbols, an array of these symbols (to
include multiple types), or nil:

nil This search criterion is not used.
'Meeting Search for nonrepeating meetings.
'Event Search for nonrepeating events.
'RepeatingMeeting

Search for repeating meetings.
'RepeatingEvent

Search for repeating events.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-39

maxNumberToFind
An integer that specifies the maximum number of items
to find. After this number of items is found, this method
stops searching and returns the results. Specify nil to
use the default value of 50.

This method returns an array of the resulting meeting frames for the
meetings and events. The meeting frames are soup entries in the case of
nonrepeating meetings and events, as described in “Meeting Frames”
(page 16-57). In the case of repeating meetings or events, the meeting frame
returned has the following slots:

Slot description

viewStationery The symbol 'RepeatingMeeting for a repeating
meeting, or 'CribNote for a repeating event.

class The symbol 'meeting.
mtgStartDate The date and time of this instance of the repeating

meeting in the number of minutes passed since
midnight, January 1, 1904.

repeatTemplate The soup entry for the defining instance of the repeating
meeting or event.

Note that even though the two senses of “meeting frame” are different for
repeating and nonrepeating meetings or events, methods that expect a
meeting frame accept either type.

FindExactlyOneAppointment 16

calendar:FindExactlyOneAppointment(mtgText, findWords,
dateRange, type)

Finds and returns exactly one meeting or event using specific words and/or
a date range as search criteria.

mtgText A string or rich string that is the meeting text or event
text of the item you want to find. Specify nil to match
an entry satisfying the other search criteria (findWords,
dateRange, and type).

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-40 Dates Reference

findWords An array of words or word beginnings (specified as
strings) used as search criteria to find meetings or
events. If the text of the meeting or event, or of the
notes, contains all the words in this array, it satisfies
these criteria. The words in the array can be split
between the meeting text and the meeting notes. The
word search is not case sensitive, and it searches only
word beginnings; it will not find a string that occurs
inside a word. Specify nil if you do want not use this
search criterion.

dateRange A single time, an array of two times, or nil. A time is
specified as the number of minutes passed since
midnight, January 1, 1904.

If you specify a single time, all meetings scheduled at
that time will satisfy the search criteria. In the case of
events, all events on the day containing that time satisfy
the search criteria.

If you specify an array of two times, all meetings and
events between the two times satisfy the search criteria.

Specify nil if you do want not use this search criterion.

type Limits the found item to a meeting, repeating meeting,
event, or repeating event. Specify one of the following
symbols, an array of these symbols (to include multiple
types), or nil:

nil This search criterion is not used.
'Meeting Search for a nonrepeating meeting.
'Event Search for a nonrepeating event.
'RepeatingMeeting

Search for a repeating meeting.
'RepeatingEvent

Search for a repeating event.

This method returns the meeting frame for the meeting or event. The
meeting frame is a soup entry in the case of a nonrepeating meeting or event.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-41

In the case of an instance of a repeating meeting or event the meeting frame
returned is as described in FindAppointment (page 16-37).

If no entry is found, or more than one is found, this method throws an
exception (error –48418).

FindNextMeeting 16

calendar:FindNextMeeting(date)

Finds the first meeting after the specified date and time. This method might
be useful for an application that wants to find open time in the calendar for
scheduling a meeting.

date An integer specifying a date and time, in the number of
minutes passed since midnight, January 1, 1904.

This method returns an array containing the meeting start date as the first
element and its duration as the second element. If there is more than one
meeting scheduled at that time, the duration of the longest one is returned. If
there are no meetings scheduled after the specified date, nil is returned.

GetMeetingIconType 16

calendar:GetMeetingIconType(mtgTextOFrame, mtgStartDate)

Returns the type of icon used for a particular meeting or event. The
following symbols can be returned: 'Event, 'Meeting, 'WeeklyMeeting,
'MultiDayEvent, or 'AnnualEvent.

mtgTextOrFrame Either a string or rich string that is the meeting text of
the meeting whose icon you want, or a meeting frame.
A meeting frame can be either a soup entry that
contains a meeting frame; see “Dates Soup Formats”
(page 16-56), or the frame returned by the
FindAppointment or
FindExactlyOneAppointment method.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. Note that events don’t have a

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-42 Dates Reference

specific time during the day, so this method finds an
event scheduled any time during the day of
mtgStartDate.

If the meeting or event uses a custom meeting type defined by
RegMeetingType (page 16-48), that type is not returned by
GetMeetingIconType. GetMeetingIconType returns either 'Meeting
or 'Event, depending on whether the custom meeting type is created using
AddAppointment (page 16-30) or AddEvent (page 16-32). You must look at
the meetingType slot of the custom meeting or event to determine the
unique custom meeting type defined by RegMeetingType (page 16-48).

GetCalendarMeetingType 16

GetCalendarMeetingType() //platform file function

Returns an array of all meeting types registered with the Dates application.
This array includes all the built-in meeting types listed in Table 16-7 as well
as any custom meeting types created by a call to RegMeetingType
(page 16-48).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetCalendarMeetingTypeFunc with ();

▲

GetCalendarMeetingTypeInfo 16

GetCalendarMeetingTypeInfo(typeSymbol) //platform file
function

Returns a frame containing information about the meeting type represented
by typeSymbol, or nil if typeSymbol has no associated meeting type.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-43

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetCalendarMeetingTypeInfoFunc with (typeSymbol);
▲

typeSymbol A symbol associated with a meeting type, as returned
by GetCalendarMeetingType (page 16-42).

This function returns a frame with the following slots:

Slot description

label A string that is the text displayed in the New menu for
this meeting type.

icon A bitmap frame (of the kind returned by
GetPictAsBits) containing the bitmap displayed in
the New menu for this meeting type.

smallIcon A bitmap frame containing the bitmap displayed in the
meeting slip for this meeting type.

shape A shape object containing the icon bitmap.
memory A symbol under which the most recently used meeting

title strings are stored. (These are stored and accessed
using the functions AddMemoryItem and
GetMemoryItems.)

GetMeetingInvitees 16

calendar:GetMeetingInvitees(mtgText, mtgStartDate)

Returns the list of invitees for a meeting, or returns nil if there are none.

mtgText A string or rich string that is the meeting text of the
meeting for which you want to get the list of invitees.

mtgStartDate An integer specifying the start date and time of the
meeting, in the number of minutes passed since
midnight, January 1, 1904.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-44 Dates Reference

The list returned is an array of name reference frames; these frames are
described in “Name References” (page 5-1) in Newton Programmer�s Reference.

GetMeetingLocation 16

calendar:GetMeetingLocation(mtgText, mtgStartDate)

Returns the location for a meeting, or returns nil if there is none.

mtgText A string or rich string that is the meeting text of the
meeting for which you want to get the location.

mtgStartDate An integer specifying the start date and time of the
meeting, in the number of minutes passed since
midnight, January 1, 1904.

The meeting location is returned as a name reference frame; these frames are
described in “Name References” (page 5-1) in Newton Programmer�s Reference.

GetMeetingNotes 16

calendar:GetMeetingNotes(mtgText, mtgStartDate)

Returns the notes for a meeting or event, or returns nil if there are none.

mtgText A string or rich string that is the meeting text of the
meeting or event for which you want to get the notes.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904.

The notes are returned as an array of frames with the same format as the
data slot of a Notes soup entry; see “Notes Soup Format” (page 16-82).

GetSelectedDates 16

calendar:GetSelectedDates()

Returns an array of the currently selected and displayed dates. This array
always has at least one element. If the Dates application is closed, the
method returns nil.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-45

These dates are integers specifying a date and time, in the number of
minutes passed since midnight, January 1, 1904. Note that the time for each
date in the array is set to midnight at the beginning of the day.

MoveAppointment 16

calendar:MoveAppointment(mtgText, mtgStartDate, newStartDate,
newDuration)

Finds the unique meeting or event with the given text at the given date and
time, and changes the start date and/or the meeting duration.

mtgText A string or rich string that is the meeting text of the
meeting or event you want to move.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. Note that events don’t have a
specific time during the day, so this method finds an
event scheduled at any time during the day of
mtgStartDate.

newStartDate An integer specifying the new start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. If nil, the start date and
time remain unchanged.

newDuration A positive integer specifying the new duration of the
meeting in minutes. If nil, the duration is unchanged.
If the entry is an event, specify nil.

This method’s return value is unspecified.

If you specify a repeating meeting or event that is not an exception case, this
method changes the start time and duration of all repeating instances of the
meeting or event that are not exceptions. However, if newStartDate is not a
day that matches the original repeating pattern, this method changes
newStartDate to the first day after the one specified that does match the
repeating pattern.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-46 Dates Reference

For example, if the repeating meeting normally occurs on Tuesdays and
Thursdays and you specify a newStartDate that is on a Friday, this method
changes the newStartDate to the following Tuesday.

If no meeting or event is found, or more than one is found, this method
throws an exception.

MoveOnlyOneAppointment 16

calendar:MoveOnlyOneAppointment(mtgText, mtgStartDate,
newStartDate, newDuration)

Finds the unique meeting or event with the given text at the given date and
time, and changes the start date and/or the meeting duration.

mtgText A string or rich string that is the meeting text of the
meeting or event you want to move.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. Note that events don’t have a
specific time during the day, so this method finds an
event scheduled at any time during the day of
mtgStartDate.

newStartDate An integer specifying the new start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. If nil, the start date and
time remain unchanged.

newDuration A positive integer specifying the new duration of the
meeting in minutes. If nil, the duration is unchanged.
If the entry is an event, specify nil.

This method’s return value is unspecified.

If you specify a repeating meeting or event that is not an exception case, this
method changes it to an exception case and applies the new start time and
duration to the new exception.

If no meeting or event is found, or more than one is found, then this method
throws an exception.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-47

OpenMeetingSlip 16

calendar:OpenMeetingSlip(meetingFrame, date, openDefaultSlip)

Opens the meeting slip for the specified meeting or event.

meetingFrame Either a soup entry that contains a meeting frame; see
“Dates Soup Formats” (page 16-56), or the frame
returned by the FindAppointment (page 16-37) or
FindExactlyOneAppointment (page 16-39) method.

If this parameter is a soup entry for a repeating meeting
or event, also specify the date parameter.

date Used only if meetingFrame is a repeating meeting or
event. This parameter must be the date and time of a
particular instance of the repeating meeting or event.

openDefaultSlip A Boolean. Set to true to cause the Dates application to
open the default meeting slip for the meeting or event.
Set to nil to cause the Dates application to send the
OpenMeeting (page 16-50) message to the frame
registered for this meeting type, if there is one.

This method’s return value is unspecified.

RegInfoItem 16

calendar:RegInfoItem(symbol, frame)

Adds an item to the end of the Info button picker in the base view of the
Dates application.

symbol A unique symbol identifying the item. Use your
developer signature in this symbol.

frame A frame containing two slots:

item A string or a bitmap frame. This is the
item to display in the picker.

DoAction This method is called if the user picks this
item. It is passed no parameters.

Items added by this method are not persistent across a system restart.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-48 Dates Reference

This method’s return value is unspecified.

To remove the item added by this method, call UnRegInfoItem
(page 16-56).

RegMeetingType 16

calendar:RegMeetingType(symbol, frame)

Registers a new meeting type for the Dates application. The meeting type
appears in the New picker of the Dates application.

symbol A unique symbol identifying the meeting type. Use
your developer signature in this symbol.

frame A frame describing the new meeting type. The frame
slots are described below.

The slots in frame are as follows:

Slot description

item Required. A string that is the meeting-type name to
appear in the picker.

icon Required. A bitmap frame containing a bitmap to
appear next to the name in the picker. This bitmap is
also displayed in the New pickers, the day view, agenda
view, and overview. The bitmap must be no larger than
24 pixels wide by 15 pixels high.

NewMeeting Required. A function called if the user chooses this
meeting type in the New picker. See the description of
the NewMeeting method (page 16-49).

smallicon Optional. A bitmap frame containing a bitmap to be
displayed in the meeting slip. The bitmap must be no
more than 12 pixels high. If this slot is not included, the
icon in icon is used, which looks unattractive.

memory Optional. A symbol identifying the system storage
location for previous meeting titles of this new meeting
type. When the user makes a new meeting of this type,
the Title picker in the meeting slip lists previous
meeting titles of this meeting type as a convenience. If

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-49

you don’t provide this slot, the Dates application uses
the storage location allocated for the underlying
meeting type (that is, as a meeting).

OpenMeeting Optional. A function called if the user taps the icon of a
meeting or event whose meetingType slot matches the
symbol under which this meeting type was registered;
see OpenMeeting (page 16-50).

Meeting types added by RegMeetingType are not persistent across a
system restart.

To remove the meeting type added by RegMeetingType, call
UnRegMeetingType (page 16-56).

This method’s return value is unspecified.

NewMeeting 16

myMeetingType:NewMeeting(date, parentBox)

Called if the user chooses this meeting type in the New picker. It is a method
of the frame registered with RegMeetingType (page 16-48).

This method must create a meeting (or event) using AddAppointment (or
AddEvent), and must add a slot called meetingType to the appointment
created. This slot must be set to the symbol that identified the meeting type
in the call to RegMeetingType (page 16-48). Remember to call
EntryChange to save this new slot.

date This parameter is the current date displayed by the
Dates application.

parentBox This parameter is the global viewBounds of the
calendar base view.

If NewMeeting returns the new meeting frame, the Dates application
performs the default action, which is to open the default meeting slip. If this
method returns nil, the Dates application does nothing and this method
should perform any necessary actions.

If this method opens its own meeting slip or other view, it should do so by
using the Dates method RememberedOpen (page 16-51). That method opens

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-50 Dates Reference

the view and records it so that the Dates application can close the view if the
Dates application is closed.

If you are creating a custom meeting slip, you may want to use the
protoRepeatPicker and protoRepeatView protos.

OpenMeeting 16

myMeetingType:OpenMeeting(meeting, date, parentBox)

Called if the user taps the icon of a meeting or event that has a
meetingType slot that matches the symbol under which this meeting type
was registered. It is a method of the frame registered with RegMeetingType.

meeting The soup entry for the tapped item.
date The date and time of the meeting in number of minutes

since midnight, January 1, 1904.
parentBox The global viewBounds of the calendar base view.

If OpenMeeting returns a non-nil value, the Dates application performs
the default action, which is to open the default meeting slip. If this method
returns nil, the Dates application does nothing and this method should
perform any actions necessary.

If this method opens its own meeting slip or other view, it should do so by
using the Dates method RememberedOpen (page 16-51). That method opens
the view and records it so that the Dates application can close the view if the
calendar is closed.

RememberedClose 16

calendar:RememberedClose(view)

Closes a view in the calendar that was opened with RememberedOpen. If the
view is closed without calling this method, the Dates application keeps a
reference to the view until the calendar is closed, which wastes memory.

view The view to close.

This method’s return value is unspecified.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-51

This method should be used to close views opened by RememberedOpen
from within the OpenMeeting (page 16-50) method of RegMeetingType
(page 16-48) and from within the DoAction method of RegInfoItem
(page 16-47).

RememberedOpen 16

calendar:RememberedOpen(view)

Opens a view in the Dates application and records it so that if the Dates
application is closed, that view is also closed.

view The view to open.

This method’s return value is unspecified.

This method should be used to open views from within the OpenMeeting
(page 16-50) method of RegMeetingType (page 16-48) and from within the
DoAction method of RegInfoItem (page 16-47).

Views opened by RememberedOpen should be closed by RememberedClose.

SetEntryAlarm 16

calendar:SetEntryAlarm(mtgText,mtgStartDate,minutesBefore)

Sets an alarm on the meeting with the given text at the given date and time.
If the meeting is an instance of a repeating meeting, the alarm is set for all
instances of the repeating meeting.

mtgText A string or rich string that is the meeting text of the
meeting for which you want to set the alarm time.

mtgStartDate An integer specifying the start date and time of the
meeting, in the number of minutes passed since
midnight, January 1, 1904.

minutesBefore A non-negative integer, which specifies how far in
advance of the meeting or event the alarm should go
off. A value of 0 means the alarm goes off at the time of
the meeting. This integer should specify the number of
minutes before mtgStartDate that you want the alarm to
go off.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-52 Dates Reference

You can specify nil to clear an alarm that is currently
set.

This method’s return value is unspecified.

SetMeetingIconType 16

calendar:SetMeetingIconType(mtgText, mtgStartDate, newIconType)

Finds a particular meeting or event and sets its icon type. If the item found is
an instance of a repeating meeting or event, the icon type is changed for all
instances in that repeating series.

mtgText A string or rich string that is the meeting text of the
meeting or event for which you want to set the icon
type.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. Note that events don’t have a
specific time during the day, so this method finds an
event scheduled at any time during the day of
mtgStartDate.

newIconType A symbol specifying the new icon type to set for the
meeting or event. You can specify the following icon
types: 'Event, 'Meeting, 'WeeklyMeeting,
'MultiDayEvent, or 'AnnualEvent.

This method’s return value is unspecified.

If the new icon type is incompatible with the type of the meeting or event,
then this method throws an exception. Table 16-7 shows the icon types and
the meeting and event types with which they are compatible.

SetMeetingInvitees 16

calendar:SetMeetingInvitees(mtgText, mtgStartDate, invitees)

Sets list of invitees for the meeting specified by mtgText and mtgStartDate.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-53

mtgText A string or rich string that is the meeting text of the
meeting for which you want to set the list of invitees.

mtgStartDate An integer specifying the start date and time of the
meeting, in the number of minutes passed since
midnight, January 1, 1904.

invitees An array specifying the invitees to set, or nil to clear
the location for the meeting. The array can contain any
combination of the following four objects:

■ a name reference; see “Name References” (page 5-1)
in Newton Programmer�s Reference.

■ a Names soup entry

■ an alias to a Names soup entry

■ a frame containing first and last name strings, with
this format:

{name: {first: string,

 last: string}}

In this frame, you can specify the empty string, or nil,
or leave the slot out if the first or last name is missing.

This method’s return value is unspecified.

If the specified meeting is a repeating meeting and not an exception meeting,
this method sets the list of invitees for all meetings in the repeating series. If
the specified meeting is a repeating meeting exception, the list of invitees
applies to that exception meeting only.

SetMeetingLocation 16

calendar:SetMeetingLocation(mtgText, mtgStartDate, location)

Sets the location for the meeting specified by mtgText and mtgStartDate.

mtgText A string or rich string that is the meeting text of the
meeting for which you want to set the location.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-54 Dates Reference

mtgStartDate An integer specifying the start date and time of the
meeting, in the number of minutes passed since
midnight, January 1, 1904.

location Specifies the location to be set. This parameter must be
one of the following objects:

■ a name reference; see “Name References” (page 5-1)
in Newton Programmer�s Reference.

■ a Names soup entry

■ an alias to a Names soup entry

■ a string (write-in location)

■ nil, to clear the location for the meeting

This method’s return value is unspecified.

If the specified meeting is a repeating meeting and not an exception meeting,
this method sets the location for all meetings in the repeating series. If the
specified meeting is a repeating meeting exception, the location applies to
that exception meeting only.

SetMeetingNotes 16

calendar:SetMeetingNotes(mtgText, mtgStartDate, notes)

Sets the notes for a meeting or event specified by mtgText and mtgStartDate.
The new notes replace all existing notes.

mtgText A string or rich string that is the meeting text of the
meeting or event for which you want to set the notes.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. Note that events don’t have a
specific time during the day, so this method finds an
event scheduled any time during the day specified by
mtgStartDate.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-55

notes Specifies the notes to set. This parameter must be one of
the following objects:

■ a string

■ an array of frames with the same format as the data
slot of a Notes soup entry; see “Notes Soup Format”
(page 16-82)

■ nil, to clear the notes for the meeting

This method’s return value is unspecified.

If the specified meeting is a repeating meeting, this method sets the notes for
only the particular instance of the meeting identified by mtgStartDate.

SetRepeatingEntryStopDate 16

calendar:SetRepeatingEntryStopDate(mtgText, mtgStartDate,
mtgStopDate)

Sets the stop date for the repeating meeting or event with the given text at
the given date and time.

mtgText A string or rich string that is the meeting text of the
repeating meeting or event for which you want to set
the stop time.

mtgStartDate An integer specifying the start date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. Note that events don’t have a
specific time during the day, so this method finds an
event scheduled at any time during the day of
mtgStartDate.

mtgStopDate An integer specifying the stop date and time of the
meeting or event, in the number of minutes passed since
midnight, January 1, 1904. The stop date is the date after
which the meeting or event will no longer repeat. If you
specify nil, the meeting or event repeats forever.

This method’s return value is unspecified.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-56 Dates Reference

UnRegInfoItem 16

calendar:UnRegInfoItem(symbol)

Removes an item previously added by RegInfoItem (page 16-47) to the
Info picker in the base view of the Dates application.

symbol The symbol used to identify the item in the
RegInfoItem method that added the item.

This method’s return value is unspecified.

UnRegMeetingType 16

calendar:UnRegMeetingType(symbol)

Removes a meeting type previously added by RegMeetingType
(page 16-48) to the New picker in the base view of the Dates application.

symbol The symbol used to identify the item in the
RegMeetingType method that registered the item.

This method’s return value is unspecified.

Dates Soup Formats 16
This section describes the format of entries in the Dates soups, which consist
of either meeting frames or notes frames. The slots contained in these entry
frames are described in “Meeting Frames” (page 16-57) and “Notes Frames”
(page 16-62). There are four soups managed by the Dates application:

Soup (name string) description

ROM_CalendarSoupName (“Calendar”)
Entries are meeting frames (page 16-57) for
nonrepeating meetings.

ROM_RepeatMeetingName (“Repeat Meetings”)
Entries are meeting frames (page 16-57) for repeating
meetings and notes frames (page 16-62) for notes
associated with specific instances of a repeating
meeting. A single meeting frame entry describes all
instances of a repeating meeting.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-57

ROM_CalendarNotesName (“Calendar Notes”)
Entries are meeting frames (page 16-57) for
nonrepeating events.

ROM_RepeatNotesName (“Repeat Notes”)
Entries are meeting frames (page 16-57) for repeating
events and notes frames (page 16-62) for notes
associated with specific instances of a repeating event.

Meeting Frames 16

Each meeting frame contains the following required slots:

Slot descriptions

viewStationery In the Calendar soup this slot always contains the value
'Meeting for a meeting. In the Repeat Meetings soup it
always contains the value 'repeatingMeeting. In the
Calendar Notes and Repeat Notes soups it always
contains the value 'CribNote.

mtgStartDate Contains an immediate value: the start date of the
meeting (or date the event was entered) in the number
of minutes passed since midnight, January 1, 1904. For
events the time is midnight at the beginning of the day.

mtgDuration Contains an integer; the duration of the meeting in
minutes. For events this value is meaningless and
should be set to zero.

mtgText A rich string containing the meeting or event text. A
rich string is used because the user can enter ink for the
text of the meeting or event.

A meeting frame may also contain the following optional slots:

Slot descriptions

mtgStopDate Used for repeating meetings and events. An immediate
value: the date that the meeting should stop repeating,
in the number of minutes passed since midnight,
January 1, 1904.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-58 Dates Reference

repeatType Used for repeating meetings and events. Contains one
of the following constants that describes how often the
meeting repeats: kDayofWeek (0), kWeekInMonth (1),
kDateInMonth (2), kDateInYear (3), kPeriod (4),
kNever (5), kWeekInYear (7).

mtgInfo Used for repeating meetings and events. An immediate
value containing packed repeating meeting information.
This slot is interpreted differently, depending on the
value of the repeatType slot, as follows:
repeatType = kDayOfWeek

mtgInfo is set to any combination of
constants from the following two
groups added together:

Constants for day of week

kSunday 0x00000800

kMonday 0x00000400

kTuesday 0x00000200

kWednesday 0x00000100

kThursday 0x00000080

kFriday 0x00000040

kSaturday 0x00000020

kEveryday 0x00000FE0

Constants for week in month

kFirstWeek 0x00000010

kSecondWeek 0x00000008

kThirdWeek 0x00000004

kFourthWeek 0x00000002

kLastWeek 0x00000001

kEveryWeek 0x0000001F

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-59

repeatType = kWeekInMonth
mtgInfo is set to a single constant from
the first group above, added to any
combination from the second group.

repeatType = kDateInMonth
mtgInfo is set to the date in the month
on which the meeting or event is to repeat.

repeatType = kDateInYear
mtgInfo is set to (month<<8) + date,
where month is the number of the month
in the year (January = 1) and date is the
date in the month on which the meeting is
to repeat.

repeatType = kPeriod
mtgInfo is set to (mtgDay<<8) + period,
where mtgDay is the date, measured in
days, of the meeting. This is the same as
mtgStartDate, but in days, instead of
minutes—that is, more simply,
mtgStartDate DIV 1440. period is the
number of days between meetings.
Technically, period can range between 1
and 255; however, the current Newton
user interface allows the user to choose
only every other week (14 days) for this
kind of meeting. Opening a kPeriod
meeting always displays it as an “Every
other week” meeting type and resets its
period to 14.

repeatType = kWeekInYear
mtgInfo is set to (month<<12) plus a
single constant from the day-of-week
constants (for example, kThursday) plus
a single constant from the week-in-month
constants (for example, kThirdWeek).

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-60 Dates Reference

IMPORTANT

mtgInfo uses only the least-significant 24 bits of the
integer. The remaining bits are reserved for future
expansion. Always be sure to mask out the upper bits so
a future change in format will not overflow your
values. ▲

mtgAlarm Contains an immediate value. For single (nonrepeating)
meetings or events, this value is the time when the
alarm should occur. This value is represented as the
number of minutes passed since midnight, January 1,
1904. For repeating meetings or events, this slot contains
the number of minutes before the meeting or event at
which the alarm should go off.

mtgIconType This slot determines what kind of icon to display for
this meeting or event and what kind of slip to display
when the user taps the meeting marker. The valid
values are 'Meeting, 'WeeklyMeeting, 'Event,
'MultiDayEvent, and 'AnnualEvent. If the slot
doesn’t exist, or is nil, the icon defaults to the Meeting
icon or the Event icon.

mtgInvitees If the meeting frame is for a meeting, not for an event,
this slot contains an array listing the invitees to the
meeting. The elements in the array are name references;
see “Name References” (page 5-1) in Newton
Programmer�s Reference. If the meeting has no invitees
specified, nil is stored in the slot. Use the methods
GetMeetingInvitees (page 16-43) and
SetMeetingInvitees (page 16-52) to read or write
this slot.

mtgLocation If the meeting frame is for a meeting, not for an event,
this slot stores the meeting location as a name reference;
see “Name References” (page 5-1) in Newton
Programmer�s Reference. If the meeting has no location
specified, nil is stored in the slot. Use the methods
GetMeetingLocation (page 16-44) and
SetMeetingLocation (page 16-53) to read or write
this slot.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-61

notesData Contains an array of meeting (or event) note objects for
nonrepeating meetings and events. Meeting notes are
the notes visible when the user taps the Add notes or
Edit notes button in a meeting slip to open its notes
view. Meeting notes can consist of text objects, polygons,
or ink objects. These objects have the same format as
data objects in the Notes soup. For information on the
format of these objects, see the description of the data
slot in “Notes Soup Format” (page 16-82). Text objects
have, in addition, a viewFont slot specifying the font
of the text.
Notes for repeating meetings and events are stored in
the instanceNotesData slot.

instanceNotesData
Contains an array of aliases to notes for instances of
repeating meetings and events that have notes. Each
instance’s notes are stored as a separate soup entry in
the Repeat Meetings soup containing the repeating
meeting, or in the Repeat Notes soup containing the
repeating event.
The instanceNotesData slot is an array of pairs.
Each pair is an array of two elements: [time, notesAlias].
The first element, time, is the date and time of the
meeting or event instance. The second element,
notesAlias, is an alias to another entry in the same soup,
that entry contains the actual notes for that instance. For
a description of the format of a note entry see “Notes
Frames” (page 16-62). For information on entry aliases,
see Chapter 11, “Data Storage and Retrieval,” in Newton
Programmer�s Guide.
Use the methods GetMeetingNotes (page 16-44) and
SetMeetingNotes (page 16-54) to access this slot.
Notes for nonrepeating meetings and events are stored
in the notesData slot.

version Contains the integer 2 if the meeting or event was
created by version 2.0 of the Dates application. If this
slot is missing or its value is nil, the Dates application

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-62 Dates Reference

assumes the meeting or event was created by the 1.x
version of the application. When the Dates application
converts a 1.x meeting or event to 2.0 format, it sets this
slot to the value 2.

viewBounds A bounds frame used only for meetings that are not at
the left edge of the Day view, such as double-booked
meetings.

exceptions Used for repeating meetings or events. This is an array
of arrays representing meetings and events that are
exceptions to the normal repeating time; for example,
when a user has erased one of the instances of a meeting
or event or has changed the starting time or duration. It
would then be listed in this array as an exception.

▲ W A R N I N G

The internal format of exception meetings is subject to
change, so you should treat this array as read-only, and
not attempt to add to it. ▲

Each subarray represents one exception. There are two
elements in each array. The first is an integer specifying
the normal time of the meeting or event, in the number
of minutes since midnight, January 1, 1904. The second
element is either nil, meaning the meeting or event has
been erased, or is an exception meeting frame that
contains the changed information, such as a different
mtgStartDate or mtgDuration.
Note that the viewStationery slot of an exception
meeting frame contains the symbol
'exceptionMeeting. The viewStationery slot of
an exception event frame contains the symbol
'CribNote.

Notes Frames 16

Notes frames occur in the Repeat Meetings and Repeat Notes soups. Notes
frames contain the notes for a specific instance of a repeating meeting or
event.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-63

Each notes frame contains the following required slots:

Slot descriptions

notes An array of note objects. Notes can consist of text
objects, polygons, or ink objects. These objects have the
same format as data objects in the Notes soup. For
information on the format of these objects, see the
description of the data slot in the section “Notes Soup
Format” (page 16-82). Text objects have, in addition, a
viewFont slot specifying the font of the text.

repeatingMeetingAlias
An alias to the repeating meeting or event soup entry
with which these notes are associated. For information
on entry aliases see Chapter 11, “Data Storage and
Retrieval,” in Newton Programmer�s Guide.

Dates Error Codes 16
A list of the error codes in the Dates API follows, shown alphabetically by
the function or set of functions that throws the exception. More than one
method are grouped together if they all throw the same exceptions for the
same reasons. The method name, the name of the error, the error code
number, the value, and a text string are given. The text string is a detailed
explanation of the error, but is not displayed.

Note

A few of the functions listed are not described elsewhere.
These functions are not intended for your use. However,
since public functions call these, the exceptions they throw
are listed below. ◆

AddAppointment

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'mtgDuration argument
Message: "Expected positive integer for 'mtgDuration
argument."

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-64 Dates Reference

Plus all those thrown by ValidatePeriod and
ValidateTitleAndDatetimeArgs.

AddEvent

All those thrown by ValidatePeriod and
ValidateTitleAndDatetimeArgs.

DeleteAppointment, DeleteEvent, and DeleteRepeatingEntry

Error: kFramesErrNotTrueOrNil
Error Code: –48424
Value: 'deleteOneOnly argument
Message: "Expected true or nil for 'deleteOneOnly
argument."

Plus all those thrown by IdentifyAppointments.

FindAppointment

Error: kFramesErrNotAStringOrNil
Error Code: –48414
Value: 'mtgText argument
Message: "Expected string or nil for 'mtgText argument."

Error: kFramesErrNotAnArrayOrNil
Error Code: –48413
Value: 'findWords argument
Message: "Expected array of strings or nil for 'findWords
argument."

Error: kFramesErrNotAnArrayOrNil
Error Code: –48413
Value: 'dateRange argument
Message: "Expected nil or integer or array of two integers
for 'dateRange argument."

Error: kFramesErrNotAnArrayOrNil
Error Code: –48413
Value: 'type argument
Message: "Expected nil, a meeting type symbol, or an array
of meeting type symbol(s) for 'type argument. The

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-65

possible meeting type symbols are Meeting, Event,
RepeatingMeeting, and RepeatingEvent."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: maxNumberTofind argument
Message: "Expected nil or number for maxNumberTofind
argument."

FindExactlyOneAppointment

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: array of appointments found
Message: "More than one matching meeting/event found."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: nil
Message: "No matching meeting/event found."

Plus all those thrown by FindAppointment.

GetMeetingIconType

All those thrown by IdentifyAppointments.

GetMeetingInvitees, GetMeetingLocation, and GetMeetingNotes

All those thrown by ValidateTitleAndDatetimeArgs and
FindExactlyOneAppointment.

IdentifyAppointments

Error: kFramesErrUnexpectedFrame
Error Code: –48416
Value: 'mtgTextOrFrame argument
Message: "The frame argument is not a meeting frame."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: nil
Message: "No meeting/event found with that title on that
date"

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-66 Dates Reference

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: array of appointments found
Message: "More than one meeting/event found with that
title on that date."

Plus all those thrown by ValidateTitleAndDatetimeArgs and
FindAppointment.

MoveAppointment, and MoveOnlyOneAppointment

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'newDatetime argument
Message: "Expected positive integer or nil for
'newDatetime argument."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'newDuration argument
Message: "Expected positive integer or nil for
'newDuration argument."

RegMeetingType

Error: kFramesErrUnexpectedFrame
Error Code: –48416
Value: 'frame argument
Message: "The 'frame argument to RegMeetingType is
missing the item, icon or newMeeting slots."

SetEntryAlarm

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'minutesBefore argument
Message: "Expected nil or non-negative integer for
'minutesBefore argument."

Plus all those thrown by ValidateTitleAndDatetimeArgs and
FindExactlyOneAppointment.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Dates Reference 16-67

SetMeetingIconType

Error: kFramesErrNotASymbol
Error Code: –48410
Value: 'newIconType argument
Message: "Expected 'Meeting, 'WeeklyMeeting, 'Event,
'MultiDayEvent, or 'AnnualEvent for 'newIconType
argument."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: nil
Message: "New icon type is incompatible with old type."

Plus all those thrown by ValidateTitleAndDatetimeArgs and
FindExactlyOneAppointment.

SetMeetingInvitees, SetMeetingLocation, and SetMeetingNotes

All those thrown by ValidateTitleAndDatetimeArgs and
FindExactlyOneAppointment.

SetRepeatingEntryStopDate

Error: kFramesErrNotAnInteger
Error Code: –48406
Value: 'mtgStopDate argument
Message: "Expected non-negative integer for 'mtgStopDate
argument."

Plus all those thrown by ValidateTitleAndDatetimeArgs and
FindExactlyOneAppointment.

ValidatePeriod

Error: kFramesErrNotNil
Error Code: –48422
Value: 'repeatInfo argument
Message: "Expected nil for 'repeatInfo argument."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'repeatPeriod argument

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-68 Dates Reference

Message: "Expected nil, 'daily, 'weekly, 'biweekly,
'monthlyByWeek, 'monthly, 'yearly, or 'yearlyByWeek for
'repeatPeriod argument."

Error: kFramesErrNotAnArrayOrNil
Error Code: –48413
Value: 'repeatInfo argument
Message: "Expected nil or array of integers for
'repeatInfo argument."

Error: kFramesErrNotAnArrayOrNil
Error Code: –48413
Value: 'repeatInfo argument
Message: "Since 'period is 'yearlyByWeek, expected nil or
array of one integer for 'repeatInfo argument."

Error: kFramesErrNotAnArray
Error Code: –48401
Value: 'repeatInfo argument
Message: "Expected array of integers for 'repeatInfo
argument."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'repeatInfo argument
Message: "Since 'repeatPeriod is 'weekly, expected
integers between 0 and 6 for 'repeatInfo argument."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'repeatInfo argument
Message: "Since 'repeatPeriod is 'monthlyByWeek or
'yearlyByWeek, expected integers between 1 and 5 for
'repeatInfo argument."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'repeatInfo argument

C H A P T E R 1 6

Built-in Applications and System Data Reference

To Do List Reference 16-69

Message: "Meeting 'mtgStartDate does not fit in any value
in 'repeatInfo argument."

ValidateTitleAndDatetimeArgs

Error: kFramesErrNotAString
Error Code: –48402
Value: 'mtgText or 'mtgTextOrFrame argument
Message: "Expected string for meeting 'mtgText or
'mtgTextOrFrame argument."

Error: kFramesErrUnexpectedImmediate
Error Code: –48418
Value: 'mtgStartDate argument
Message: "Expected positive integer for 'mtgStartDate
argument."

To Do List Reference 16

This sections describes the To Do List methods and soup format.

To Do List Methods 16
This section describes the methods defined by the To Do List that are
available to you. To obtain a reference to the To Do List to send these
messages, use the following code:

GetRoot().calendar:GetToDo().

Note that future Newton devices may not include the To Do List application.
You should therefore check for the existence of the To Do List application
before trying to access it. Use the following code for this test:

if GetRoot().calendar then

if GetRoot().calendar:?GetToDo() then ...

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-70 To Do List Reference

CreateToDoItem 16

toDoFrame:CreateToDoItem(date, richString, reminder, frequency)

Adds a task with the specified text for the specified date. It returns an
integer, which is the index of the item made (that is, if the new task is the
second one on the specified date, CreateToDoItem returns 1).

date The date of the task in the number of minutes passed
since midnight, January 1, 1904.

richString A string or rich string for the text associated with the task.

reminder An integer. The number of days notice before the task,
or nil.

frequency A frequency frame, or nil if the task does not repeat. A
frequency frame should have the following slots:

Slot descriptions

mtgStartDate
An integer; the start date of the task in the
number of minutes passed since
midnight, January 1, 1904.

mtgStopDate
An integer; the date that the task should
stop repeating, in the number of minutes
passed since midnight, January 1, 1904.

repeatType
One of the following constants that
describes how often the meeting repeats:
kDayofWeek (0), kWeekInMonth (1),
kDateInMonth (2), kDateInYear(3),
kPeriod(4), kNever(5),
kWeekInYear(7).

mtgInfo An immediate value containing packed
repeating task information. This slot is
interpreted differently, depending on the
value of the repeatType slot; see the
description of the mtgInfo slot in
“Meeting Frames” (page 16-57).

C H A P T E R 1 6

Built-in Applications and System Data Reference

To Do List Reference 16-71

CreateToDoItemAll 16

toDoFrame:CreateToDoItemAll(date, richString, reminder, frequency,
priority, completed)

Adds a task with the specified text for the specified date and sets the priority
and completion status. It returns an integer, which is the index of the item
made (that is, if the new task is the second one on the specified date,
CreateToDoItem returns 1).

date The date of the task in the number of minutes passed
since midnight, January 1, 1904.

richString A string or rich string for the text associated with the
task.

reminder An integer. The number of days notice before the task,
or nil.

frequency A frequency frame or nil if the task does not repeat. A
frequency frame should have the following slots:

Slot descriptions

mtgStartDate
An integer; the start date of the task in the
number of minutes passed since
midnight, January 1, 1904.

mtgStopDate
An integer; the date that the task should
stop repeating, in the number of minutes
passed since midnight, January 1, 1904.

repeatType
One of the following constants that
describes how often the meeting repeats:
kDayofWeek (0), kWeekInMonth (1),
kDateInMonth (2), kDateInYear(3),
kPeriod(4), kNever(5),
kWeekInYear(7).

mtgInfo An immediate value containing packed
repeating task information. This slot is

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-72 To Do List Reference

interpreted differently, depending on the
value of the repeatType slot; see the
description of the mtgInfo slot in
“Meeting Frames” (page 16-57).

priority An integer for the priority level of the task: 0 = high,
1 = medium, 2 = low, 3 = none.

completed A Boolean indicating whether the task is completed or
not.

EnsureVisibleTopic 16

toDoFrame:EnsureVisibleTopic(index)

Scrolls the To Do List to make the task specified in the parameter index
visible. This method requires the To Do List to be open.

index An integer index referring to the position of a topic in
the To Do List. It is the index into the topics array of
tasks for the day, see “To Do List Soup Format.”

This method’s return value is unspecified.

GetToDoEntry 16

toDoFrame:GetToDoEntry(date, makeNewEntry)

Returns an array of soup entries containing tasks for that date. Note that
even though a particular days tasks are stored under the day of the task (or
under day 0 for repeating tasks), this array may contain more than one
element. This is because these soup entries are on different stores. This
method requires the To Do List to be open.

date The date to get soup entries from, in the number of
minutes passed since midnight, January 1, 1904.

makeNewEntry A Boolean, if true and no soup entry exist for date, one
is created.

If there are no entries on the specified date, and makeNewEntry is nil, this
method returns nil.

C H A P T E R 1 6

Built-in Applications and System Data Reference

To Do List Reference 16-73

GetToDoItemsForRange 16

toDoFrame:GetToDoItemsForRange(beginDate, endDate)

Returns an array of frames for each day after beginDate and before endDate,
including the two boundary dates. These frames have the following format:

{date: aDateInTheRange,topics: anArrayOfTopicsForThatDate}

For information on the date and topics slots returned in this frame see “To
Do List Soup Format” (page 16-77).

beginDate The date that forms the beginning boundary for the
range of dates, in the number of minutes passed since
midnight, January 1, 1904.

endDate The date that forms the ending boundary for the range
of dates, in the number of minutes passed since
midnight, January 1, 1904.

If beginDate is larger than endDate, this method returns nil.

GetToDoItemsForThisDate 16

toDoFrame:GetToDoItemsForThisDate (date)

Returns an array of tasks for the date specified. This array contains frames
such as in the topics array in To Do List soup entries, see “To Do List Soup
Format” (page 16-77). It merges tasks from multiple stores, such as those
resulting from duplication on storage cards, repeating tasks, and tasks
imported from earlier versions of the software. This method has the side
effect of sorting the soup entry’s topics; it sorts them as the user sees them,
by undone and done first and then by priority.

date The date to get the tasks array from, in the number of
minutes passed since midnight, January 1, 1904.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-74 To Do List Reference

GetTaskShapes 16

toDoFrame:GetTaskShapes(originalShapes, task, yOffset, width, font)

Returns the shapes needed to draw the task. This is used in printing, and is
called by GetToDoShapes.

originalShapes An array to which the shapes are added and returned,
or nil if you do not have shapes to add to. If nil, a
new array is created with the following style element:

{font: font, justification: 'left}

task The task specified.

yOffset All shapes receive this vertical offset. The units are
pixels.

width The width to wrap text to, in pixels.

font The font you want to draw the text shapes in. If
originalShapes is nil, the array returned has this value
in its style element’s font slot.

This method returns a frame with the following slots:

Slot descriptions

shapes A nested array of shapes as described in “Using Nested
Arrays of Shapes” beginning on page 13-10 in Newton
Programmer�s Guide.

height An integer, the height of the shapes in the shapes slot.

GetToDoShapes 16

toDoFrame:GetToDoShapes(date, yOffset, width, font)

Returns the shapes needed to draw the tasks on the specified date. This
method is used in printing. It calls GetTaskShapes.

date The date to get shapes for in the number of minutes
passed since midnight, January 1, 1904.

yOffset All shapes receive this vertical offset. The units are
pixels.

C H A P T E R 1 6

Built-in Applications and System Data Reference

To Do List Reference 16-75

width The width to wrap text to, in pixels.

font The font you want to draw the text shapes in. The array
returned has this value in its style element’s font slot.

This method returns a nested array of shapes as described in “Using Nested
Arrays of Shapes” beginning on page 13-10 in Newton Programmer�s Guide.

LastVisibleTopic 16

toDoFrame:LastVisibleTopic()

Returns the index to the topics array of the last task drawn in the view.
Note that this is not necessarily equal to the length of the topics array, since
there may be tasks after the last one drawn that are simply not shown at the
current scroll position. For information about the topics array, see “To Do
List Soup Format” (page 16-77).

NextToDoDate 16

toDoFrame:NextToDoDate(date)

Returns the date of the next task on or after the specified date, or nil if there
is none.

date The date of the task in the number of minutes passed
since midnight, January 1, 1904.

RemoveOldToDoItems 16

toDoFrame:RemoveOldToDoItems(beforeDate, removeWhich, nil)

Removes any To Do task dated prior to beforeDate.

beforeDate The date of the oldest allowable To Do item, which you
can specify in the number of minutes passed since
midnight, January 1, 1904.

removeWhich Set to 'done or nil. If removeWhich is 'done, only
completed tasks are removed. If removeWhich is nil,
every task before beforeDate is removed.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-76 To Do List Reference

SetDone 16

toDoFrame:SetDone(index, topic, done, nil, nil)

Marks the done state of a task. This method requires the To Do List to be
open.

index An integer index referring to the position of a topic in
the To Do List. It is the index into the topics array of
tasks for the day; see “To Do List Soup Format”
(page 16-77).

topic A topic frame, as returned by the
GetToDoItemsForThisDate and
GetToDoItemsForRange functions.

done A Boolean, what to set the mtgDone slot of the topic to.

nil Always pass nil for the fourth parameter.

nil Always pass nil for the fifth parameter.

SetPriority 16

toDoFrame:SetPriority(index, priority, undo)

Sets or undoes the setting of the priority of a task. Depending on what that
priority number is, it also re-orders the topics in the list. This method
requires the To Do List to be open.

index An integer index referring to the position of a topic in
the To Do List. It is the index into the topics array of
tasks for the day; see “To Do List Soup Format”
(page 16-77).

priority An integer to set the priority level of the task: 0 = high,
1 = medium, 2 = low, 3 = none.

undo This value should be nil to set a topic’s priority, or
true if this is part of an Undo operation, as shown in
the following line of code:

AddUndoAction('SetPriority, [theIndex,
oldPriority, true]);

C H A P T E R 1 6

Built-in Applications and System Data Reference

To Do List Reference 16-77

To Do List Soup Format 16
This section describes the format of entries in the To Do List Soup. The To Do
List soup is called “To Do List.” In this soup each day has a single entry, and
all repeating tasks are stored under the 0 date. Each day’s frame has the
following slots:

Slot descriptions

class Always the symbol 'todo.
needsSort A Boolean; whether this day needs to be sorted because

of a change in a task’s priority, done status, or any other
reason.

date The date of the task. All repeating tasks are stored
under the 0 date.

topics An array of tasks for this date. Each task is a frame with
the following slots:
Slot descriptions

text The text of the task.
styles A styles frame for the text of the task.
mtgDone A Boolean, whether the task is checked off.
mtgPriority

An integer for the priority level of the
task: 0 = high, 1 = medium, 2 = low,
3 = none.

repeatDone
An array of dates of the completed
repeating tasks. For example if you had a
four day repeat task and day 1 and 2 were
done, it would contain those two dates.

viewBoundsA bounds frame for the task from the last
time it was displayed. The To Do List
recalculates this when necessary.

source An integer used internally to specify what
store a task is stored in.The To Do List sets
this slot when necessary.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-78 Time Zones Reference

unique An integer which pseudo-uniquely
identifies the task. The To Do List sets this
slot when necessary.

repeatInfoA frequency frame with the following
slots:
Slot descriptions

mtgStartDate
An integer, the start date of the task in the
number of minutes passed since
midnight, January 1, 1904.
mtgStopDate
An integer, the date that the task should
stop repeating, in the number of minutes
passed since midnight, January 1, 1904.
repeatType
One of the following constants that
describe how often the task repeats:
kDayofWeek (0), kWeekInMonth (1),
kDateInMonth (2), kDateInYear(3),
kPeriod(4), kNever(5),
kWeekInYear(7).
mtgInfo
An immediate value containing packed
repeating meeting information. This slot
is interpreted differently, depending on
the value of the repeatType slot; see the
description of the mtgInfo slot in
“Meeting Frames” (page 16-57).

Time Zones Reference 16

The developer’s interface to Time Zone consist of functions that retrieve
information about a city or country, and methods that add a city and set the
current home city.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Time Zones Reference 16-79

Time Zones Functions and Methods 16
This section describes the Time Zones methods.

To obtain a reference to the Time Zones application to send these messages
use the following code:

GetRoot().worldClock

Note that future Newton devices may not include the Time Zones
application. You should therefore check for the existence of the Time Zones
application before trying to access it. Use the following code to test for this:

if GetRoot().worldClock then ...

GetCityEntry 16

GetCityEntry(cityName)

Returns an array of frames for cities whose name slot matches cityName, i.e.
if cityName is “Portland” the routine returns an array containing both
Portland, OR and Portland, ME. If no entries match an empty array is
returned. This method may return nil if a problem has occurred.

cityName A string for the city name to search for.

The array returned has frames that have the following slots:

Slot descriptions

name A string for the name of the city.
longitude An integer for the longitude of the city; see “Using

Longitude and Latitude Values” beginning on
page 19-30 in the Newton Programmer�s Guide.

latitude An integer for the latitude of the city; see “Using
Longitude and Latitude Values” beginning on
page 19-30 in the Newton Programmer�s Guide.

gmt An integer for the offset in minutes from Greenwich
Mean Time.

country A symbol representing the country this city is in.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-80 Time Zones Reference

areaCode A string for the city’s area code.
region A string for the region of the city (a state in the U.S., a

province in Canada).
airport A string for the airport designation of the city, or an

array of strings if more than one airport serves this city.

GetCountryEntry 16

GetCountryEntry(countryName)

Returns an array of frames for countries whose name or symbol slots
matches countryName. The countryName parameter is compared to the frames
for countries in ROM in two ways: using standard string comparison on the
name slot, and the class of the string is compared to the symbol slot. To set
the class of a string for this second test call SetCountryClass.

This method may return nil if a problem has occurred.

countryName A string for the country name to search for.

The frames returned have the following slots:

Slot descriptions

name A string for the name of the country.

symbol A symbol for the name of the country.

longitude An integer for the longitude of the country; see “Using
Longitude and Latitude Values” beginning on
page 19-30 in the Newton Programmer�s Guide.

latitude An integer for the latitude of the country; see “Using
Longitude and Latitude Values” beginning on
page 19-30 in the Newton Programmer�s Guide.

currency A string for the name of the national currency.

continent A symbol for the continent of the country.

countryCode A string for the country’s international telephone code.

outgoing A string that should be dialed before making an
international call from this country.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Notes Reference 16-81

SetLocation 16

worldClock:SetLocation(whichCity)

Sets the home city in the Time Zones application.

whichCity A frame with the same slots as the frames returned by
GetCityEntry. The following slots are required in this
frame: name, country, longitude, latitude, and
gmt.

NewCity 16

worldClock:NewCity(newCityFrame, nil, makeHome)

Adds the city specified by newCityFrame.

newCityFrame A frame with the same slots as the frames returned by
GetCityEntry. The following slots are required in this
frame: name, country, longitude, latitude, and
gmt.

nil The second parameter should always be nil.

makeHome A Boolean, whether to make this the home city.

Notes Reference 16

This section describes the Notes methods and soup format.

Notes Methods 16

The following methods let you the user about the size of a note, and create
notes. To obtain a reference to the Notes application in order to send it
messages, use the following code:

GetRoot().paperroll

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-82 Notes Reference

Note that future Newton devices may not include the Notes application. You
should therefore check for the existence of the Notes application before
trying to access it. Use the following code to test for this:

if GetRoot().paperroll then ...

MakeTextNote 16

paperroll:MakeTextNote(string, addIt)

Adds a simple text note to the Notes soup. The height is calculated
automatically.

string The string is the text you want appear as a note.

addIt A Boolean. If true the note is added to the Notes soup;
if nil the note frame is returned.

NewNote 16

paperroll:NewNote(note, goto, store)

Adds a note to the Notes soup. Use this method in combination with
MakeTextNote to add an entry to the Notes soup containing more than a
simple string, as described in “Creating New Notes” beginning on
page 19-32 in Newton Programmer�s Guide.

note A note, as returned by MakeTextNote.

goto A Boolean. If true, the new note is displayed. If the
Notes application is not open, this parameter is ignored.

store The store to add this note to. A value of nil specifies
the default store.

Notes Soup Format 16
This section describes the format of entries in the Notes soup. Each entry
consists of a frame with the following slots:

C H A P T E R 1 6

Built-in Applications and System Data Reference

Notes Reference 16-83

Slot descriptions

viewStationery This slot always contains the symbol 'paperroll.
class The class symbol varies according to the type of

stationery the user creates on the New picker, which
may be a note (class 'paperroll), an outline (class
'list), or a checklist (class 'checkList).

height This slot contains an immediate value that is the height,
in pixels, of the note.

timeStamp Contains an immediate value: the date and time that
this note was created, in the number of minutes passed
since midnight, January 1, 1904. This slot must never
contain the value nil.

labels Optional. A symbol specified by the user as a label (file
folder) for the note.

title Optional. A string or rich string displayed in the status
bar of the note. The user can change this by tapping the
notes’s icon.

data For notes (class 'paperroll), this slot holds an array
of frames, which contains either text, polygon, ink, or
image objects. For outlines and checklists (classes
'list and 'checkList), this slot is set to nil. There
is one frame for each text, polygon, ink, or image object
in the note.
The text object frames have these slots:
viewStationery

Required. Always contains the symbol
'para.

viewBoundsRequired. The bounds of the text object.
text Required. A string that is the text

contained in the paragraph.
tabs Optional. An array of tab stops.
styles Optional. An array holding font style

information for the text.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-84 Notes Reference

For more information on the slots particular to
paragraph views, see “Paragraph Views” beginning on
page 8-10 in Newton Programmer�s Guide.
The polygon object frames have these slots:
viewStationery

This slot always contains the symbol
'poly.

viewBounds The bounds of the polygon.
points Contains a binary data structure, which

holds polygon data.
The ink object frames have these slots:
ink This slot contains a binary data structure

of the class 'ink that holds the ink data.
viewBounds The bounds of the ink object.
timeStamp Contains an immediate value: the date

and time that this note was created, in the
number of minutes passed since
midnight, January 1, 1904.

The image object frames have these slots:
viewStationery

This slot always contains the symbol
'pict.

viewBoundsA bounds frame.
icon A bitmap frame.

topics This slot is present only for outline and checklist entries
(classes 'list and 'checkList). This slot contains an
array of frames with the following slots:
text The text for this item.
styles A styles frame for the text.
viewBounds The bounds frame of the text object.
level The indentation level. The default value,

1, specifies the left margin. This slot will
always be set to 1 for checklist entries.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Icons and the Extras Drawer Reference 16-85

hideCount Specifies how many items are hidden at
level.

mtgDone This slot appears only in checklist entries.
A value of true indicates that the topic
has a check; nil indicates that it does not.

Icons and the Extras Drawer Reference 16

This section lists the Extras Drawer constants, data structures, functions, and
methods.

Extras Drawer Data Constants 16
The following constants are used by the Extras Drawer.

Extras Drawer Data Structure 16
This section describes the soupervisor frame.

Table 16-8 Folder symbols

Folder Symbol

Unfiled nil

Extensions '_extensions

Help '_help

Setup '_setup

Storage '_soups

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-86 Icons and the Extras Drawer Reference

The Soupervisor Frame 16

This frame must be in the base view of the application in order for the
soupervisor mechanism to be able to file or move its soups. It must be in a
slot named soupervisor, and must contain the following slots:

Slot descriptions

type Required. A symbol, either 'moveOnly, 'fileOnly, or
'all.

FileSoup Optional method. Called to file an entire soup; see
FileSoup (page 16-86).

FileEntry Optional method. Called to file a soup entry; see
FileEntry (page 16-87).

MoveEntry Optional method. Called to move a soup entry to a
different store; see MoveEntry (page 16-87).

FileSoup 16

FileSoup(newLabels, newStore)

If you define this method you must do all the work of either moving the
soup to a different store or changing the labels slot of the entry—which is
all filing really is. Note that if you define this method, your FileEntry and
MoveEntry methods (if you defined either) will not be called by the system.

newLabels One of the following objects:

■ A symbol. This is a valid folder symbol.

■ Nil. The entry should be unfiled.

■ Anything else. Ignore this entry.

newStore The store to move this soup to, or nil. A value of nil
signifies that the soup should stay in its present store.

It is possible for both of these values to be valid, if the user has opted both to
file this soup and change its store. Also note that in some cases the value of
the newLabels argument can be something other than a symbol or nil. You
must check for this case or the labels slot to the entries could be set to an
invalid folder, as in this code fragment:

C H A P T E R 1 6

Built-in Applications and System Data Reference

Icons and the Extras Drawer Reference 16-87

if (newLabels = NIL) or IsSymbol (newLabels) then

begin

// file this soup

end

else // don’t file it

To improve performance, you should not use broadcast calls until the last
entry has been changed.

FileEntry 16

FileEntry(entry, newLabels)

This method is called once for each soup entry if your soupervisor frame
does not have a FileSoup method defined. It must file the entry in
newLabels.

entry The entry to file.

newLabels The value to set the labels slot of entry.

In some cases the value of the newLabels argument can be something other
than a symbol or nil. You must check for this case or the labels slot to the
entries could be set to an invalid folder, as in this code fragment:

if (newLabels = NIL) or IsSymbol (newLabels) then

begin

// file this soup

end

else // don’t file it

MoveEntry 16

MoveEntry(entry, newStore)

This method is called once for each soup entry if your soupervisor frame
does not have a FileSoup method defined. It must move the entry to
newStore. If the entry is currently on a write-protected store, this method
must copy the entry to newStore.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-88 Icons and the Extras Drawer Reference

entry The entry to move to a different store.

newStore The store to move entry to.

Extras Drawer Methods 16
This section describes the Extras Drawer methods. Use the following code in
order to get a reference to the Extras Drawer to send it these messages:

GetRoot().extrasDrawer

AddExtraIcon 16

extrasDrawer:AddExtraIcon(iconType, paramFrame, pkgName, store) //
platform file function

Adds either a script or a soup icon to the specified store. See also “Adding a
Soup Icon” (page 19-40), and “Creating a Script Icon” beginning on
page 19-42 in Newton Programmer�s Guide.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kAddExtraIconFunc with (iconType,paramFrame,pkgName,
store);

▲

iconType A symbol specifying the type of icon. This can be either
'soupEntry or 'scriptEntry.

paramFrame A frame containing information about the new icon. The
slots in this frame vary depending on the value of
iconType. The paramFrame frames for both types of icon
share these slots:

text Required. A string that is shown under
the icon.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Icons and the Extras Drawer Reference 16-89

app Recommended. A unique symbol used by
SetExtrasInfo (page 16-92) to find the
icon.

labels Optional. A symbol designating the
Extras Drawer folder to file this icon in.
See “Folder symbols” (page 16-85). Do not
specify nil.

In addition, the paramFrame of soup icons should have
these slots:

ownerApp Optional. The appSymbol of the
application that owns these soups. This is
needed for the soupervisor mechanism.

soupNames An array of strings that are the names of
the soups combined under this icon.

The paramFrame of script icons should have these
additional slots:

tapAction A function object that is called when the
icon is tapped. It is passed no parameters.
This object is stored in a soup, so you
should keep it as small as possible.

icon A bitmap frame containing the icon to be
displayed; it should be 32x32 pixels.

pkgName A string specifying the package this icon should be
associated with. For soup icons, this must be different
from your application’s package name. Script icons may
want to use the same package name. Never pass nil for
this argument.

store The store on which to keep the new icon. A value of nil
specifies the default store.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-90 Icons and the Extras Drawer Reference

GetExtraIcons 16

extrasDrawer:GetExtraIcons(iconType, pkgName, store)

Returns an array of all icons added by AddExtraIcon (page 16-88), of type
iconType, that are owned by the package pkgName, and are on the store store.
Do not rely on the format of the array elements returned; this may change in
future versions of the system software.

iconType A symbol; either 'scriptEntry or 'soupEntry.

pkgName The package name used in the call to AddExtraIcon.

store The store to look on.

GetPartCursor 16

extrasDrawer:GetPartCursor(packageName, store, folderSym) //
platform file function

Returns a cursor for entries corresponding to parts (icons) displayed in the
Extras Drawer.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetPartCursorFunc with (packageName, store, folderSym);
▲

packageName Specify a string naming a package, or nil. If you
specify a package name, the cursor returns only parts
from that package. To return parts from all packages,
specify nil.

store Specify a store object or nil. If you specify a store
object, the cursor returns parts from only that store. To
return parts from all stores, specify nil.

folderSym Specify a symbol identifying a folder, or nil. If you
specify a folder symbol, the cursor returns only parts
filed within that Extras Drawer folder. To return parts

C H A P T E R 1 6

Built-in Applications and System Data Reference

Icons and the Extras Drawer Reference 16-91

from all folders, specify the symbol '_all. To return
parts from the unfiled folder, specify nil.

The structure of the entries returned by the cursor is subject to change.
Entries should be accessed only by using the functions GetPartEntryData
(page 16-91), LaunchPartEntry (page 16-92), and SetExtrasInfo
(page 16-92). Do not directly change the entries returned by
GetPartCursor.

GetPartEntryData 16

extrasDrawer:GetPartEntryData(entry) //platform file function

Returns a frame containing information about an Extras Drawer part entry.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetPartEntryDataFunc with (entry);
▲

entry An entry obtained from a part cursor; by using
GetPartCursor (page 16-90).

The frame returned has the following slots:

Slot descriptions

icon A bitmap frame (of the kind returned by
GetPictAsBits) containing the bitmap for the part
icon displayed in the Extras Drawer.

text A string that is the text shown under the part icon.
labels A symbol identifying the Extras Drawer folder in which

the part is filed. For a list of these see “Folder symbols”
(page 16-85).

appSymbol A symbol identifying the application, if the part frame
has an app slot.

packageName A string that is the name of the package that contains
the part.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-92 Icons and the Extras Drawer Reference

LaunchPartEntry 16

extrasDrawer:LaunchPartEntry(entry) //platform file function

Launches the specified part. The operation is the equivalent of the user
tapping the part icon in the Extras Drawer.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kLaunchPartEntryFunc with (entry);
▲

entry An entry obtained from a part cursor, by using
GetPartCursor (page 16-90).

This function returns a non-nil value if the Extras Drawer would have
closed itself after the icon was tapped. It returns nil if the Extras Drawer
would have stayed open after the icon was tapped.

RemoveExtraIcon 16

extrasDrawer:RemoveExtraIcon(extraIcon)

Removes an icon added by AddExtraIcon (page 16-88).

extraIcon An element of the array returned by GetExtraIcons
(page 16-90).

To get a reference to the Extras Drawer use this code:
GetRoot().extrasDrawer:RemoveExtraIcon(extraIcon);

SetExtrasInfo 16

extrasDrawer:SetExtrasInfo(paramFrame, newInfo) //platform
file function

Changes the Extras Drawer information for the specified Extras Drawer icon.
The return value of this function is the information frame that was in effect
before this call. If the icon isn’t found, this function returns nil.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Icons and the Extras Drawer Reference 16-93

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kSetExtrasInfoFunc with (paramFrame, newInfo);
▲

paramFrame One of the following objects:

■ A frame identifying the icon whose Extras Drawer
information you want to change. This frame can have
the following slots:

 appSymbol
Required. A symbol identifying the
application that the icon represents.

 store
Optional. A store object identifying the
store on which the icon resides.

 packageName
Optional. A string naming the package to
which the icon belongs.

■ An entry obtained from a part cursor; by using
GetPartCursor (page 16-90).

■ Your appSymbol. Note that this allowed for
compatability reasons, it may not be supported in
future versions of the system software.

newInfo A new information frame for the icon represented by
paramFrame. The slots in this frame are described below.
If you don’t specify a particular slot (or specify nil), the
value of the slot is not changed.

You can read and modify the following slots in the
newInfo frame:
icon A bitmap frame (of the kind returned by

GetPictAsBits) containing the bitmap
and mask for the part icon displayed in
the Extras Drawer.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-94 Fax Soup Entries Reference

text A string that is the text shown under the
part icon.

labels A symbol identifying the Extras Drawer
folder in which to file the icon. See
Table 16-8 “Folder symbols” (page 16-85).

soupNames An array of strings that are the names of
soups to be associated with this icon. This
slot applies to soup icons only.

ownerApp The appSymbol of the application that
owns the soups. This slot applies to soup
icons only.

Fax Soup Entries Reference 16

This section describes the body slot of an In/Out Box fax soup entry.

Body Slot of Fax Soup Entries 16
This slot contains a frame with the following slots:

Slot descriptions

sender A string for the sender’s phone number.
pages An array of page data. Each page is a frame with the

following slots:
image Required. This slot contains a

NewtonScript shape object (see
protoImageView).

annotations
Required. The default is nil. When not
nil, this slot contains an array of shapes
or paragraphs as in the Notes application.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Fax Soup Entries Reference 16-95

thumbnail Optional. A shape placed here by the Fax
Viewer as a cached object. If you don’t put
one in, it will be added. (See
protoThumbnail.)

info A frame with the following slots.
dataRate The transmission rate of the fax in bits per

second, default 2400.
endTime The point at which the fax completed in

the number of minutes passed since
midnight, January 1, 1904, The default is 0.

pageCount The number of pages in the fax. The
default is 0.

pixelWidth
The default width for all pages in pixels,
default 0.

pixelHeight
The default height for all pages in pixels,
default 0.

resolution
The image in dots per inch (dpi). Like a
pensize, the value of the resolution slot
may be an array or a single value. If this
value is an array, the two elements of the
array specify the x and y values in dpi. If
this slot holds a single value, the pixels
are square and have the same value for x
and y.

startTime The point at which the fax started in the
number of minutes passed since
midnight, January 1, 1904. The default is 0.

▲ W A R N I N G

The info slot contains internal information and is subject to
change. ▲

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-96 Prefs and Formulas Rolls Reference

Prefs and Formulas Rolls Reference 16

This section describes the methods used to add (and remove) a panel from
the Prefs and Formulas rolls. Also included is the proto on which Prefs
panels should be based.

Proto 16
This section describes the proto used to create Prefs items.

protoPrefsRollItem 16

This proto is used to add an item to the Prefs roll.

Slot descriptions

overview Required. A string displayed in the Prefs overview.
icon Required. A small icon displayed in the Prefs overview

and as the title of the panel when it is picked. You may
set this to nil to not use an icon.

viewBounds Required. A bounds frame.
height Required. The height of the panel.
viewFlags The default setting is vVisible.
viewJustify The default setting is vjParentFullH.
viewFormat The default setting is vfNone.

Prefs and Formulas Functions 16
This section describes the registry functions which add (or remove) Prefs and
Formulas items.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Prefs and Formulas Rolls Reference 16-97

RegFormulas 16

RegFormulas(appSymbol,formulasTemplate)

Registers with the system a template used to add a view to the Formulas roll.

appSymbol A unique symbol identifying the application adding this
item to the Preferences roll; normally, the value of this
parameter is the application symbol, which includes
your registered signature.

formulasTemplate A template for the view to be added to the Formulas
roll. There is no particular proto on which this template
should be based. Instead, this template should

■ use a protoFloatNGo as the a base, with formula
elements added to it

■ include a slot named overview which contains a
string displayed in the Formulas overview

■ viewBounds.bottom must be equal to the height of
the panel

■ include a protoTitle whose title slot is the
name of the Formulas panel

This function’s return value is unspecified.

UnRegFormulas 16

UnRegFormulas(appSymbol)

Unregisters the specified Formulas application item.

appSymbol A unique symbol identifying the application adding this
item to the Preferences roll. Normally, the value of this
parameter is your application symbol, which includes
your registered signature.

This function’s return value is unspecified.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-98 Prefs and Formulas Rolls Reference

RegPrefs 16

RegPrefs(appSymbol,prefsTemplate)

Registers with the system a template used to add an item to the Preferences
roll in the Extras Drawer. The template must be based on the
protoPrefsRollItem system prototype. Note that items added to the
Preferences roll must specify system-wide preferences rather than
application-specific ones.

appSymbol A unique symbol identifying the application adding this
item to the Preferences roll. Normally, the value of this
parameter is your application symbol, which includes
your registered signature.

prefsTemplate A view template based on the protoPrefsRollItem
system prototype; it describes the view to add to the
Preferences roll. Items in the Preferences roll must be
used for settings that are global in nature, not for
application-specific settings.

This function’s return value is unspecified.

UnRegPrefs 16

UnRegPrefs(appSymbol)

Unregisters the specified application’s Preference roll items.

appSymbol A unique symbol identifying the application adding this
item to the Preferences roll. Normally, the value of this
parameter is your application symbol, which includes
your registered signature, or some variation on it.

This function’s return value is unspecified.

C H A P T E R 1 6

Built-in Applications and System Data Reference

Auxiliary Button Reference 16-99

Auxiliary Button Reference 16

These methods let you to add buttons to the status bars of the Notes, Names,
and the background application, and let your applications allow themselves
to be extended.

Auxiliary Buttons Functions and Methods 16
This section describes the functions used to install an auxiliary button, and
the application-defined methods needed to support this mechanism.

AddAuxButton 16

app:AddAuxButton(buttonFrame)

The AddAuxButton message is sent to your application when someone calls
RegAuxButton, specifying your application in the destApp slot. It is also
sent when your application is the backdrop application and RegAuxButton
is called with the destApp slot set to nil.

buttonFrame A frame that contains the butt slot. This slot holds the
template for the button that was just added.

This method is optional; you are not required to implement it.

GetAuxButtons 16

GetAuxButtons(appSymbol)

Returns an array that contains the buttons specific to your application and, if
yours is the backdrop application, any other buttons designated for
the backdrop application. Each array element is a frame with a butt slot,
which holds the template for the button.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-100 Auxiliary Button Reference

Other slots may exist in this frame, but are undefined and are subject to
change.

appSymbol Your unique application symbol with your signature.

RegAuxButton 16

RegAuxButton(buttonSymbol, template)

Adds a button to the auxiliary button registry. The return value of
RegAuxButton is currently undefined.

buttonSymbol The unique symbol for the button. This symbol should
include your developer signature.

template A view template for the button to be added, with one
extra slot, destApp, which you should set to the
symbol of the application that you want to add the
button to. (For example, use the symbol 'paperroll
or 'cardfile to add the button to the Notes or the
Names application, respectively.) If destApp is nil,
this button is added to the background application, if it
can support it.

RemoveAuxButton 16

app:RemoveAuxButton(buttonSymbol)

The RemoveAuxButton message is sent to your application when someone
calls UnRegAuxButton for a button that is specific to your application. It is
also sent when your application is the backdrop application and
UnRegAuxButton is called for a button whose destApp slot is set to nil.

buttonSymbol The symbol passed in to RegAuxButton, when the
button was registered.

This method is optional; you are not required to implement it.

C H A P T E R 1 6

Built-in Applications and System Data Reference

System Data Reference 16-101

UnRegAuxButton 16

UnRegAuxButton(buttonSymbol)

Removes the button with the given symbol from the auxiliary button
registry. The return value of UnRegAuxButton is currently undefined.

buttonSymbol The symbol passed in to RegAuxButton.

System Data Reference 16

This section describes system stored user configuration data, and the
functions used to interact with it. Also included are the functions used to
read or write slots in the built-in application’s soups.

User Configuration Variables 16
This section describes those user configuration variables in the System soup
that are available to your applications. Certain of these variables are closely
associated with text and shape recognition; these are described in the section
“Using recConfig Frames” beginning on page 10-8.

Note that you should always use the functions GetUserConfig
(page 16-107) and SetUserConfig (page 16-108) to access and change any
of these variables.

address A string or rich string for the first line of the address of
the current persona.

cityZip A string or rich string for the second line of the address
of the current persona.

company A string or rich string for the company name of the
current persona.

country A string or rich string for the name of the country of the
current persona.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-102 System Data Reference

countrySlot A symbol representing the country specified by the user
as their Country in the Locale panel in Prefs.

currentAreaCodeA string for the area code of the current emporium.
currentCountry A symbol representing the country of the current

emporium.
currentEmporiumAn alias to the 'worksite Names soup entry

designated by the user as the current emporium, or nil
if the user has picked Other City from, for example, a
routing slip.
Note that this is an alias, and thus needs to be resolved
before use, as in the following code:

ResolveEntryAlias(GetUserConfig('currentEmporium))

For more information on entry aliases and the
ResolveEntryAlias function, see Chapter 11, “Data
Storage and Retrieval,” in Newton Programmer�s Guide.
Call the UseCurrentEmporium function (page 16-109)
after setting this variable, to force the system to update
other user configuration variables.

currentPersona An alias to the 'owner Names soup entry that has been
designated by the user as the current persona. Note that
this is an alias, and thus needs to be resolved before use,
as in the following code:

ResolveEntryAlias(GetUserConfig('currentPersona))

For more information on entry aliases and the
ResolveEntryAlias function, see Chapter 11, “Data
Storage and Retrieval,” in Newton Programmer�s Guide.
Call the UseCurrentPersona function (page 16-110)
after setting this variable to force the system to update
other user configuration variables.

currentPrinter A frame describing the last printer selected for use in a
Print slip.

dialingPrefix A string for the dialing prefix of the current emporium.

C H A P T E R 1 6

Built-in Applications and System Data Reference

System Data Reference 16-103

doAutoAdd The default value true specifies that words are
automatically added to the user dictionary and the
autoAdd dictionary.

doInkWordRecognition
The value true causes the recognizer to convert strokes
to ink words rather than sketch ink. This may occur
when the text recognizer cannot recognize the input
successfully or when text and shape recognition is
disabled.

doTextRecognition
The value true enables word recognition. The system
sets the value of this variable to true when the user
turns on text recognition from the protoRecToggle
view.

doShapeRecognition.
The value true enables shape recognition. The system
sets the value of this variable to true when the user
turns on shape recognition from the protoRecToggle
view.

emailPassword A string for the current persona’s email password.
faxPhone A string or rich string for the current persona’s fax

phone number.
homePhone A string or rich string for the current persona’s fax

phone number.
leftHanded This variable provides a single place for developers to

look for a user’s handedness preference. A non-nil
value indicates the user is left handed. You may
consider placing your views differently for left-handed
users; for example, buttons that would appear on the
right edge of the screen might instead be placed on the
left edge.

learningEnabledOption
The value nil specifies that correcting misrecognized
words in this view does not modify the system-defined
handwriting model. Conversely, the default value true
specifies that the system records learning data as the
user corrects misrecognized words. Because the printed

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-104 System Data Reference

recognizer does not record learning data, it ignores this
value. For more information, see the description of this
variable in “protoRecConfig” beginning on page 8-36.

lettersCursiveOption
The default value true enables letter-by-letter
recognition for certain views in the built-in Names and
Dates applications. When this variable holds the value
true, the cursive recognizer uses letter-by-letter
recognition for protoLabelInputLine and notes
views in the built-in Names and Dates applications.
(The printed recognizer always provides letter-by-letter
recognition.) The user can set this variable to true by
checking the “Letter-by-letter in notes” box in the
Handwriting Settings preferences slip.

letterInFieldsOption
The value true specifies that the cursive recognizer
uses letter-by-letter recognition in
protoLabelInputLine views. (The printed
recognizer always provides letter-by-letter recognition.)
The user can set this variable to true by checking the
“Letter-by-letter in fields” box in the Handwriting
Settings preferences slip.

letterSetSelection
Sets the recognizer currently in use. This value may be
either of the constants kStandardCharSetInfo
(cursive recognizer) or kUCBlockCharSetInfo
(printed recognizer). Although the recognizers built into
Newton platforms through version 2.0 of system
software support these values, not all recognizers are
guaranteed to support them. This value may be set by
the user from the Handwriting Recognition preferences
slip or set programmatically from a recConfig frame.
For more information, see the description of this
variable in “protoRecConfig” beginning on page 8-36.

letterSpaceCursiveOption
The value of this variable affects the amount of space
required to consider sets of strokes as belonging to
separate letters or words. This value may be set by the

C H A P T E R 1 6

Built-in Applications and System Data Reference

System Data Reference 16-105

user from the Handwriting Recognition preferences slip
or set programmatically from a recConfig frame. For
more information, see the description of this variable in
“protoRecConfig” beginning on page 8-36.

location A frame that holds information about the current city,
such as its name, the area code, and the airport
designation.

mailAccount A string or rich string for the current persona’s e-mail
account name.

mailNetwork A symbol representing the e-mail network for the
current emporium.

mailPhone A string or rich string for the current persona’s phone
access number for their e-mail account.

name A string or rich string for the current persona’s name,
first and last.

paperSize The paper size currently selected for all print jobs. It
contains a frame that is an element of the array in the
user configuration variable paperSizes. That is, the
paperSizes array is an array of paperSize frames.
This variable contains the currently selected
paperSize frame.
The only documented slot in this frame is the read-only
title slot, which is a user-visible string representing
the page size.

▲ W A R N I N G

The value of the paperSizes array must not be
modified and the individual paperSize frames must
not be modified (they are read only). New size or
custom size paperSize frames may not be created nor
added to the paperSize or paperSizes variables. ▲

You can set the value of this slot (using
SetUserConfig) to a frame which is already an
element of the paperSizes array (using
GetUserConfig).

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-106 System Data Reference

Do not change this value without letting the user
confirm this change, as it applies to all print jobs. Page
size is used as a system global and cannot be overridden
for individual print jobs; you cannot, for example, print
a set of envelopes and a set of letters without changing
the paper size globally.

paperSizes The paper sizes currently installed in the system. They
appear as choices for the Paper Size item in the Locale
Preferences form. This array contains frames such as the
user configuration variable paperSize.
The dimensions here are independent of the current
driver and tend to be somewhat less than the full
printable area a driver can support. This leeway allows
for printing to different drivers with the same word
wrap and other format niceties.

phone A string or rich string for the current persona’s office
phone.

signature The signature of the current persona. It is an ink frame.
speedCursiveOption

The amount of time the cursive recognizer spends
recognizing input. For more information see the
description of this variable that begins on (page 8-39).

timeoutCursiveOption
This value affects the amount of time the recognizer
waits from the completion of a stroke for subsequent
strokes that might belong to the same character or word.
For more information, see the description of this
variable in “protoRecConfig” beginning on page 8-36.

userFont A font specification; this can be either a frame or a
packed integer. The font to be used for drawing text. For
more information on font specifications see “Using
Fonts for Text and Ink Display” in Chapter 8, “Text and
Ink Input and Display,” in Newton Programmer�s Guide.
You should not set this variable.

C H A P T E R 1 6

Built-in Applications and System Data Reference

System Data Reference 16-107

System Data and Utility Functions 16
This section includes a description of some global functions applicable to the
built-in applications and system data.

GetSysEntryData 16

GetSysEntryData(entry, path)

Returns the value of a slot from a built-in soup entry.

entry The soup entry from which you want to read a slot.

path A path expression specifying the data to read in the
entry.

Use this function whenever you want to read the value of a slot in an entry
from one of the built-in soups.

GetUserConfig 16

GetUserConfig(configSym)

Retrieves the value of a user configuration variable. The user configuration
variables are listed in “User Configuration Variables” (page 16-101).

configSym A symbol naming a user configuration variable.

This function returns the value of the requested user configuration variable.

Here is an example of how to use this function:

savedPrinter := GetUserConfig('currentPrinter);

RegUserConfigChange 16

RegUserConfigChange(callbackID,callBackFn)

Registers a function object to be called each time a user configuration
variable changes. Note that it is up to the application that changed one of
these variables to broadcast the change. This is not something that you need
to worry about, since the SetUserConfig function will always broadcast
the change. Also note that the system may change, and broadcast the change

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-108 System Data Reference

of, certain undocumented user configuration variables; you should ignore
these symbols.

callbackID A unique symbol identifying the function object to be
registered; normally, the value of this parameter is the
application symbol, which includes your registered
signature, or some variation on it.

callBackFn A function object called when a user configuration
variable changes. It is passed one parameter, which is a
symbol for the user configuration variable that changed.

The value returned by the callBackFn function is ignored.

IMPORTANT

This callback function must not call the
RegUserConfigChange or
UnRegUserConfigChange functions. ▲

This function’s return value is unspecified.

SetSysEntryData 16

SetSysEntryData(entry, path, value)

Sets the value of a slot in a built-in soup entry.

entry The soup entry in which you want to set a slot.

path A path expression specifying the location to set in entry.

value The value you want to set in path.

Use this function whenever you want to set the value of a slot in an entry
from one of the built-in soups, unless there is a specific API function for this.

SetUserConfig 16

SetUserConfig(configSym, theValue)

Sets the value of a user configuration variable and writes it to the system
soup.

configSym A symbol naming a user configuration variable.

C H A P T E R 1 6

Built-in Applications and System Data Reference

System Data Reference 16-109

theValue The new value of the user configuration variable
identified by conÞgSym.

This function returns theValue.

Here is an example of how to use this function:

SetUserConfig('currentPrinter, savedPrinter);

UnRegUserConfigChange 16

UnRegUserConfigChange(appSymbol)

Unregisters a function object registered by the RegUserConfigChange
function.

appSymbol A unique symbol identifying the function object to be
unregistered. Normally, the value of this parameter is
the application symbol, which includes your registered
signature, or some variation on it.

▲ W A R N I N G

This function’s return value is unspecified and may change
in the future; do not rely on values returned by this
function. ▲

UseCurrentEmporium 16

UseCurrentEmporium()

Forces the system to adjust the values of other user configuration variables to
reflect the value of the currentEmporium variable. You should call this
function after changing the value of currentEmporium. Remember to use
SetUserConfig to change any user configuration variables. Note that this
function does not broadcast the change of any user configuration variables.

C H A P T E R 1 6

Built-in Applications and System Data Reference

16-110 System Data Reference

UseCurrentPersona 16

UseCurrentPersona()

Forces the system to adjust the values of other user configuration variables to
reflect the value of the currentPersona variable. You should call this
function after changing the value of currentPersona. Remember to use
SetUserConfig to change any user configuration variables. Note that this
function does not broadcast the change of any user configuration variables.

Constants and Data Structures 17-1

C H A P T E R 1 7

Localizing Newton
Applications Reference 17

This chapter describes the facilities the Newton system includes for
localizing applications.

Constants and Data Structures 17

Localization information is stored in a specialized data structure called a
locale bundle. The slots of a locale bundle are described in the next section.

The Newton system provides constants that specify the format of date and
time strings. These constants are described in “Date and Time Format
Specifications” (page 17-11).

Contents of a Locale Bundle 17
This section shows the slots of a locale bundle that you can access. Slots not
described here are for internal use; you should not change their values or
write your application to depend on their contents or existence.

Figure 17-0
Table 17-0

C H A P T E R 1 7

Localizing Newton Applications Reference

17-2 Constants and Data Structures

String Slots 17

This section describes slots in the locale bundle that are used to display
locale-specific strings. The strings stored in these slots vary according to the
locale.

Your application can reference these slots directly to use the strings stored
here as labels for text or fields. (See “GetLocale” (page 17-19) for how to get
the current locale bundle.) You should never set the values of these slots
directly except in your own custom locale bundle.

postalCodeLabel
A string used to label postal codes. For example, the
built-in Names application uses this slot to display the
string "Zip Code" in the U.S. locale and the string
"Post Code" in the Australia locale.

longOrdinals An array of strings intended to label items ordinally; for
example, "First", "Second" and so on. This is not
currently used by the system.

shortOrdinals An array of short strings intended to label items
ordinally; for example, "1st", "2nd" and so on. This is
not currently used by the system.

distanceLabel The string used to label distances. For example, this
value is "miles" in the U.S. locale and "kilometers"
in the Canadian locale.

distanceLabelShort
The short version of the string used to label distances.
For example, this value is "km", as opposed to the
corresponding distanceLabelLong value of
"kilometers".

title A string that identifies this bundle in the Country
pop-up menu in the Locale preference panel. You can
also pass this string to locale functions such as
SetLocale. This may change in the future, however so
you should use the locale symbol to identify locale
bundles.

C H A P T E R 1 7

Localizing Newton Applications Reference

Constants and Data Structures 17-3

regionLabel The string used to label regions. For example, this value
is "State" in the U.S. locale and "Province" in the
Canada locale.

cityLabel The string used to label cities. For example, this value is
"City" in the U.S. locale and "Town" in the United
Kingdom locale.

Date Strings 17

These slots contain strings used by the system in the textual representation of
various date values. The strings stored in these slots vary according to the
locale.

Rather than using these values directly, you generally would employ the
appropriate dateTimeStrSpec to format the output of functions that
return date information. However, your application can reference these slots
directly to use the strings stored here as labels for text or fields in your
application. You should never set the values of these slots directly except in
your own custom locale bundle.

longDateFormat The frame containing strings for the textual
representation of the elements of the long (verbose) date
format. This frame contains the slots shown in
Table 17-1 (page 17-4).

shortDateFormat
The frame containing strings for the textual
representation of the elements of all date strings other
than those in the longDateFormat format. This frame
contains the slots shown in Table 17-2 (page 17-6).

C H A P T E R 1 7

Localizing Newton Applications Reference

17-4 Constants and Data Structures

Table 17-1 LongDateFormat slots

Slot Name Description

longDofWeek An array of strings representing full names of the
days of the week; for example, "Sunday",
"Monday", "Tuesday", and so on.

abbrDofWeek An array of strings representing abbreviated names
of the days of the week; for example, "Sun",
"Mon", "Tue", and so on.

terseDofWeek An array of strings representing shorter
abbreviations of names of days than are specified in
the abbrDofWeek slot; for example, "Su", "Mo",
"Tu", and so on.

shortDofWeek An array of strings representing single-letter
abbreviations of names of the days of the week; for
example, "S", "M", "T", and so on.

longMonth An array of strings representing full-text names of
the months of the year; for example, "January",
"February", "March", and so on.

abbrMonth An array of strings representing abbreviated names
of the months of the year; for example, "Jan",
"Feb", "Mar" and so on.

longDateOrder A dateTimeStrSpec value describing the order in
which the elements of a long date are to appear; for
example, month/day/year ("January 31,
1994") as opposed to day/month/year ("31
January 1994").

C H A P T E R 1 7

Localizing Newton Applications Reference

Constants and Data Structures 17-5

longDateDelim An array of strings that represents the character
separating the elements in the textual representation
of a long date string; for example, the string ", "
(comma-space) used in the long date string
"January 31, 1994".

The system automatically selects a delimiter from
this array according to the relative positions of the
string elements to be separated. The 0th array
element precedes the date string; the first element
specifies the delimiter to be placed between the first
and second elements in the date string; the second
element in the array specifies the delimiter used to
separate the second and third elements in the date
string; and so on.

Table 17-1 LongDateFormat slots (continued)

Slot Name Description

C H A P T E R 1 7

Localizing Newton Applications Reference

17-6 Constants and Data Structures

Table 17-2 ShortDateFormat slots

Slot Name Description

shortDateOrder A dateTimeStrSpec value describing the order in
which the elements of a short date are to appear; for
example, day/month/year ("31/1/94") as opposed
to month/day/year ("1/31/94").

shortDateDelim An array of strings that represents the character
separating the elements in the textual representation
of a short date string; for example, the string "/"
(forward slash) used in the short date string "1/31/
94".

The system automatically selects a delimiter from
this array according to the relative positions of the
string elements to be separated. The 0th array
element precedes the date string; the first element
specifies the delimiter to be placed between the first
and second elements in the date string; the second
element in the array specifies the delimiter used to
separate the second and third elements in the date
string; and so on.

dayLeadingZ A value of kLeadZero specifies that a leading zero
is to be prefixed to representations of single-digit day
values in short dates; for example, the 0 in 11/01/
94. A value of kNoLeadZero suppresses the use of
the leading zero prefix.

monthLeadingZ A value of kLeadZero specifies that a leading zero
is to be prefixed to representations of single-digit
month values in short dates; for example, the 0 in
01/11/94. A value of kNoLeadZero suppresses the
use of the leading zero prefix.

yearLeadingZ A value of kLeadZero specifies that a leading zero
is to be prefixed to representations of single-digit
year values in short dates; for example, the 0 in 12/
12/04. A value of kNoLeadZero suppresses the use
of the leading zero prefix.

C H A P T E R 1 7

Localizing Newton Applications Reference

Constants and Data Structures 17-7

Time Strings 17

These slots contain strings used by the system in the textual representation of
various time values. The strings stored in these slots vary according to the
locale.

Rather than using these values directly, you generally would use the
appropriate dateTimeStrSpec to format the output of functions that
return time information.

You should never set the values of these slots directly except in your own
custom locale bundle.

timeFormat The frame containing strings for the textual
representation of the elements of time formats.

This frame contains the slots shown in Table 17-3.

Table 17-3 TimeFormat Slots

Slot Name Description

timeSepStr1 The string that represents the character separating
the first and second elements in the textual
representation of a time string; for example, the
string "." (period) used in the time string
"23.59:59".

timeSepStr2 The string that represents the character separating
the second and third elements in the textual
representation of a time string; for example, the
string ":" (colon) used in the time string
"23.59:59".

morningStr The string for annotating times from midnight to just
before noon for a 12-hour clock cycle; for example,
the string " am" (space-am) used in the time string
"8:00 am".

eveningStr The string for annotating times from noon to just
before midnight for a 12-hour clock cycle; for
example, the string " pm" (space-pm) used in the
time string "8:00 pm".

C H A P T E R 1 7

Localizing Newton Applications Reference

17-8 Constants and Data Structures

suffixStr The string used as a suffix for textual representations
of times for a 24-hour clock cycle. This slot is not
currently used by the MessagePad; however, it might
contain, for example, the string " GMT" to indicate
the use of Greenwich Mean Time.

hourLeadingZ A value of kLeadZero specifies that a leading zero
is to be prefixed to representations of single-digit
hour values. A value of kNoLeadZero suppresses
the use of the leading zero prefix.

minuteLeadingZ A value of kLeadZero specifies that a zero is to be
prefixed to representations of single-digit minute
values. A value of kNoLeadZero suppresses the use
of the leading zero prefix.

secondLeadingZ A value of kLeadZero specifies that a zero is to be
prefixed to representations of single-digit second
values. A value of kNoLeadZero suppresses the use
of the leading zero prefix.

timeCycle A value of kCycle12 specifies the use of a
twelve-hour clock cycle; the value kCycle24
specifies the use of a 24-hour clock cycle.

midNightForm The value kUseHourZero specifies the
representation of midnight as the numeric string
"00:00".

The value kUseHour12 specifies the representation
of midnight as the numeric string "12:00".

The value kUseHour24 specifies the representation
of midnight as the numeric string "24:00".

noonForm The only valid value is kUseHour12, which specifies
the representation of noon as the numeric string
"12:00".

Table 17-3 TimeFormat Slots (continued)

Slot Name Description

C H A P T E R 1 7

Localizing Newton Applications Reference

Constants and Data Structures 17-9

Numeric Strings 17

These slots contain strings used by the system in the formatting the text of
various numeric values. The strings stored in these slots vary according to
the locale.

You should never set the values of these slots directly except in your own
custom locale bundle.

numberformat The frame containing strings for the textual
representation of the elements of numeric formats. This
frame contains the slots shown in Table 17-4.

Table 17-4 NumberFormat Slots

Slot Name Description

decimalpoint The string that represents the decimal character in
the textual representation of a numeric string; for
example, the string "." (period) used in the
currency string "$123.45".

groupSepStr The string that represents the character separating
the groupings of numbers in the textual
representation of a numeric string; for example, the
string "," (comma) used in the numeric string
"1,234".

groupWidth The number of characters in each grouping of
numeric characters separated by the groupSepStr
character; for example, the string "123,456,789"
is separated in groups of three.

minusPrefix The string used as a prefix for textual
representations of negative numbers; for example,
the minus sign (-) in the string "-123".

minusSuffix The string used as a suffix for textual
representations of negative numbers; for example,
the minus sign (-) in the string "123-".

C H A P T E R 1 7

Localizing Newton Applications Reference

17-10 Constants and Data Structures

Other Slots in Locale Bundles 17

The following slots are also contained in locale bundles:

_proto The locale bundle from which this frame inherits
default attributes. Not all built-in locale bundles have
this slot, but all locale bundles that you define must
have it.

distanceMeasure
The unit of measure for distances. For example, this
value is miles in the U.S. locale and kilometers in
the Canadian locale. The built-in Time Zones
application employs this value to display the distance
between two cities in a format appropriate to the user’s
locale; your application can use it also.

localeSym A symbol that uniquely identifies the locale. You must
have this slot in any locale bundle that you define. Use
this symbol to identify this locale bundle in calls to
locale functions such as SetLocale.

firstDayofWeek This integer value, ranging from 0 to 6, specifies the
starting day of the week: 0 represents Sunday, 1

currencyPrefix The string used as a prefix for textual
representations of currency values; for example, the
dollar sign ($) in the string "$123".

currencySuffix The string used as a suffix for textual
representations of currency values; for example, the
dollar sign ($) in the string "123$", as used for the
locale Canada (French locale).

decimalLeadingZ A value of kLeadZero specifies that a zero is to be
prefixed to representations of single-digit decimal
values; for example, the 0 in the string "$0.12". A
value of kNoLeadZero suppresses the use of the
leading zero prefix.

Table 17-4 NumberFormat Slots (continued)

Slot Name Description

C H A P T E R 1 7

Localizing Newton Applications Reference

Constants and Data Structures 17-11

represents Monday, and so on. This information is used
by, for example, clMonthView.

postalCodeNumeric
Has the value true if postal code field accepts numeric
input only; for example, in the U.S. locale, postal codes
do not include alphabetic characters.

wordBreakTable For internal use; the word-selection table used to find
word boundaries when selecting words.

lineBreakTable For internal use; the word-selection table used to find
word boundaries when breaking lines of text.

defaultPaperSize
Specifies the default paper size to used when formatting
pages for printing and faxing; valid values are
'eightByEleven and 'a4.

keycodeMapping Specifies the Macintosh-style 'kchr' resource that
maps keys on the floating keyboard to appropriate
keycodes used for input via keyboard to map codes to
characters.

Date and Time Format Specifications 17
Many of the functions in “Formatted Date/Time Functions” (page 17-22)
take a format specification as a parameter. You can use the pre-defined
format specifications included in the system (described in “System-Defined
Format Specifications” (page 17-11) or create your own using the constants
described in “Constants to Create Your Own Specification” (page 17-13) and
the function GetDateStringSpec.

Note that the locale changes the separators and order of elements for dates
and times even when you specify a format.

System-Defined Format Specifications 17

The system provides a set of date and time format specifications you can use.
They are stored in the ROM_dateTimeStrSpecs global. Table 17-5 shows
the slots of this global.

C H A P T E R 1 7

Localizing Newton Applications Reference

17-12 Constants and Data Structures

* Argument to LongDateStr function
† Argument to ShortDateStr function
‡ Argument to TimeStr function

Table 17-5 Format specifications in ROM_dateTimeStrSpecs global

Slot Note Example of format

longDateStrSpec * Wednesday, July 22, 1992

abbrDateStrSpec 1 Wed, Jul 22, 1992

yearMonthDayStrSpec 1 July 22, 1992

yearMonthStrSpec 1 July 1992

dayStrSpec 1 Wed, Jul 22

monthDayStrSpec 1 July 22

numericDateStrSpec † 7/22/92

numericMDStrSpec 2 7/22

numericYearStrSpec 1,2 1992

longMonthStrSpec 1 July

abbrMonthStrSpec 1 Jul

numericDayStrSpec 1,2 22

longDayOfWeekStrSpec 1 Wednesday

abbrDayOfWeekStrSpec 1 Wed

longTimeStrSpec ‡ 10:40:59 AM

shortTimeStrSpec 3 10:40 AM

shortestTimeStrSpec 3 10:40

hourStrSpec 3 10

minuteStrSpec 3 40

secondStrSpec 3 59

C H A P T E R 1 7

Localizing Newton Applications Reference

Constants and Data Structures 17-13

Constants to Create Your Own Specification 17

This section shows the system-supplied constants available for specifying the
elements and formats of date and time strings.

The system-supplied constants for specifying the elements of date and time
strings are listed in Table 17-6. These are paired with the format constants in
Table 17-7 (page 17-15).

Table 17-6 Elements of date strings

Constant Notes

kElementNothing Prints nothing.

kElementDayOfWeek Gives the day of the week, using the strings given in the
LongDateFormat slot of the active locale bundle. The slot
used depends on the value paired with it:

If paired with kformatshort, it uses
LongDateFormat.shortdofweek. If
LongDateFormat.shortdofweek is undefined then
LongDateFormat.tersedofweek is used.

If paired with kformatterse, it uses
LongDateFormat.tersedofweek. If
LongDateFormat.tersedofweek is undefined then
LongDateFormat.abbrdofweek is used.

If paired with kformataddr, it uses
LongDateFormat.abbrdofweek. If
LongDateFormat.abbrdofweek is undefined then
LongDateFormat.longdofweek is used.

If paired with kformatlong, it uses
LongDateFormat.longdofweek.

C H A P T E R 1 7

Localizing Newton Applications Reference

17-14 Constants and Data Structures

kElementDay Gives the date of the month.

Can only be paired with kFormatNumeric.

If less than 10, the system checks in the active locale for
longdateformat.leadingZ or
shortdateformat.leadingZ to see if there should be a
leading zero.

kElementMonth Gives the month, using the strings given in the
LongDateFormat slot of the active locale bundle. The slot
used depends on the value paired with it:

If paired with kformatshort, it uses
LongDateFormat.shortmonth. Currently in U.S. locale,
this has the same behavior as kformatabbr because
shortmonth is not defined in the U.S. locale bundle.

If paired with kformatterse, it uses
LongDateFormat.tersemonth. Currently in the U.S. locale
this has the same behavior as kformatabbr because the terse
month not defined in the U.S. locale bundle.

If paired with kformatabbr, it uses
LongDateFormat.abbrmonth.

If paired with kformatlong, it uses
LongDateFormat.longmonth.

If paired with kformatnumeric, it uses the numbers 1
through 12.

If the month number is less than 10, the system checks
ShortDateFormat.monthLeadingZ to see if a leading zero
should be used.

Table 17-6 Elements of date strings (continued)

Constant Notes

C H A P T E R 1 7

Localizing Newton Applications Reference

Constants and Data Structures 17-15

kElementYear Gives the year. The format paired with this is ignored.

If used used with LongDateStr, the full four digits
representing the year are included in the resulting string.

If used with ShortDateStr, then
LocaleBundle.ShortDateFormat.yearleading is
checked to see if the first two digits should be dropped.

kElementHour Gives the hour. The format paired with this is ignored.

kElementMinute Gives the minute. The format paired with this is ignored.

kElementSecond Gives the second. The format paired with this is ignored.

kElementAMPM Specifies “AM”, “PM”

kElementSuffix Gives a 24-hour clock indicator, such as “GMT”

kIncludeAllElements Includes the day name, month, day, and year, such as
Wednesday July 24, 1996.

Table 17-7 Formats for date and time string elements

Constant Element of string Example of display

kFormatLong full-length “Wednesday”

kFormatAbbr abbreviated “Wed”

kFormatTerse shortened abbreviation “We”

kFormatShort single-letter “W”

kFormatNumeric numeral “1994”

kFormatDefault Default from active
locale bundle

Table 17-6 Elements of date strings (continued)

Constant Notes

C H A P T E R 1 7

Localizing Newton Applications Reference

17-16 Localization Function Reference

Localization Function Reference 17

These functions are used for localizing Newton applications.

Compile-Time Functions 17
These functions allow you to build an application for various language
environments. “GetDateStringSpec” (page 17-29), which is listed with the
utility functions, is also a compile-time function.

LocObj 17

LocObj(obj, pathexpr)

Returns the object specified by the obj parameter or, if the Language setting
in the Project Settings dialog box is something other than English, the object
specified by the pathname in the pathexpr parameter. It gets that object from a
localization frame that you define. See “Defining a Localization Frame”
(page 20-4) in Newton Programmer�s Guide for details of defining such a frame.

obj The object. This must be a constant.
pathexpr The path to an alternative localized version of the object.

This also must be a constant.

You can reference LocObj from within a function executed at run time,
because LocObj is evaluated at compile time and replaced with the string or
other object appropriate to the language setting.

This is a compile-time function. Because LocObj is evaluated at compile
time, its parameters must be constants, not references to local variables that
are created at run time.

See “Using LocObj to Reference Localized Objects” (page 20-4) in Newton
Programmer�s Guide for more information.

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-17

MeasureString 17

MeasureString(str, fontSpec)

Measures the length of a text string in a specified font. This is a compile-time
function; if you want to measure a string at run time, use StrFontWidth.

str The text to measure.
fontSpec The font in which the text appears.

You can specify the font using any constant or
combinations of constants described in Chapter 7, “Text
and Ink Input and Display Reference.” If you’re using
your own font, you can pass a font frame.

The MeasureString function returns the length, in pixels, of the str
parameter in the font specified by the fontSpec parameter.

This is a compile-time function. Because MeasureString is evaluated at
compile time, its parameters must be constants, not references to local
variables created at run time. You can also use the LocObj function as a
parameter, since it is evaluated at compile time.

See “Measuring String Widths at Compile Time” (page 20-6) in Newton
Programmer's Guide for an example of using this function.

SetLocalizationFrame 17

SetLocalizationFrame(frame)

Establishes the language frame for LocObj to use when the Language
setting for a build is anything other than English.

frame The language frame; that is, the hierarchy of objects that
maps to the pathnames used by the LocObj function.
At its first level, the language frame contains one or
more slots, whose names are the Language codes that
can be specified through the Project Settings dialog box.
Each language slot contains all objects established for
that language.

If you call SetLocalizationFrame more than once, the most recent
language frame replaces the previous language frame.

C H A P T E R 1 7

Localizing Newton Applications Reference

17-18 Localization Function Reference

This is a compile-time function. Because SetLocalizationFrame is
evaluated at compile time, its parameters must be constants, not references
to local variables that are created at run time.

See “Defining a Localization Frame” (page 20-4) in Newton Programmer�s
Guide for more information on using this function.

Locale Functions 17
These functions manipulate locale bundles:

AddLocale 17

AddLocale(theLocaleBundle) // platform file function

Adds the specified frame to the available locales.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kAddLocaleFunc with (theLocaleBundle);
▲

theLocaleBundle The locale bundle to install into the system.

FindLocale 17

FindLocale(locSymbol) // platform file function

Returns, from the available locales, the frame that has the specified symbol in
its localeSym slot . If the symbol is not found, this function returns nil.
Use this function to get a frame to be referenced by your custom locale
bundle’s _proto slot.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kFindLocaleFunc with (locSymbol); ▲

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-19

locSymbol The symbol of the locale bundle to retrieve, as specified
by the symbol in the bundle’s localeSym slot.

GetLocale 17

GetLocale()

Returns the current locale frame.

For more information, see the sections “Examining the Active Locale
Bundle” (page 20-6) in Newton Programmer�s Guide and “Contents of a Locale
Bundle” (page 17-1) in this reference guide.

RemoveLocale 17

RemoveLocale(locSymbol) // platform file function

Removes the specified locale bundle from the available locales.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kFindLocaleFunc with (locSymbol);
▲

locSymbol The symbol of the locale bundle to retrieve, as specified
by the symbol in the bundle’s localeSym slot.

SetLocale 17

SetLocale(locSymbol)

Searches the system for the specified locale bundle and, if it is found, makes
it the active locale bundle. The new active locale is returned; if no locale is
found, nil is returned.

locSymbol The symbol of the locale bundle you want as the active
locale, as specified by the symbol in the bundle’s
localeSym slot.

C H A P T E R 1 7

Localizing Newton Applications Reference

17-20 Localization Function Reference

Date and Time Functions 17
These functions are grouped into three categories

■ Those that deal with system clock values directly

■ Those that format system clock values into strings or strings into system
clock values

■ Those that format system clock values into date frames or date frames into
system clock values

System Clock Functions 17

These functions use the system clock value, which is either the number of
minutes since midnight, January 1, 1904 or the number of seconds since
midnight, January 1, 1993. They perform the following functions:

■ Getting the current system clock value

■ Setting the system clock

■ Incrementing a system clock value on a monthly basis

■ Converting a seconds system clock value to a minute system clock value,
or the other way around

■ Giving a value that lets you measure durations in increments of sixtieths
of a second

IncrementMonth 17

IncrementMonth(time, numMonths)

Returns a time that is offset from the date of the original time by the number
of months indicated by the second parameter. The return value is the number
of minutes since midnight, January 1, 1904.

time An integer giving a number of minutes since midnight,
January 1, 1904.

numMonths An integer that specifies a number of months.

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-21

For example, suppose you wanted to get the day and date for two months
past February 14, 1996. You can use this code line:

ShortDate(IncrementMonth(stringtodate("2/14/96 3PM"), 2))

In the U.S. locale, this returns the string "Sun 4/14".

SetTime 17

SetTime(time)

Sets the time of the system clock. This function always returns nil.

time The time to which to set the system clock, specified as
the number of minutes elapsed since midnight, January
1, 1904.

SetTimeInSeconds 17

SetTimeInSeconds(time)

Sets the time of the system clock. This function always returns nil.

time The time to which to set the system clock, specified as
the number of seconds elapsed since midnight, January
1, 1993.

Ticks 17

Ticks()

Returns a number of ticks; a tick is one-sixtieth of a second. There is no
defined starting time for ticks; they are used to measure durations of time.
Typically, you would call Ticks, do something or wait, then call Ticks
again and compare the values to see how much time has passed.

Time 17

Time()

Returns an integer that indicates the time as the number of minutes since
midnight, January 1, 1904.

C H A P T E R 1 7

Localizing Newton Applications Reference

17-22 Localization Function Reference

TimeInSeconds 17

TimeInSeconds()

Returns the time in seconds as an integer. This is the number of seconds since
midnight, January 1, 1993.

TimeInSecondsToTime 17

TimeInSecondsToTime(secondsSince1993)

Returns a time in minutes since midnight, January 1, 1904 based on a time in
seconds since midnight, January 1, 1993.

secondsSince1993 A number of minutes since January 1, 1993.

TimeToTimeInSeconds 17

TimeToTimeInSeconds(minutesSince1904, extraSeconds)

Returns a time in seconds since midnight, January 1, 1993 based on a time in
minutes since midnight, January 1, 1904.

minutesSince1904 A number of seconds since January 1, 1904.

extraSeconds Any extra seconds that should be added to the
minutesSince1904 value to increase accuracy.

Formatted Date/Time Functions 17

These functions return formatted date and/or time strings. Some of the
functions in this list format the string according to the active locale bundle;
others take a format specification supplied as one of their arguments. See
“Date and Time Format Specifications” (page 17-11) for details of format
specifications; see “Functions that Take Format Specifications” (page 20-11)
in Newton Programmer�s Guide for information on how to use those format
specifications.

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-23

DateNTime 17

DateNTime(time)

Returns the specified time as a string with the format such as MM/DD/
YYYY HH:MM; for example, 10/23/1993 12:45. The formats used for
individual elements and delimiters in the returned string are determined by
values in the active locale bundle.

time The time in minutes since midnight, January 1, 1904, as
returned by the Time function.

HourMinute 17

HourMinute(time)

Returns the value of the time argument as a string in the format HH:MM; for
example, 12:45. The formats for individual elements and delimiters in the
returned string are determined by values in the active locale bundle.

time The time in minutes since midnight, January 1, 1904, as
returned by the Time function.

LongDateStr 17

LongDateStr(time,dateStrSpec)

Returns the date as a string in the specified format. For example:

With the U.S. locale:

LongDateStr(time(),
ROM_dateTimeStrSpecs.yearMonthDayStrSpec);

returns "April 22, 1996"

With the Canada (French) locale:

LongDateStr(time(),
ROM_dateTimeStrSpecs.yearMonthDayStrSpec);

returns "22. Avril 1996"

The active locale determines certain features of the returned string,
specifically the order of elements and the separators used.

C H A P T E R 1 7

Localizing Newton Applications Reference

17-24 Localization Function Reference

time The time in minutes since midnight, January 1, 1904, as
returned by the Time function.

dateStrSpec A format specification returned by the
GetDateStringSpec function or one of the format
specifications found in ROM_dateTimeStrSpecs; see
Table 17-5 (page 17-12) for those specifications.

ShortDate 17

ShortDate(time)

Returns the date as a string in the short format specified by the active locale.
For example, in the U.S. locale "Fri 12/25"; in the German locale "Mo
22.4". The formats used for individual elements and delimiters in the
returned string are determined by values in the active locale bundle.

time The time in minutes since midnight, January 1, 1904, as
returned by the Time function.

ShortDateStr 17

ShortDateStr(time,dateStrSpec)

Returns the date as a string in the format specified in dateStrSpec; for
example, "5/8/93".

The active locale bundle determines certain features of the returned string,
specifically the order of elements and the separators used.

time The time in minutes since midnight, January 1, 1904, as
returned by the Time function.

dateStrSpec A format specification returned by the
GetDateStringSpec function or one of the format
specifications found in ROM_dateTimeStrSpecs; see
Table 17-5 (page 17-12) for those specifications.

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-25

StringToDate 17

StringToDate(dateString)

Parses a string for date or time information and returns the result as the
number of minutes passed since midnight, January 1, 1904. The formats used
for individual elements and delimiters in the input string are determined by
values in the active locale bundle.

dateString The string to parse. If the year is omitted from the
string, the current year is assumed. The following types
of date/time strings can be parsed (the case of letters is
not significant):

"12:05 a.m. sun, jan 2, 1992"
"jan 2, 1992"
"12:05 1/2/92"
"1/2/92"
"12:05 mon,1/2"
"1/2"

StringToDateFrame 17

StringToDateFrame(str)

Returns the input string as a date frame. See Table 17-8 (page 17-27) for
details of a date frame.

This function is similar to StringToDate, with two significant differences:

■ The StringToDateFrame function returns a date frame instead of the
number of minutes since midnight, January 1, 1904. For example, the
StringToDateFrame function returns the following frame when passed
the string "June 2" as its argument:

{

year: nil,

month: 6,

date: 2,

dayOfWeek: nil,

hour: nil,

C H A P T E R 1 7

Localizing Newton Applications Reference

17-26 Localization Function Reference

minute: nil,

second: nil,

daysInMonth: nil,

status: 0

}

■ The StringToDateFrame function does not supply date or time
elements missing from the input string. In the previous example, the
year, dayOfWeek, hour, minute, and second slots are set to nil
because the input string does not include these values.

This behavior can be useful for determining what’s really in the input string.
If you want to make certain that you have all slots filled, you can use
StringToDate to convert the string to the number of minutes since
midnight, January 1, 1904 and Date to convert that value to a date frame.
For example:

Date(StringToDate("12:01a.m. 1/1/96")

StringToTime 17

StringToTime(timeString)

This function is similar StringToDate, except that it ignores any date
information that may be given in the parameter, timeString, and uses,
instead, the current date. That is, it returns the number of minutes from
midnight 1/1/1904 until a given time on the day that the call is executed. For
example, all of the following return the same value, assuming the current
date doesn’t change in between the calls:

StringToTime("12:01a.m. 1/1/96")

StringToTime("12:01a.m. 5/15/46")

StringToTime("12:01a.m.")

The formats for individual elements and delimiters in the input string are
determined by values in the active locale bundle.

timeString The string to parse for time information; any date
information in this string is ignored.

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-27

TimeStr 17

TimeStr(time,timeStrSpec)

Returns the specified time as a string in the specified format. The seconds
field is always 00.

The active locale bundle determines certain features of the returned string,
specifically the order of elements and the separators used.

time The time in minutes since midnight, January 1, 1904, as
returned by the Time function.

timeStrSpec A format specification returned by the
GetDateStringSpec function or one of the format
specifications found in ROM_dateTimeStrSpecs; see
Table 17-5 (page 17-12) for those specifications.

Date Frame Functions 17

These functions use or produce a date frame with the format shown in
Table 17-8.

Table 17-8 Date frame slots and values

Slot name Example value

year 1993

month 1

date 24

dayofweek 0 (Sunday=0, Saturday=6, and so on)

hour 15

minute 38

second 30

daysInMonth 31

C H A P T E R 1 7

Localizing Newton Applications Reference

17-28 Localization Function Reference

Date 17

Date(time)

Returns the specified time as a date frame. The second slot of the returned
frame has a random value and should not be used.

time The time expressed as a number of minutes since
midnight, January 1, 1904, such as that returned by the
Time function.

DateFromSeconds 17

DateFromSeconds(timeInSeconds)

Returns the specified time as a date frame.

timeInSeconds The time expressed as a number of seconds since
midnight, January 1, 1993, such as that returned by the
TimeInSeconds function.

TotalMinutes 17

TotalMinutes(dateFrame)

Returns the time in minutes since midnight, January 1, 1904, when passed a
date frame. You must pass in a date frame, or this function returns an error.

TotalSeconds 17

TotalSeconds(dateFrame)

Returns the time in seconds since midnight, January 1, 1993, when passed a
date frame. You must pass in a date frame, or this function returns an error.

Utility Functions 17
These functions perform tasks related to the presentation of data in
regionalized formats.

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-29

GetDateStringSpec 17

GetDateStringSpec(formatArray)

Returns a date or time format specification that can be passed in place of a
predefined format from ROM_datetimeStrSpecs to one of the following
built-in functions:

■ LongDateStr

■ ShortDateStr

■ TimeStr

Because the GetDateStrSpec function is available at compile time only, its
return value must be stored in a compile-time variable used to initialize an
evaluate slot at run time. The slot value is then passed to date and time
functions requiring the format spec at run time.

The order in which elements of a date or time string appear is not specified
by the format specification, but by values stored in the active locale bundle.
The delimiters that separate the various elements of the date or time string
are also not specified in the format spec, but are also retrieved from the
active locale bundle.

formatArray An array of two-element arrays. Each two-element array
lists a single date or time element and a corresponding
format to use to display that element. For example:

[[kElementMonth,kFormatAbbr],

[kElementDay, kFormatNumeric]]

The two-element subarrays can appear in any order; the
order in which elements of the date or time string
appear is defined in the active locale bundle, not by the
format spec.
See the section “Constants to Create Your Own
Specification” (page 17-13) for a complete listing of the
values to use for the date or time element in each
subarray, and an example of each as returned by one of
the built-in date or time functions.

C H A P T E R 1 7

Localizing Newton Applications Reference

17-30 Localization Function Reference

Note

This function is available in the Newton Toolkit
development environment only at compile time; it is not
available at run time. ◆

GetLanguageEnvironment 17

GetLanguageEnvironment()// platform file function

Returns a value indicating the language for which the ROM in the current
Newton device is implemented. These values are summarized in Table 17-9.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetLanguageEnvironmentFunc with ();

▲

IsValidDate 17

IsValidDate(date)
Returns TRUE if the object passed is a valid date. Otherwise, returns NIL.

date Either a string or a date frame. The date is considered
valid if it contains both a legal day or month. It checks
for leap years. If the year is missing, February can have
29 days.

Table 17-9 ROM language codes

Language Value

English 0

French 1

German 2

C H A P T E R 1 7

Localizing Newton Applications Reference

Localization Function Reference 17-31

SetCountryClass 17

SetCountryClass(countryName)

Sets the class of a country name so that it can be automatically translated if it
is placed in a soup that is used on a Newton with a different country ROM.

countryName A string that is the name of a country. This must be a
name that exists in the current ROM. For example, if
you are using a Newton device with a U.S. ROM, and
you use "Deutchland" as a country name, this
function will do nothing. You may want to check that
the user has entered a valid country name. You can do
that with this code:

if length (GetCountryEntry(countryName)) > 0
then SetCountryClass(countryName)

Calling this function makes the country name universally recognizable to the
Newton system. If you store the country name in a soup and the resulting
soup entry is read on a Newton with a different ROM, the country can still
be identified when GetCountryEntry is called. You should always call this
function on a country name that you are going to store in a soup.

Data Structures 18-1

C H A P T E R 1 8

Routing Interface Reference18

This chapter describes the routines and protos provided by the Routing
interface, and the data structures used when interacting with the
Routing interface.

Data Structures 18

This section describes the data structures that your application uses to
interact with the Routing interface.

Item Frame 18
The item frame is the frame that encapsulates a routed (sent or received) item
and that is stored in the In/Out Box soup. Some slots have meaning only to
the application that created the item, other slots have meaning only to the In/
Out Box itself, and other slots are for the transport. Note that there are
additional slots used just by the Transport interface that are not documented
here. For more information, see “Item Frame” (page 22-2) in Newton
Programmer�s Guide.

Figure 18-0
Table 18-0

C H A P T E R 1 8

Routing Interface Reference

18-2 Data Structures

Slot descriptions

appSymbol Required. This slot contains a symbol representing the
sending application.

destAppSymbol Optional. A symbol identifying the application to
receive the item, if it is different from the sending
application. The receiving transport sets the
appSymbol slot in the received item to this value, and
the original value of the appSymbol slot is stored in the
fromAppSymbol slot in the received item frame.

body Required. This slot contains a NewtonScript object
representing the data to send. For fax and print
transports, this object should be referenced by the print
format that will draw the page. Print formats should
access this data using the expression target (not
fields.body).
All application-specific data and information must be
contained in the body slot. Do not add application-
specific slots to the item frame.

title Optional. A string to be shown in the In/Out Box’s view
as the item’s title. Note that you should not make this
string so long that it wraps to the next line in the Out
Box. If you don’t supply this slot, but there is a data
definition for the class of data being sent, the system
tries to obtain a title from the data definition. So, if you
use a data definition, you may not need to supply this
slot. Note that for e-mail, this string is also shown as the
message subject when the mail is viewed.

toRef Required for some transports (of the built-in transports,
fax and call use this slot). This slot contains an array of
one or more name references holding recipient address
information. The type of name reference information
differs, depending on the transport. For mail transports,
the name references contain names and e-mail
addresses; for the fax and call transports, they contain
names and telephone numbers. For more information
about creating name references, see the section
“Creating a Name Reference” (page 21-27) in Newton
Programmer�s Guide.

C H A P T E R 1 8

Routing Interface Reference

Data Structures 18-3

cc Used by e-mail transports. This slot contains an array of
one or more name references holding e-mail addresses
of people who should receive copies of the mail (like the
“cc:” field of a memo heading).

bcc Used by e-mail transports. This slot contains an array of
one or more name references holding e-mail addresses
of people who should receive blind copies of the mail.
This means they receive copies but their names don’t
appear on the recipient list; they are hidden from the
other recipients.

fromRef Optional. A name reference frame or other information
that identifies the sender. This information is usually
extracted from the sender’s current owner card, or
persona. Note that you don’t normally set this slot. It is
normally set by the transport in its NewItem method;
see the section “Obtaining an Item Frame” (page 22-13)
in Newton Programmer�s Guide. If the format needs to get
the sender name, it can do so from this name reference.
If you specify this slot, it overrides the one provided by
the transport.

currentFormat Optional. A symbol representing the routing format to
use to represent this item. If this slot is not set, the
Routing interface uses the first format it can find that
handles the class of the data being sent.

connect Optional. This slot is a Boolean. If set to true, it
suggests to the transport that an immediate connection
is appropriate. However, an immediate connection
cannot be guaranteed. For instance, the beaming
transport might observe this slot and immediately try to
send the beam to another Newton. Some transports may
disregard this slot and implement their own behavior.

C H A P T E R 1 8

Routing Interface Reference

18-4 Data Structures

hidden Optional. This slot is a Boolean. If set to true, the Out
Box hides the entry so it can’t be seen, selected, or even
deleted by the user.

IMPORTANT

All applications that set hidden to true must also set
completionScript to true and must have an
ItemCompletionScript method. This allows you to
keep track of hidden items and delete them after they
are sent (since the user can’t). If you fail to supply an
ItemCompletionScript method in your application,
the hidden slot is removed from the item frame by the
Send function. ▲

covert Optional. This slot is a Boolean. If set to true, the Out
Box does not log or save this item after it is sent.

completionScript
Optional. This slot is a Boolean. If set to true, the
application is notified when the state of the item
changes or when errors occur. This allows an
application to track what happens to sent items. The
application, identified by the appSymbol slot in the
item frame, is sent the ItemCompletionScript
message. This method must be defined in the
application base view, if you want to be notified.

needsResolve Optional. This slot is a Boolean. Set it to true if the
body slot contains an alias, rather than the actual data.

Slot descriptions that apply to the built-in print transport only

printer Optional. A printer frame used for printing only. This
frame specifies the printer to use. If this slot is omitted,
the last printer selected by the user is used. This is
obtained from the currentPrinter variable of the
user configuration data. For more information on how
to specify a printer, see the section “Specifying a
Printer” (page 21-28) in Newton Programmer�s Guide.

C H A P T E R 1 8

Routing Interface Reference

Data Structures 18-5

Slot descriptions that apply to the built-in fax transport only

coverPage Optional. This slot is a Boolean. If set to true, a cover
page is printed. If nil, no cover page is printed. If this
slot is omitted, the user preference setting is observed.
Don’t rely on an exact number of extra pages being
printed as a result of setting this slot.

faxResolution Optional. A symbol indicating the fax resolution to use.
Specify either 'fine or 'normal. If this slot is omitted,
the default resolution is 'fine.

Slot descriptions that apply to the built-in call transport only

phoneNumber Optional. A string that is the phone number to dial.
(This is required in addition to the toRef slot, if this
transport is being used in conjunction with the Calls
application.)

name Optional. A string that is the name of the person to call.
(This is required in addition to the toRef slot, if this
transport is being used in conjunction with the Calls
application.)

serviceProvider
Optional. A symbol identifying how the call should be
placed. Specify 'modem to dial it through the modem,
'speaker to dial it through the speaker, or nil to
signify that the Newton device is not dialing the call at
all (you’re just logging a call that the user is dialing
manually). If this slot is not specified, the current user
preference setting is used.

saveAsLog Optional. This slot is a Boolean. If set to true, the Calls
application is opened when the call is placed and an
entry is made to log the call. If set to nil, no log entry is
made and the Calls application is not opened. If this slot
is not specified, the last user setting for the Log check
box in the call routing slip is used.

C H A P T E R 1 8

Routing Interface Reference

18-6 Data Structures

RouteScripts Array 18
The routeScripts slot in an application contains an array of frames, where
each frame corresponds to one application-specific routing action to be
displayed on the Action picker. Each of these routeScripts frames is
defined as follows:

{

title: string, // string name of picker item

icon: bitmap object, // icon for picker item

appSymbol: symbol, // used if defined in a view def

RouteScript: symbol or function,// function called if this
 // action is chosen

GetTitle: function // supplied instead of title slot

...

}

Slot descriptions

title Optional. A string that appears in the Action picker. If
this slot is nil or missing, the GetTitle method is
used to get the title for the picker.

icon Optional. An icon that appears to the left of the item in
the picker.

RouteScript Required. A symbol identifying a function that is called
if this routing action is selected from the picker.
(Alternately, you can include the function directly in
this slot.) The specified function is passed two
arguments, the target and targetView slots
returned by the message
self:GetTargetInfo('routing). Note that self
evaluates to the Action button view, where the lookup
for these two slots begins.

appSymbol Optional. A symbol identifying an application in the
root view where the function identified by the
RouteScript symbol can be found. This slot is used
only if the RouteScript slot contains a symbol and

C H A P T E R 1 8

Routing Interface Reference

Protos 18-7

this frame is defined in a view definition rather than in
an application.

GetTitle Optional. If the title slot is nil or missing, this
method is used to obtain the title. This method takes
one parameter, the target slot of the item being
routed. (This slot is obtained by the system sending the
message self:GetTargetInfo('routing).)
The GetTitle method must return a title string, nil,
or the symbol 'pickSeparator. If this method returns
nil, the action does not show up in the picker. If this
method returns the symbol 'pickSeparator, it
includes a separator line in the list of actions. The
GetTitle method allows you to return different titles,
depending on the target item.

Note that your application can override the GetTargetInfo method
(page 12-11) to return custom data.

Protos 18

This section describes protos used in the Routing interface.

protoActionButton 18

This proto is used to include the Action button in a view. The context in
which the Action button is placed establishes the context for routing actions.

When the user taps the Action button, a picker is dynamically created and
displayed. The picker lists actions that the current application has
implemented and that are supplied by transports that can handle the target
data. When an item from the picker is selected, a routing slip may be
displayed, and if confirmed, the target item selected in the application is
routed.

C H A P T E R 1 8

Routing Interface Reference

18-8 Protos

Here is an example of the Action button and picker:

Slot descriptions

viewBounds By default, the Action button is placed in the upper-
right corner of its parent view. The default top-left
coordinate is (–42, 2). Set this slot if you want to change
the icon's location. It is recommended that you put the
Action button with other buttons on a status bar, if you
have one.

The following additional methods are defined internally:
ViewClickScript, ButtonClickScript, PickActionScript, and
PickCancelledScript. If you need to use one of these methods, be sure
to call the inherited method also (for example,
inherited:?ViewClickScript(unit)), otherwise the proto may not
work as expected.

protoPrinterChooserButton 18
This proto is used to include the printer chooser button in a view. When the
user taps the button, a picker is displayed. The picker lists recent printers
that the user has chosen, along with items that allow the user to choose
another built-in printer or a network printer. If the user selects a network
printer and is connected to a network, a scrollable list of printers found on

C H A P T E R 1 8

Routing Interface Reference

Protos 18-9

the network is displayed. Here is an example of the printer chooser button
and picker:

Slot descriptions

viewBounds Set to the location where you want the printer chooser
button to appear.

viewJustify Optional. The default setting is vjLeftH +
oneLineOnly.

The protoPrinterChooserButton uses the protoLabelPicker as its
proto.

Routing Format Protos 18
The three routing format protos, protoRoutingFormat,
protoPrintFormat, and protoFrameFormat, are used to create routing
formats. They are described together in this section because they share many
common slots and methods. In fact, protoRoutingFormat serves as a
proto to the other two. The common information is labeled as such, and is
followed by the information that applies to the individual protos.

Slot descriptions common to all proto routing formats

type Required. This slot is set to 'routeFormat. You
shouldn’t change it. (Note that some ROM versions use
the symbol 'printFormat.)

title Required. A string identifying this format. This string is
displayed in the picker listing formats in the routing slip.

symbol Required. A symbol that uniquely identifies this format
from all others. This is used to save the current format.

C H A P T E R 1 8

Routing Interface Reference

18-10 Protos

Be sure to append your developer signature (for
example, '|aFormat:mySIG|).

dataTypes Required. An array of symbols set to the data types that
this format supports. The currently defined types in the
system include 'view, 'frame, 'text, and 'binary.
For more information about these types, see Table 21-1
(page 21-7) in Newton Programmer�s Guide. The default
value of this slot in protoRoutingFormat and
protoFrameFormat is ['frame,'text]. The default
value in protoPrintFormat is ['view].

version Optional. An integer identifying the version of this
format.

auxForm Optional. A view template. This optional auxiliary view
is for gathering extra information from the user in the
routing slip view. If this slot is provided, the auxiliary
view is opened when the format is selected.

storeAlias Optional. If you set this slot to true, and the target is
larger than sizeLimit or there is not enough storage
space for it, an alias to the target object is assigned to the
body slot of the item frame in the default SetupItem
method. The default value of this slot is nil. For more
information, see the SetupItem method.

showMessage Optional. When an alias to the target object is stored, the
system warns the user that the original item must be
available when the routed item is sent. The display of
that message is controlled by this slot. When set to
true, this slot enables the message; when set to nil,
this slot suppresses the message. The default value of
this slot is true.

sizeLimit Optional. An integer specifying a number of bytes. If
storeAlias is true and the target object exceeds this
number of bytes (or there is not enough storage space
for it), an alias to the target object is assigned to the
body slot of the item frame. The default value of this
slot is nil (meaning there is no limit).

C H A P T E R 1 8

Routing Interface Reference

Protos 18-11

storeCursors Optional. This slot controls how a selection of multiple
items from an overview is handled. If you set this slot to
true, and the transport also handles cursors, a selection
of multiple items is stored in the Out Box as a multiple-
item target object (created by CreateTargetCursor)
that is later resolved into its component entries. If you
set this slot to nil, a selection of multiple items is
resolved into separate entries that are stored
individually in the Out Box. The default value of this
slot is true.
Note that the transport slot allowBodyCursors must
also be set to true for a cursor to be used. If this is not
the case, a cursor will not be used, even if
storeCursors is set to true. Instead, each item will
be stored separately in the Out Box. Of the built-in
transports, only the print and fax transports handle
cursors.

Slot descriptions for the protoPrintFormat variant

usesCursors Optional. Set this slot to true if this format can handle
laying out multiple items on the same page when
multiple items are being routed. In this case, the format
is passed a single cursor to the items being routed. If
you want each item to be printed on a separate page or
if this format cannot handle a cursor, set this slot to nil.
In this case, the format is called multiple times, once for
each item being routed. The default setting of this slot is
nil.

orientation Optional. A symbol indicating whether this format
should use the paper in portrait mode ('portrait), or
horizontally in landscape mode ('landscape). The
default is 'portrait.

margins Optional. A bounds rectangle giving the margins to use
when laying out the items on the page. The value of
each slot (left, top, right, bottom) in this frame is
interpreted as an inset from the edge of the paper in
pixels. You must specify only non-negative values, to

C H A P T E R 1 8

Routing Interface Reference

18-12 Protos

make sure that you don’t print off the page. The default
is {left:0, top:0, right:0, bottom:0}.

viewFlags Optional. The default setting is vVisible +
vReadOnly.

viewBounds Do not modify this slot.
viewJustify Do not modify this slot.
viewFont Optional. The default font is userFont12.
pageWidth The ViewSetupChildrenScript method of the proto

sets this slot to the width, in pixels, of the view.
pageHeight The ViewSetupChildrenScript method of the proto

sets this slot to the height, in pixels, of the view.

The methods that are of interest in these three routing format protos are
described in the following subsections. The common methods are described
first, followed by the methods that apply to the individual protos. The
following methods apply to all routing format protos:

SetupItem
TextScript
TargetSize
MakeBodyAlias
ResolveBody

The following methods apply only to protoPrintFormat:

ViewSetupChildrenScript
PrintNextPageScript
GetCursorFormat
FormatInitScript
CountPages

Note also that the following methods are defined internally in
protoPrintFormat: ViewSetupFormScript and
ViewSetupChildrenScript. If you need to use one of these methods, be
sure to call the inherited method also (for example,
inherited:?ViewSetupFormScript()), otherwise the proto may not
work as expected.

C H A P T E R 1 8

Routing Interface Reference

Protos 18-13

SetupItem 18

format:SetupItem(item, targetInfoFrame)

Called if this format is selected from the picker listing formats in the routing
slip. This method must set the body slot of the item frame to the data to be
routed. Additionally, you can use this method to initialize other slots in the
item frame; however, do not put any application-specific data into other slots,
as they are not guaranteed to be preserved. For instance, they won’t be
copied if the item is rerouted from the In/Out Box.

item An item frame, as obtained from the transport method
NewItem (page 19-28). For more information about the
item frame, see the section “Item Frame” (page 22-2) in
Newton Programmer�s Guide.

targetInfoFrame The target information frame returned by the method
GetTargetInfo (page 12-11).

The routing format protos provide a default SetupItem method that assigns
the target slot in targetInfoFrame to the body slot of item. You can override
this method if you want to perform additional operations and then call the
inherited SetupItem method. For more information on using this method,
see the section “Supplying the Target Object” (page 21-12) in Newton
Programmer�s Guide.

The default SetupItem method returns item, after the body slot in it has
been set. If it returns nil, the item won’t be routed and the user is notified
by the system that the item could not be sent.

IMPORTANT

The SetupItem method should not assume that the
application associated with the item is open. The In/Out Box
might be rerouting the item, separate from the application.
In this case, the application gets a chance to modify the item
in its VerifyRoutingInfo method, which the In/Out Box
calls in the application that owns the item. ▲

You can use the storeAlias slot in the routing format frame to specify that
an alias to the target soup entry is to be stored in the body slot. The default

C H A P T E R 1 8

Routing Interface Reference

18-14 Protos

SetupItem method also handles creating and storing an alias if the
storeAlias slot is true, and handles the sizeLimit slot.

TextScript 18

format:TextScript(item, reserved)

Returns a textual representation of the data to be routed. This method is
typically called by transports that handle text-type data, such as e-mail
transports.

item The item frame. The data being routed is stored in the
body slot of this frame. Because the body slot might
contain an alias, in order to access it you should always
call the ResolveBody format method on item.
ResolveBody returns the data in the body slot
whether or not it is referenced by an alias.

reserved Ignore this parameter.

The routing format protos provide a default TextScript method that
attempts to get the textual representation of the data from the data definition
registered with the system. First it calls the TextScript method of the data
definition, then it looks in the description slot of the data definition, and
lastly it tries the name slot of the data definition. If no text is found by any of
these methods, a string is returned that says no text is available for the item.

You can override this behavior by providing your own TextScript method.

Note that the TextScript method is not guaranteed to be called by a
transport if the transport does not support the 'text data type or if
item.body is a subclass of 'string or 'text. (If item.body is a subclass of
'string or 'text, the transport may use the string data in item.body
directly, rather than using the TextScript method to obtain it.)

C H A P T E R 1 8

Routing Interface Reference

Protos 18-15

TargetSize 18

format:TargetSize(targetInfoFrame)

Returns the size of the target object. You must override this method if you
need to determine the size of a target object that is not a soup entry. This
method must return an integer that is the size of the target object in bytes.

targetInfoFrame The target information frame passed to the method
SetupItem.

If you can’t determine the size of the target object, return nil from this
method.

The proto provides a default TargetSize method that works for soup
entries. It uses the EntrySize function to determine the size of the object.

MakeBodyAlias 18

format:MakeBodyAlias(targetInfoFrame)

Returns an alias for the target object. You must override this method if you
need to make an alias for some special target object that is not a soup entry.
In this method, you must make an alias object (in whatever way you want)
and return it.

targetInfoFrame The target information frame passed to the method
SetupItem.

The alias object that you return must have two slots:

■ a class slot whose value is the class of the target object

■ an _ioalias slot whose value is the alias you’ve constructed

Note that if you provide this method, you must also provide a
ResolveBody method that can resolve the alias.

ResolveBody 18

format:ResolveBody(item)

Resolves an alias created by MakeBodyAlias. You must override this
method if you have provided a MakeBodyAlias method. ResolveBody

C H A P T E R 1 8

Routing Interface Reference

18-16 Protos

must resolve and return the body slot of item. This method is called by the
system whenever it needs to access the original target item.

item The item frame.

The default ResolveBody method returns the body slot of item, resolving
an alias stored there, if necessary. Note that this method works whether or
not the body slot of item is an alias.

If the body slot contains an alias that cannot be resolved, ResolveBody
returns nil.

ViewSetupChildrenScript 18

format:ViewSetupChildrenScript()

Sets up the child views containing the data to be routed. When this method
is called initially, you should set up the child views for the first page to be
routed, typically by setting the value of the stepChildren array. If you
follow the guidelines for the PrintNextPageScript method by using the
view method RedoChildren, the ViewSetupChildrenScript method is
called for each subsequent page as well.

At the beginning of this method, don’t forget to call the inherited method
(inherited:?ViewSetupChildrenScript) so that the proto behavior is
preserved before your own code is executed.

PrintNextPageScript 18

format:PrintNextPageScript()

Sets up the print view for the next page of data. You must define this method
of the protoPrintFormat if your print format handles more than a single
page of data. The system calls this method each time it reaches the end of a
page to allow you to construct the next page of data. This method should
construct the view for the next page of data so that the message
self:Dirty() shows the view.

Typically, you do this by keeping track of what data has been routed so far.
When the format receives this message, you set up child views representing
the next page of data to send, and send the RedoChildren message (which

C H A P T E R 1 8

Routing Interface Reference

Protos 18-17

sends the ViewSetupChildrenScript message) to create the new child
views representing the next page of data to route. For information on
RedoChildren and other view methods, refer to Chapter 2, “Views
Reference.”

Instead of setting up a new group of child views and calling
RedoChildren, you might want to change the contents in the existing
views. Use the SetValue function to change the values in individual views.

While there is more data to route, PrintNextPageScript should return a
non-nil value. When there is no more data to route, this method should
return nil.

Note that some transports (for example, fax) might call this method before
the data is actually printed, to determine the page count.

For more information on using this method, see the section “Printing and
Faxing” (page 21-19) in Newton Programmer�s Guide.

GetCursorFormat 18

format:GetCursorFormat(target)

Returns a format for a given target object. This method is useful for getting
formats for the individual items described by the cursor as you iterate
through them.

target The target object to be routed in the application.

This method looks for a format registered as a view definition for the data
class of the target object whose symbol slot matches the symbol slot of the
view format in which this method is called. If no matching format is found,
this function returns the first format registered for the data class of the target
object that is for the 'view data type and whose usesCursors slot is nil.

If no format is found, nil is returned.

C H A P T E R 1 8

Routing Interface Reference

18-18 Protos

FormatInitScript 18

format:FormatInitScript(item, reserved)

Allows the print format to perform initialization operations. You can supply
this method in your print format to perform any lengthy initialization
operations that you want to do before a connection is made. This method is
guaranteed to be called before a connection is made. This is helpful for
reducing the chance of a fax timeout.

item The Out Box item frame. The data being routed is stored
in the body slot of this frame. Because the body slot
might contain an alias, in order to access it you should
always call the ResolveBody method on item.
ResolveBody returns the data in the body slot
whether or not it is referenced by an alias.

reserved Ignore this parameter.

When the FormatInitScript message is sent, the message receiver is not
the format frame itself. The pseudo-variable self references a temporary
frame based on your registered format. The print format view is based on
this temporary frame that is based on your registered format frame. Your
FormatInitScript method can store data in self for use in the
ViewSetupFormScript method or other view methods. Your format's
view methods will be able to access those slots using prototype inheritance.

For more information on using this method and faxing, see the section
“Printing and Faxing” (page 21-19) in Newton Programmer�s Guide.

CountPages 18

format:CountPages(item, target)

Returns the number of pages. If possible, you should override this method of
protoPrintFormat to return the number of pages in the fax (not including
the cover page, if present).

item The Out Box entry.

target The data object to be faxed. This is usually the contents
of the item.body slot.

C H A P T E R 1 8

Routing Interface Reference

Functions and Methods 18-19

The default CountPages method of the protoPrintFormat opens the
print format view in an offscreen view and causes each page to be
constructed in turn so it can count the number of pages (not including the
cover page). The PrintNextPageScript message is sent to the print
format after each page is done. Then the print format view is closed. This is a
lot of work for the system to do just to determine the number of pages, so if
you can, it’s a good idea to override the CountPages method with one of
your own.

For more information on using this method and on faxing, see the section
“Printing and Faxing” (page 21-19) in Newton Programmer�s Guide.

Functions and Methods 18

This section describes send-related and utility functions and methods for the
Routing interface.

Send-Related Functions and Methods 18
This section describes functions and methods used when an application
sends an item programmatically.

Send 18

Send(transportSym, item)

Stores an item in the Out Box and routes it to the indicated transport.

transportSym A symbol representing the transport (or transport
group) to which the item should be routed. You must
specify an installed transport that supports sending, or
a transport group symbol (built-in groups include 'fax,
'beam, 'mail, and 'print). If you specify a group
symbol, the last-used (for sending, by the user)
transport from that group is used to send the item. To
obtain a list of valid transports for the item you are

C H A P T E R 1 8

Routing Interface Reference

18-20 Functions and Methods

sending, you can use the functions GetRouteFormats
and then GetFormatTransports.

item A frame containing slots that you want added to the
item frame posted to the Out Box. This must include
routing information and data to be sent. For a
discussion on how to construct this frame and detailed
descriptions of the slots, see the section “Sending Items
Programmatically” (page 21-26) in Newton Programmer�s
Guide. The slots are described briefly here.

If successful, this function returns the item stored in the Out Box soup,
otherwise it returns nil.

Here’s a summary of the slots you can include in the item frame:

itemFrame := {

appSymbol: symbol, // appSymbol of sender
destAppSymbol: symbol, // receiving app, if different
body: frame, // the data to send
title: string, // item title, e-mail subject
toRef: array, // array of name refs for recipients
cc: array, // array of name refs for copied recipients
bcc: array, // array of name refs for blind copies
currentFormat: symbol, // routing format to use
connect: Boolean, // try to connect immediately?
hidden: Boolean, // hide in Out Box?
covert: Boolean, // not logged or saved in Out Box?
completionScript: Boolean, // notify app of state change?
needsResolve: Boolean, // body slot contains an alias?
// transport-specific slots

printer: frame, // a printer frame; the printer to use
coverPage: Boolean, // use a cover page for fax?
faxResolution: symbol, // 'fine or 'normal fax resolution
phoneNumber: string, // phone number, for call transport
name: string, // name, for call transport

C H A P T E R 1 8

Routing Interface Reference

Functions and Methods 18-21

serviceProvider: symbol, // 'modem, 'speaker, or nil
saveAsLog: Boolean, // log call in Calls app?
}

Some of the slots in the item frame shown here are transport-specific. Other
transports may define additional slots. For more details, see “Item Frame”
(page 18-1).

GetRouteFormats 18

GetRouteFormats(item)

Returns an array of routing formats registered in the system that can handle
the class of the specified item. If no formats are found that can handle the
item, nil is returned.

item The item to be routed. The item is used only to obtain a
class symbol.

Note that this function returns an array of actual format frames, not just
symbols identifying formats.

You can pass the return value from this function to the
GetFormatTransports function to get a list of transports that can send an
item.

GetFormatTransports 18

GetFormatTransports(formatArray, target)

Returns an array of transports that can send data using the specified formats.
If no transports are found that can handle the specified formats, an empty
array is returned.

formatArray An array of routing format frames. You can obtain this
array from the GetRouteFormats function.

target A frame, which is the target slot from the target
information frame returned by the GetTargetInfo
method (page 12-11).

C H A P T E R 1 8

Routing Interface Reference

18-22 Functions and Methods

Note that this function returns an array of actual transport frames, not just
symbols identifying transports.

GetDefaultFormat 18

app:GetDefaultFormat(transportSym, target)

Gets the default format symbol for a given transport (and target item).

transportSym A symbol identifying a transport.

target A frame, which is the target slot from the target
information frame returned by the GetTargetInfo
method (page 12-11) and verified by the
VerifyRoutingInfo method.

This method is used to get the default format symbol for a transport and
target item. It should return a format symbol or nil, if none is found or
appropriate.

You do not need to implement this method because there is a default method
implemented in the root view. The default method looks in the
lastFormats slot of self (the application base view) to find a transport
matching transportSym. If the transport is found, it returns the format symbol
stored in that slot, which is the last format used with that transport.

The GetDefaultFormat method is called only if a routed item’s
appSymbol slot is appropriately set and the application is present.

If you implement this method in your application base view, you can use the
target parameter to base the format you return on the target item in addition
to the transport. The target parameter is ignored by the default method. Also,
note that the variable self evaluates to the application base view of the
application that sent the item.

C H A P T E R 1 8

Routing Interface Reference

Functions and Methods 18-23

SetDefaultFormat 18

app:SetDefaultFormat(transportSym, target, formatSym)

Sets the default format symbol for a given transport (and target item).

transportSym A symbol identifying a transport.

target A frame, which is the target slot from the target
information frame returned by the GetTargetInfo
method (page 12-11) and verified by the
VerifyRoutingInfo method.

formatSym A routing format symbol. This is the value of the
symbol slot in the format frame.

This method is used to set the default format for a transport and target item.

The SetDefaultFormat method is called only if a routed item’s
appSymbol slot is appropriately set and the application is present.

You do not need to implement this method because there is a default method
implemented in the root view. The default method stores formatSym in this
slot in self (the application base view):

lastFormats.transportSym

If you implement this method in your application base view, you can use the
target parameter in addition to the transport to do something different. The
target parameter is ignored by the default method. Also, note that the
variable self evaluates to the application base view of the application that
sent the item.

OpenRoutingSlip 18

OpenRoutingSlip(item, targetInfo)

Opens the routing slip for a transport.

item An item frame as returned by the transport NewItem
method (page 19-28).

C H A P T E R 1 8

Routing Interface Reference

18-24 Functions and Methods

targetInfo This parameter must be a frame, containing target
and targetView slots, as returned by the
GetTargetInfo method (page 12-11).

If successful, this function returns the routing slip view, otherwise it returns
nil. The routing slip view is returned to you so that you can close it if you
need to; for example, if your application is closed.

In certain error conditions, this function can also return the symbol
'skipErrorMessage. This return value means that the routing slip did not
open because of an error, but the user has already been alerted by a warning
message, so you don’t need to display another message.

Your application can call this function to open the transport routing slip
directly, bypassing the Action button, which would normally be used to
open it automatically.

This function does much of the work in the Routing interface, performing
initialization operations and calling the SetupItem method defined in the
routing format.

Note that if the item.state slot is non-nil, OpenRoutingSlip does no
initialization operations, nor does it call the SetupItem method. In this case,
the assumption is that since the state of the item is non-nil, it has already
been initialized.

Cursor-Related Functions 18
This section describes functions related to creating and testing for cursor
objects.

CreateTargetCursor 18

CreateTargetCursor(class, dataArray)

Creates and returns a frame that encapsulates an array holding multiple
target items.

C H A P T E R 1 8

Routing Interface Reference

Functions and Methods 18-25

class A symbol identifying the data class to be used for the
returned object. Only routing formats registered under
this class symbol can route this object.

dataArray An array of items for which a multiple-item target
object is to be created. These can be soup entries, soup
aliases, or any kind of NewtonScript object. The array
items can be of mixed types.

The object returned is a frame that encapsulates multiple target objects and
can be stored in a soup. If you want to navigate the individual target items
with a cursor, you can get a cursor by calling GetTargetCursor and
passing it the object returned by CreateTargetCursor. For example:

multiItemTarget := CreateTargetCursor('|myClass:SIG|, anArray);

aCursor := GetTargetCursor(multiItemTarget, nil);

Note that the built-in routing format protos are designed to handle multiple-
item target objects by finding a format for each item. You can override this
behavior if you design your own format to handle multiple-item target
objects. For more information about handling multiple-item target objects,
see “Using the Built-in Overview Data Class” (page 21-14) in Newton
Programmer�s Guide.

GetTargetCursor 18

GetTargetCursor(target, param2)

Returns a cursor for the target object.

target The target object to be routed.

param2 Reserved for future use. Always set this parameter to
nil.

Note that this function always returns a cursor, regardless of whether the
target parameter is multiple-item target object, a single target object, or nil.
Of course, in the latter case, the cursor object will not point to any objects.

Note that the object returned by the cursor method Entry may not always
be a soup entry—it can be any NewtonScript object. If a cursor entry is a

C H A P T E R 1 8

Routing Interface Reference

18-26 Functions and Methods

soup alias, it is automatically resolved when you access it by using one of the
cursor methods. If the alias cannot be resolved, the cursor method might
return the symbol 'deleted (if the item is removed while you are iterating
over the cursor), but usually it just skips over the unresolved item.
Subsequent calls to the cursor methods Next and Prev skip over the
unresolved item.

The cursor object returned by this function is not the same as a standard
soup cursor returned by the soup Query method. However, the cursor object
returned by this function can be used like a standard cursor in that it
responds to the cursor methods Entry (page 9-61), Next (page 9-63), and
Prev (page 9-64), described in Chapter 9, “Data Storage and Retrieval
Reference.” The use of other cursor methods is not supported.

TargetIsCursor 18

TargetIsCursor(target)

Returns true if the target object to be routed is a multiple-item target object,
or returns nil if it’s not.

target The target object to be routed.

You can use the function GetTargetCursor to obtain the cursor, even if
TargetIsCursor returns nil.

The TargetIsCursor method returns true for the multiple-item target
objects created by CreateTargetCursor, since these objects represent
flattened cursors.

Utility Functions and Methods 18
This section describes utility functions and methods used in the Routing
interface, in alphabetical order.

C H A P T E R 1 8

Routing Interface Reference

Functions and Methods 18-27

AppInstalled 18

AppInstalled(appSymbol)

Informs the system that your application implements the AutoPutAway
method and wants to receive any messages that arrived for it before it was
installed. If your application uses an AutoPutAway method, you can call the
AppInstalled function from your application part InstallScript
function to let the system know that the application is present.

appSymbol A symbol identifying your application.

The AppInstalled function prompts the In Box to send an AutoPutAway
message to the application for each In Box item that may have arrived for the
application before the application was installed.

Note that you must call the AppInstalled function using a deferred action,
like this:

AddDeferredCall(GetGlobalFn('AppInstalled),[kAppSymbol]);

ClassAppByClass 18

ClassAppByClass(dataClass)

Returns an array of application symbols corresponding to applications that
are registered to accept items of the specified data class. If no applications are
found with the specified data class, nil is returned.

dataClass A symbol identifying a data class.

GetActiveView 18

app:GetActiveView()

Returns the view to which the GetTargetInfo message (page 12-11)
should be sent.

The Intelligent Assistant sends this message when the user initiates a routing
action through it. The message is sent to the frontmost view on the screen
that has the vApplication flag set in its viewFlags slot (not including
floating views, as indicated by the vFloating flag). The purpose of this

C H A P T E R 1 8

Routing Interface Reference

18-28 Functions and Methods

method is to return the view to which the GetTargetInfo message should
be sent by the Intelligent Assistant, so that it can determine what object to
route. This is useful if there is more than one routing slip displayed, or if the
GetTargetInfo method must be executed in a specific context.

The default GetActiveView method implemented in the root view returns
the current receiver (self), which is the view to which this message is sent.
If this is not appropriate for your application, you should override this view
method in your application base view. This method should return the view
to which the GetTargetInfo message should be sent by the Intelligent
Assistant, so that it can determine what object to route.

GetItemTransport 18

GetItemTransport(item)

Returns the transport used for an item being sent or received.

item The item for which you want to get the transport.

GetRouteScripts 18

view:GetRouteScripts(targetInfoFrame)

Returns the value of the routeScripts slot, using full proto and parent
inheritance and starting in the context of self.

targetInfoFrame The target information frame returned by the method
GetTargetInfo (page 12-11).

The system calls this method to build the list of application-specific routing
actions to show in the Action picker. When this method is called, self is the
Action button view.

You might want to override this method in your application if you decide to
build the routeScripts array dynamically. For more information, see the
section “Providing Application-Specific Routing Actions” (page 21-22) in
Newton Programmer�s Guide.

C H A P T E R 1 8

Routing Interface Reference

Functions and Methods 18-29

RegAppClasses 18

RegAppClasses(appSymbol, dataClasses)

Registers an application to accept data of the specified classes.

appSymbol A symbol identifying your application or transport that
is registering to handle this data. Specify the value of
the appSymbol slot of the application or transport.

dataClasses An array of symbols identifying data classes that your
application can accept.

This registry is used when the user chooses to put away an In Box item. The
In Box displays a picker listing all the applications that have registered to
handle items with that data class. The user can choose which application the
item should be put away to. If the user chooses your application, it is sent the
PutAwayScript message, with the item to put away. The PutAwayScript
method should be able to handle data of all the classes for which you have
registered with RegAppClasses.

RegInboxApp 18

RegInboxApp(appSymbol, test)

Registers an application with the In Box to receive data from other
applications or non-Newton sources. Whenever a new item is added to the
In Box, the In Box checks the registered applications to find an owner for the
new item.

appSymbol A symbol identifying your application.

test A string or a function object used to match an incoming
item with an application. If you specify a string, it is
compared with the title slot in the incoming item. If
the string in the title slot begins with the test string,
the item’s appSymbol slot is set to the value in your
application’s appSymbol slot.

If you specify a function object for test, the function is
called with the incoming item as its parameter. If the

C H A P T E R 1 8

Routing Interface Reference

18-30 Functions and Methods

function returns true, the item’s appSymbol slot is set
to the value in your application’s appSymbol slot.

TransportNotify 18

TransportNotify(transportSym, message, paramArray)

Sends a message to a transport or to all transports.

transportSym A symbol identifying the transport to which you want
to send a message. You can specify a transport group
symbol to send the message to the current (last-used for
sending, by the user) transport in that group. Specify
the symbol '_all to send the message to all transports.

message A symbol that is the name of the message to send.

paramArray An array of parameters to be passed with the message.

The TransportNotify function returns the return value of the message it
sent. If it is broadcasting to all transports, it returns the return value of the
last message it sent.

If transportSym is not the symbol '_all and the method does not exist in the
transport, the symbol 'NoMethod is returned.

If transportSym is not found, the symbol 'noTransport is returned.

The TransportNotify function is a mechanism that can be used by
applications to communicate directly to any number of transports without
making specific calls to a single transport.

There are three messages that the system currently sends to transports by
using TransportNotify. They are AppOpened (page 19-10), AppClosed
(page 19-8), and AppInFront (page 19-9).

C H A P T E R 1 8

Routing Interface Reference

Functions and Methods 18-31

UnRegAppClasses 18

UnRegAppClasses(appSymbol)

Unregisters an application (and all its data classes) that had previously been
registered by the function RegAppClasses.

appSymbol A symbol identifying your application.

▲ W A R N I N G

This function unregisters all data classes registered for the
application—even those that may have been registered by
other formats. ▲

It is recommended that you use UnRegTheseAppClasses instead of this
function in most cases.

UnRegInboxApp 18

UnRegInboxApp(appSymbol)

Unregisters an application that had previously been registered by the
function RegInboxApp.

appSymbol A symbol identifying your application.

UnRegTheseAppClasses 18

UnRegTheseAppClasses(appSymbol, dataClasses)

Unregisters specific classes that an application had previously registered
with the function RegAppClasses. If all classes registered by an application
are unregistered, this function also unregisters the application.

appSymbol A symbol identifying your application.

dataClasses An array of symbols identifying data classes that you
want to unregister.

C H A P T E R 1 8

Routing Interface Reference

18-32 Application-Defined Methods

Application-Defined Methods 18

This section describes methods defined in an application to implement
particular features.

AutoPutAway 18

app:AutoPutAway(item)

Lets an application automatically put away a received item.

When an item is received by the In Box, and the In Box can identify an
application that can receive the item, the In Box sends the base view of
the application the AutoPutAway message. This gives an application the
opportunity to immediately receive and do something with an incoming
item.

item A frame that is the incoming In Box item.

If the AutoPutAway method returns a non-nil value, it is assumed that the
application handled the item and it may be deleted from the In Box,
depending on the user’s preference.

If nil is returned, the item is saved in the In Box.

PutAwayScript 18

app:PutAwayScript(item)

Lets an application put away a received item as a result of the user choosing
to put it away.

When the user is viewing an In Box item and taps the Put Away button, and
the In Box can identify one or more applications that can receive the item, the
user is allowed to choose the application to which it is sent. The In Box sends
the base view of that application the PutAwayScript message. This gives
an application the opportunity to do something with the item.

C H A P T E R 1 8

Routing Interface Reference

Application-Defined Methods 18-33

item A frame that is the In Box entry. Usually, you will be
interested only in the body slot of this frame; other slots
contain routing and transport information.

If the PutAwayScript method returns a non-nil value, it is assumed that
the application handled the item and it may be saved or deleted from the In
Box, depending on the user’s preference as set in the Put Away slip.

If nil is returned, the item is saved in the In Box and an alert is displayed
telling the user that the item could not be put away.

If your application defines this method, it must support putting away data of
all the classes for which it registered with the RegAppClasses function. If it
registers to handle multiple data classes and data of different classes needs to
be handled differently, it should check the class of the data it receives.

Some transports send multiple-item target objects. You might need to check
if the body slot contains such an object by using TargetIsCursor. If so,
you can get a cursor for the object by using GetTargetCursor, and then
iterate over the cursor to handle individual items.

ItemCompletionScript 18

app:ItemCompletionScript(item)

Alerts an application when an item’s state changes or when errors occur
while the item is being sent.

item The In/Out Box item whose state changed.

This message is sent to the base view of an application. It is sent only if the
completionScript slot in the item frame is set to true. To take advantage
of this callback mechanism, you must set the completionScript slot.

VerifyRoutingInfo 18

app:VerifyRoutingInfo(targetInfo, item)

The system sends this message to the base view of your application when the
routing slip is opened after the user chooses an action. This method gives
your application a chance to make modifications to the target object before it
is passed to the transport.

C H A P T E R 1 8

Routing Interface Reference

18-34 Application-Defined Methods

targetInfo A frame, containing target and targetView slots, as
returned by the GetTargetInfo method (page 12-11).

item An item frame, as obtained from the transport method
NewItem (page 19-28). From this frame you can derive
other information you might need, such as the transport
name. For more information about the item frame, see
the section “Item Frame” (page 22-2) in Newton
Programmer�s Guide.

This method should return targetInfo, modified if you want. If you return
nil from this function, the routing action is canceled without notice to the
user. (The OpenRoutingSlip function returns 'skipErrorMessage.)

Note that the VerifyRoutingInfo method is executed before the format’s
SetupItem method is executed, so you can make changes to the targetInfo
frame before it gets passed to SetupItem.

Constants 19-1

C H A P T E R 1 9

Transport Interface
Reference 19

This chapter describes the protos and routines provided by the Transport
interface.

Constants 19

This section describes constants.

Icon Constants 19
The magic pointer constants listed here reference icons that can be used for
the icon slot in a routeScripts frame or the groupIcon slot of a
transport.

ROM_RouteMailIcon // bitmap for mail group icon

ROM_RoutePrintIcon // bitmap for print group icon

ROM_RouteFaxIcon // bitmap for fax group icon

Figure 19-0
Table 19-0

C H A P T E R 1 9

Transport Interface Reference

19-2 Protos

ROM_RouteBeamIcon // bitmap for beam group icon

ROM_RouteReply // bitmap for reply action icon

ROM_RouteForward // bitmap for forward action icon

ROM_RouteAddSender // bitmap for add sender to Names icon

ROM_RoutePasteText // bitmap for copy text to Notes icon

Protos 19

This section describes transport-related protos.

protoTransport 19
This is the basic transport object.

Slot descriptions

appSymbol Required. A symbol that identifies this transport in In/
Out Box soup items and to the system. The symbol must
be unique, so it is recommended that you append your
registered developer signature.

title Required. A string that is the name that identifies this
transport to the user.

dataTypes Optional. An array of symbols representing routing
types supported by this transport. The currently defined
types in the system include 'view, 'frame, 'text,
and 'binary. Other types may be defined, but only
those applications aware of them can use them. If you
do create a custom data type, be sure to append your
developer signature to make it unique. You can omit
this slot if your transport will not appear in the Action
picker.

actionTitle Optional. A string that is the name of the routing action
to take place. If you don’t provide this slot, the default is
“Send.” This string is displayed in the routing slip next

C H A P T E R 1 9

Transport Interface Reference

Protos 19-3

to the stamp in the upper-right corner, and is used for
the text on the Send button.

icon Optional. The bitmap frame for an icon used for this
transport (in the Action picker and In/Out Box), as
returned by the NTK picture slot editor or the
GetPictAsBits function. If this slot is not specified,
the default icon is the one used for the Mail action. If
your transport is a member of a group, the groupIcon
slot specifies the icon to use in the Action picker, and the
icon slots specifies the icon to use in the routing slip.

group Optional. A symbol specifying which group the
transport belongs to, if it belongs to one. The following
group symbols are defined internally: 'mail, 'print,
'fax, and 'beam.

groupTitle Optional. A string that is the name to be displayed for
this transport when it is shown in a transport group
picker in the routing slip. The strings corresponding to
the built-in transport groups include: “Mail,” “Print,”
“Fax,” and “Beam”.

groupIcon Optional. The bitmap frame for an icon used for this
transport group (in the Action picker and In/Out Box),
as returned by the NTK picture slot editor or the
GetPictAsBits function. All transports in the same
group should specify the same icon. If you specify this
slot, you can include a unique icon for your transport in
the icon slot. The following magic pointer constants
reference built-in bitmaps to use with the built-in
transport groups: ROM_RouteMailIcon,
ROM_RoutePrintIcon, ROM_RouteFaxIcon,
ROM_RouteBeamIcon.

routingSlip Optional. Used for transports that send data. A template
for the routing slip. See “Providing a Routing Slip
Template” (page 22-26) in Newton Programmer�s Guide. If
you don’t specify this slot, the default is
protoFullRouteSlip.

transportInfoForm
Optional. A template for the routing information view

C H A P T E R 1 9

Transport Interface Reference

19-4 Protos

displayed in the In/Out Box. This template is created
using protoTransportHeader. If you don’t include
this slot, you get the default template that shows the
item title, transport, and item size. See “Providing a
Routing Slip Template” (page 22-26) in Newton
Programmer�s Guide.

preferencesForm
Optional. A template to use for creating a preferences
view for this transport. This template should be based
on protoTransportPrefs. Transport preferences are
accessed from the Info button in the In/Out Box. If you
don’t specify this slot, the default is
protoTransportPrefs. See “Providing a Preferences
Template” (page 22-33) in Newton Programmer�s Guide.

statusTemplate Optional. A template for the status dialog, based on
protoStatusTemplate. Use the method
SetStatusDialog to manipulate the contents of the
status dialog.

statusDialog A reference to the status dialog view (an instantiated
statusTemplate). When the view is not open, this
slot is nil.

modalStatus Optional, a Boolean. True means that you want modal
status dialogs that don’t include a close box. The default
is nil, meaning that status dialogs are non-modal and
do include a close box.

dialogStatusMsgs
Optional. A frame containing the status to status-string
mappings. Your transport can override this if it wants
different status to status-string mappings. You must
keep these same slots, but you can change the strings.
This is the default frame:
{Idle: "",

Connecting: "Connecting…",

Sending: "Sending…",

Receiving: "Receiving…",

C H A P T E R 1 9

Transport Interface Reference

Protos 19-5

Confirming: "Confirming…",

Disconnecting: "Disconnecting…",

Canceling: "Canceling…",

Listening: "Listening…",}

itemStateMsgs Optional. A frame containing the item status to
progress-string mappings. Your transport can override
this if you want a different set of strings. (You may also
add items to this frame, but do not remove any or
change the existing slot names.) This is the default
frame:
{Received: "New",

Read: "Read",

Ready: "Ready",

Sent: "Sent",

InLog: "Logged",

OutLog: "Logged",

Pending: "Pending",

Remote: "Remote",

Error: "Error"}

status A symbol that identifies the current state of the
transport. Do not set this slot, only read it. The possible
values correspond to the slot names in the
dialogStatusMsgs frame.

addressingClass
A symbol specifying the class of the address
information in the toRef and fromRef slots of an item.
A name reference data definition for this class must be
registered in the system. The default is
'|nameRef.email|. The In/Out Box uses this to
display the to/from address information. For more
information, see “Setting the Address Class” (page 22-6)
in Newton Programmer�s Guide.

addressSymbols An array of symbols identifying e-mail classes that do
not need to be translated for use by this transport. For

C H A P T E R 1 9

Transport Interface Reference

19-6 Protos

more information on how this slot is used, see the
NormalizeAddress method (page 19-29).

allowBodyCursors
A Boolean value that indicates if the transport can
handle a multiple-item target object in the body slot of
an item in a send request. If the transport can parse and
handle a multiple-item target object, set this slot to
true. If this slot is set to nil, the In/Out Box never
sends the transport a multiple-item target object in the
body slot; it always parses the object ahead of time and
sends the transport multiple send requests—one for
each item. For more information about storing
multiple-item target objects, see “Storing Multiple
Items” (page 21-14) in Newton Programmer�s Guide.

ownerApp The application that is managing the transport. This slot
is set by the system, and typically refers to the In/Out
Box.

Note

In Newton OS version 2.0, the ownerApp slot must be
set up by using the NTK platform file function
kSetupOwnerAppFunc in the transport
InstallScript method. ◆

defaultConfiguration
A frame holding values representing the initial user
preferences for the transport. The default value of this
slot is the frame described in Table 19-1. To override this
frame, you must construct an identical one with
different values, though you can add your own
additional slots also. You can’t use a _proto slot in the
default frame since this slot is stored in a soup and
_proto slots aren’t stored in soup entries. Note that the
transport preferences view based on
protoTransportPrefs interacts with this frame
when the user changes preferences.

IMPORTANT

Never set the defaultConfiguration slot to nil. ▲

C H A P T E R 1 9

Transport Interface Reference

Protos 19-7

Table 19-1 Preferences slots

Slot Description

autoStatus A Boolean. True means that you want the protoTransport to
open and close the status slip based on the transport’s status. Nil
means that the status slip stays hidden. This slot corresponds to the
“Show status dialogs” preferences check box. The default setting is
true.

outboxLogging One of the values 'save, 'log, or nil. This value determines
what’s done with an entry after the send completes successfully. The
value 'save means the item is saved in the Out Box; 'log means the
item is deleted from the Out Box and a log entry is made; and nil
means the item is deleted from the Out Box. The default is nil. See
ItemCompleted (page 19-23).

inboxFiling A symbol indicating the In Box folder in which to file an item when it
is received. Specify a symbol representing a folder name, or nil to
file incoming items in the Untitled folder, or the symbol 'same to
leave the item where it is (this is essentially the same effect as nil).
Note that filing doesn’t occur until after the In/Out Box is closed. The
default is the symbol 'same.

outboxFiling A symbol indicating the Out Box folder in which to file an item after
it is sent. Specify a symbol representing a folder name, or nil to file
sent items in the Untitled folder, or the symbol 'same to leave the
item where it is. Note that filing doesn’t occur until after the In/Out
Box is closed. The default is the symbol 'same.

noworlater A symbol indicating what action the Send button in the routing slip
should take when the user taps it. Specify the symbol 'now to force
the button always to send items immediately (corresponds to the
“Send now” preferences choice). Specify the symbol 'later to force
the button always to send items later (corresponds to the “Send later”
preferences choice). Specify nil to force the button to display a
picker allowing the user to choose now or later each time
(corresponds to the “Specify when” preferences choice). The default
is nil.

C H A P T E R 1 9

Transport Interface Reference

19-8 Protos

Note that the translate slot of protoTransport is used internally and is
reserved.

The methods that are of interest in protoTransport are described in the
following subsections, in alphabetical order.

AppClosed 19

transport:AppClosed(senderSym)

Notifies the transport that an application has closed. The transport owner
application sends this message to all transports when it closes.

senderSym A symbol identifying the application that closed. The
sender application is usually the transport owner (In/
Out Box).

You should respond to this message only if the senderSym parameter
identifies the owner of your transport. Use code like the following to check
this:

If transport.ownerApp <> GetRoot().(senderSym) then
return;

Note

In Newton OS version 2.0, the ownerApp slot must first be
set up by using the NTK platform file function
kSetupOwnerAppFunc in the transport InstallScript
method. ◆

The AppClosed method is not defined by default in protoTransport
since it’s transport-specific. If you want to respond to the AppClosed
message, you must define this method in your transport.

For more information about using the AppClosed method, see “Application
Messages” (page 22-19) in Newton Programmer�s Guide.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-9

AppInFront 19

transport:AppInFront(inFront, senderSym)

Notifies the transport that an application is or is not the frontmost
application. The transport owner sends this message to all transports when it
becomes frontmost or is no longer frontmost (but not when it is opened or
closed). You must use AppOpened and AppClosed to catch when the
transport owner opens and closes.

inFront A Boolean. This value is set to true if the application is
now the frontmost application, or to nil if the
application is no longer frontmost.

senderSym A symbol identifying the application whose frontmost
status has changed. The sender application is usually
the transport owner (In/Out Box).

You should respond to this message only if the senderSym parameter
identifies the owner of your transport. Use code like the following to check
this:

If transport.ownerApp <> GetRoot().(senderSym) then
return;

Note

In Newton OS version 2.0, the ownerApp slot must first be
set up by using the NTK platform file function
kSetupOwnerAppFunc in the transport InstallScript
method. ◆

The AppInFront method is not defined by default in protoTransport
since there is no default action—it’s transport-specific. If you want to
respond to the AppInFront message, you must define this method in your
transport.

For more information about using the AppInFront method, see
“Application Messages” (page 22-19) in Newton Programmer�s Guide.

C H A P T E R 1 9

Transport Interface Reference

19-10 Protos

AppOpened 19

transport:AppOpened(senderSym)

Notifies the transport that an application has opened and is interested in
data from the transport. The transport owner application sends this message
to all transports when it opens.

senderSym A symbol identifying the application that opened. The
sender application is usually the transport owner (In/
Out Box).

You should respond to this message only if the senderSym parameter
identifies the owner of your transport. Use code like the following to check
this:

If transport.ownerApp <> GetRoot().(senderSym) then
return;

Note

In Newton OS version 2.0, the ownerApp slot must first be
set up by using the NTK platform file function
kSetupOwnerAppFunc in the transport InstallScript
method. ◆

The AppOpened method is not defined by default in protoTransport
since it’s transport-specific. If you want to respond to the AppOpened
message, you must define this method in your transport.

For more information about using the AppOpened method, see “Application
Messages” (page 22-19) in Newton Programmer�s Guide.

CancelRequest 19

transport:CancelRequest(why)

Requests the transport to cancel the current send or receive operation. This
method must be defined by all transports.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-11

why A symbol identifying the reason why the transport
should cancel the current operation. The following
symbols are defined:

'powerOff The Newton is powering off.
'emergencyPowerOn

The Newton just turned on after shutting
down unexpectedly. That is, the transport
was not idle but the power was lost and
the shutdown was not handled cleanly.

'userCancel
The user canceled the operation, usually
by means of the Stop button in the status
slip.

When it receives this message, the transport should terminate the
communication operation as soon as possible.

This method should return a non-nil value if it is OK to turn off power
immediately after the method returns, or nil if it is not. In the latter case, the
system waits until your transport returns to the idle state before turning off.

For more information about using the CancelRequest method, see
“Canceling an Operation” (page 22-13) in Newton Programmer�s Guide.

CanPutAway 19

transport:CanPutAway(item)

Allows your transport to add a put away option for the item. This message is
sent to your transport when the user has selected an In/Out Box item and
then taps the Tag button in the In/Out Box (the button that looks like a tag).
You don’t need to implement this method.

item An item frame containing the item the user requested be
put away from the In/Out Box.

It there are no predefined put away options for the item (no applications
have registered to handle that data class), and you do not add an option
using CanPutAway, the Put Away choice is not included in the In/Out Box
Tag picker. If there is one option, the Put Away choice appears and, if

C H A P T E R 1 9

Transport Interface Reference

19-12 Protos

selected, the single option appears in the Put Away slip. If there are multiple
options, a Put Away picker is displayed in the Put Away slip.

If you want to do nothing with the item, or do not know how to put it away,
you can return nil from CanPutAway. In this case, the method adds no
options.

For an application not previously registered to handle data of the item’s
class, to put the item away, return the appSymbol of that application from
this method. This adds the application as a put away option for the user to
choose.

For the item to be put away by a particular application (or even by your
transport), and to display a different name to the user in the Put Away
picker, return a frame that looks like this:

{appName: string, // app name shown to user
appSymbol: symbol} // appSymbol of app to put away item to

The latter option lets your transport put the item away to itself and do some
special handling (it must define the PutAwayScript method), while telling
the user that the item is being put away to a different application. For
example, a transport might want to convert the item to another data type
and then internally call the PutAwayScript method of another application.

In any case, the CanPutAway method simply adds another put away
alternative to those already available to the user for the item.

CheckOutbox 19

transport:CheckOutbox()

Causes the In/Out Box to send your transport a SendRequest for all
queued items waiting to be sent. The SendRequest message includes a
request argument, in which the cause slot is set to 'user.

The return value of this method is unspecified. Do not rely on it.

Do not override this method.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-13

Note that if there are no items to send, the system displays a slip explaining
that to the user. You can use the function QuietSendAll (page 19-50) to do
the same thing but avoid the user alert if there is nothing to send.

CloseStatusDialog 19

transport:CloseStatusDialog(fromUser)

Closes the status slip.

fromUser A Boolean that should be set to true if the close is a
result of the user tapping the status slip close box. When
you call this method, you should always set this
parameter to nil.

Do not override this method.

If you close the status slip programmatically (fromUser is nil), the next call
to SetStatusDialog with a status other than 'idle reopens the status
slip. If the user closes the status slip, it remains closed for the remainder of
the current communication transaction.

ConnectionDetect 19

transport:ConnectionDetect()

Lets the transport control the operation of the Send button in the routing slip.
This message is sent to a transport when the routing slip is displayed.

In most transports, the Send button contains a picker with the choices
“Now” and “Later.” From this picker, the user can choose whether to send
the item immediately or queue it in the In/Out Box to send later. The default
transport preferences interface also allows the user to set a preference for the
Send button. The user can make this button always send now, later, or
display a picker for choosing between now or later.

To force the Send button to send now or later, you can implement the
ConnectionDetect method. Return the symbol 'now or 'later to
specify when the item should be sent (no picker is displayed). You can also
return nil, which causes the “Now/Later” picker to be displayed.

C H A P T E R 1 9

Transport Interface Reference

19-14 Protos

The default version of this method implemented in protoTransport
returns the value stored in the nowOrLater slot (page 19-7) from the
transport configuration frame, obeying the user preference setting. You can
override this method to force a different behavior.

GetConfig 19

transport:GetConfig(prefName)

Returns a value from the transport preferences.

prefName A symbol identifying a transport preferences item.

GetDefaultOwnerStore 19

transport:GetDefaultOwnerStore()

Returns the default store for the transport owner application (the In/Out
Box). If your transport creates virtual binary objects, you must use this
method to determine the store on which to create a virtual binary object.

GetFolderName 19

transport:GetFolderName(item)

Returns the name of the folder where an item should be filed. This message
is sent to a transport by the In/Out Box when an item’s status changes such
that it can be filed. This occurs after an item is sent or put away.

item A frame that is the item to file.

This function returns a string or a symbol indicating the folder in which to
file the item. The folder returned is based on the user preferences set for the
In/Out Box. The default is the current folder (the symbol 'same).

Note that the item is not actually filed until after the In/Out Box closes. The
item appears filed in its new location the next time the In/Out Box opens.

You probably won’t need to override this method.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-15

GetFromText 19

transport:GetFromText(item)

Returns a string representing the sender of the item.

Define this method to override the default method of obtaining a string that
represents the sender of the item, for display in the In Box item header.

item A frame that is the item from which the system needs to
obtain sender information.

When the system is constructing the header information for an item in the In
Box, it sends your transport this message to let you provide a string for the
sender. You should return a string representing the sender’s name, address,
and/or other information.

If you don’t define this method, or it returns nil, the system obtains the
sender information from the fromRef slot of the item, using the
GetRoutingTitle method of the name reference data definition.

This method is called by GetItemInfo.

Supply this method only if the default behavior doesn’t suit your needs.

GetItemInfo 19

transport:GetItemInfo(item, length, fontInfo)

Returns a string that is used as the second line of information when the item
header is displayed.

item A frame that is the item for which you want to retrieve
an informational string.

length An integer specifying the maximum length, in pixels, of
the string that is returned.

fontInfo A font specification, used to determine how many
characters of the string will fit in the specified length, so
it can be truncated appropriately.

This methods builds a string containing the name of the sender or recipient
concatenated with the date and time the item was sent or received. It calls

C H A P T E R 1 9

Transport Interface Reference

19-16 Protos

GetItemTime and GetToText (for Out Box items) or GetFromText (for In
Box items) to let your transport customize the sender or recipient
information.

Internally, GetItemInfo calls StyledStrTruncate to truncate the string
returned by these methods.

GetItemStateString 19

transport:GetItemStateString(item)

Returns a status string based on the state of the specified item.

item A frame that is the item for which you want to retrieve a
status string.

This method first checks if the item has an error, then it checks if the item is a
remote item, and finally it checks the item.state slot. It fetches the
appropriate string from the itemStateMsgs frame, which is
itemStateMsgs.error if the item has an error,
itemStateMsgs.remote, if the item is remote, and otherwise is based on
the value of the item.state slot.

GetItemTime 19

transport:GetItemTime(item)

Returns a string containing time and date information for the item.

Define this method to override the default method of obtaining a string that
represents the time and date stamp of the item, for display in the item header
in the In/Out Box.

item A frame that is the item from which the system needs to
obtain time and date information.

If you decide to override this method, you should return a string containing
time and date information for the item.

The default method extracts the time and date from the timeStamp slot in
the item frame. Supply this method only if the default behavior doesn’t suit
your needs.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-17

This method is called by GetItemInfo.

GetItemTitle 19

transport:GetItemTitle(item)

Returns a string that is the title of the item. This method gets the string by
calling the StringExtract method of the item data definition, if one exists,
or from the title slot in the item. The In/Out Box also calls this method to
get a title for the overview and the item view.

item A frame that is the item for which you want to retrieve a
title string.

GetNameText 19

transport:GetNameText(nameRef, length, fontInfo)

Returns a string representation of the names contained in one or more name
references.

nameRef A name reference or an array of name references.

length An integer specifying the maximum length, in pixels, of
the string that is returned.

fontInfo A font specification, used to determine how many
characters of the string will fit in the specified length, so
it can be truncated appropriately.

This method returns a string containing the name or names extracted from
the name reference, as you would normally see them displayed in the
routing slip. If you specify an array for nameRef, the returned string contains
the names concatenated, with commas between each name. The string is
truncated as specified by the length and fontInfo parameters.

GetStatusString 19

transport:GetStatusString()

Returns the status string based on the current status. This method fetches the
string from the dialogStatusMsgs frame.

C H A P T E R 1 9

Transport Interface Reference

19-18 Protos

GetTitleInfoShape 19

transport:GetTitleInfoShape(item, bounds)

Returns a shape that fills the area of the item header to the right of the
transport icon. This shape contains a title that identifies the item, the item’s
status, information about the sender or recipient, and a time stamp.

item A frame that is the In/Out Box item.

bounds A bounds frame describing the area of the item header
that the shapes must fit into.

The exact area of the shape is shown shaded here:

The item header appears in both the In/Out Box overview and the
individual item view. The GetTitleInfoShape method calls
GetItemTitle and GetItemInfo to generate text shapes for the two lines
of the default item header. It also calls GetItemStateString to obtain the
item status string, which is placed at the far right of the view.

If you want to change the contents of the header, it’s recommended that you
use the methods GetItemTitle, GetItemInfo, and
GetItemStateString. You can override GetTitleInfoShape to do
something different, such as add special graphics to the header, but this will
change the user interface in a nonstandard way.

If you override GetTitleInfoShape, it’s not recommended that you
return a shape that looks radically different from the existing design of the
item header. Your header should conform as closely as possible to the
existing item header to keep the user experience similar.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-19

GetToText 19

transport:GetToText(item)

Returns a string representing the recipient’s name, address, and/or other
information.

Define this method to override the default method of obtaining a string that
represents the recipient of the item, for display in the Out Box item header.

item A frame that is the item from which the system needs to
obtain recipient information.

When the system is constructing the header information for an item in the
Out Box, it sends your transport this message to let you supply a string for
the recipient. You should return a string representing the recipient’s name,
address, and/or other information.

If you don’t define this method, or it returns nil, the system obtains the
recipient information from the toRef slot of the item, using the
GetRoutingTitle method of the name reference data definition.

This method is called by GetItemInfo.

Provide this method only if the default behavior doesn’t suit your needs.

GetTransportScripts 19

transport:GetTransportScripts(target)

Lets your transport add items to the In/Out Box Tag picker.

This message is sent to your transport when the user selects an In/Out Box
item and taps the Tag button in the In/Out Box (the button that looks like a
tag). You don’t need to implement this method.

target The In/Out box entry that is selected. Note that this
could consist of a multiple-item target object, if multiple
items were selected from the In/Out Box overview.

You can use the global function GetTargetCursor (page 18-25) to return a
cursor to target in case it is a multiple-item target object.

C H A P T E R 1 9

Transport Interface Reference

19-20 Protos

The GetTransportScripts method must return an array of frames that
describe new items to add to the In/Out Box Tag picker. The array is exactly
the same as the routeScripts array (page 18-6) that adds items to the
Action picker in an application. Each frame in the array should include these
slots:

title A string that is the name of the action you want to add.
icon A bitmap that is the icon that appears next to the name

in the picker.
routeScript A function that is called if this action is selected by the

user. It is passed two parameters, the target item (the In/
Out Box entry) and the target view (the view displaying
that entry), respectively. Again, note that the target item
passed to this function might be a multiple-item target
object, so the function should be able to handle that.
Alternatively, in this slot you can specify a symbol
identifying a transport method. If you do this, you must
also include an appSymbol slot in this frame that
contains your transport symbol.

appSymbol Your transport symbol. This slot is needed only if you
specify a symbol in the routeScript slot.

GetTitle If the title slot is nil or missing, this method is used
to obtain the title. This method takes one parameter, the
target slot of the item being routed. (This slot is
obtained by the system sending the message
self:GetTargetInfo('routing).)
The GetTitle method must return a title string, nil,
or the symbol 'pickSeparator. If this method returns
nil, the action does not show up in the picker. If this
method returns the symbol 'pickSeparator, it
includes a separator line in the list of actions. The
GetTitle method allows you to return different titles,
depending on the target item.

For more detailed information about the items in the array, see “Providing
Application-Specific Routing Actions” (page 21-22) in Newton Programmer�s
Guide.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-21

HandleError 19

transport:HandleError(error)

Translates an error code into an error string and displays an alert to the user
with the transport title and the error string.

error An integer error code.

This method calls TranslateError to translate the error code and then
Notify to display the alert. You can override HandleError to do your own
error handling, if you wish.

This method is called by HandleThrow and ItemCompleted when errors
occur.

HandleThrow 19

transport:HandleThrow()

Catches exceptions on standard transport methods. This method is the
default exception handler for transports. It calls CurrentException to
obtain the current exception.

This method calls IgnoreError to screen out benign errors. If there is an
item being processed, ItemCompleted is called for the item. Then
HandleError is called to translate the error code and display an alert to the
user.

HandleThrow returns true if it handled the error (that is, did not ignore it).
This gives the transport a chance to close things down cleanly on an error.
HandleThrow returns nil if it ignored the error.

If you want to, you can override the HandleThrow method to implement a
different way of handling exceptions.

Also, HandleThrow calls other functions that you can override to modify its
functionality, including IgnoreError and HandleError.

C H A P T E R 1 9

Transport Interface Reference

19-22 Protos

IgnoreError 19

transport:IgnoreError(error)

Lets your transport specify that a particular error is benign, when an error
condition occurs.

error An integer error code.

If this method returns true, no error alert is displayed; if it returns nil, an
error alert is displayed by the protoTransport.

This method handles several benign errors. If you want to override it, be sure
to call the inherited method first.

This method is called by HandleThrow and ItemCompleted when errors
occur.

InstallScript 19

transport:InstallScript(symbol)

Performs transport initialization operations that you define.

symbol The transport appSymbol that was passed to
RegTransport.

This message is sent to the transport when it is registered in the system by
RegTransport. The InstallScript method lets the transport perform
any necessary initialization operations.

If you define this method, within it you must call the inherited method, like
this:

inherited:?InstallScript(kAppSymbol);

IOBoxExtensions 19

transport:IOBoxExtensions(item, target, viewDefs, reserved)

Lets your transport add functionality to items in the In/Out Box by
modifying the list of view definitions available for an item. This message is
sent to your transport when an item belonging to the transport is displayed
in the In/Out Box.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-23

item A frame that is the In/Out Box entry.

target The target frame within item (usually the body slot).

viewDefs A frame containing view definitions found by the
system for the current data definition.

reserved Ignore the data passed in this parameter.

Your transport can add to or delete from the viewDefs frame. Do not replace
this frame.

If you want to change the view definition the item uses, return that view
definition from this function. If you don’t want to change the item’s current
view definition, return nil.

IsInItem 19

transport:IsInItem(item)

Returns true if the item is in the In Box (it’s been received, read, or logged),
or nil if it is in the Out Box. If the item is not an In/Out Box entry, the
return value is undefined.

item An item frame.

IsLogItem 19

transport:IsLogItem(item)

Returns true if the item has been logged, or nil otherwise.

item An item frame.

ItemCompleted 19

transport:ItemCompleted(item, state, error)

Processes an item after the transport finishes with it.

Send this message after the transport finishes operating on an item, whether
sending or receiving, with or without errors. Use this method when an item
is altered in any way.

item A frame that is the item sent or received.

C H A P T E R 1 9

Transport Interface Reference

19-24 Protos

state The new state to set for the item. For the state, specify a
symbol identifying one of the slot names listed in the
itemStateMsgs frame (page 19-5). Generally you
specify 'sent for sent items and 'received for
received items. You can specify nil to leave the item
state unchanged from its current value.

error An error to set for the item. Specify nil for no error.

This method returns the item if state is 'received. In all other cases, the
return value of this method is undefined; do not rely on it.

The ItemCompleted method first sets the state and error of the item. Next,
if the item’s completionScript slot is set to true, this method sends the
ItemCompletionScript message (page 18-33) to the base view of the
application identified by the item’s appSymbol slot. The item is passed as a
parameter.

If the completionScript slot is nil, and if error is not nil and
IgnoreError returns nil, ItemCompleted calls HandleError to display
an error alert showing the error. Then, for items whose state is 'sent,
ItemCompleted writes the updated item entry back to the Out Box soup,
turns the item into a log entry (calls MakeLogEntry), or deletes the item
from the Out Box, depending on the error conditions and the setting of the
outboxLogging slot.

An item whose state is 'pending is added to the Out Box and is made the
active view; that is, the item view is displayed for the user in the Out Box.
This is used for replying to a received item. To reply to an item, change the
status to 'pending and call ItemCompleted; the item is created in the Out
Box and displayed to the user for editing.

For items with other kinds of status values, the item is written to the In Box
soup.

Do not override this method.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-25

ItemDeleted 19

transport:ItemDeleted(item)

Alerts a transport that an item is about to be deleted. This message is sent to
a transport by the In/Out Box just before an item belonging to that transport
is deleted from the In/Out Box.

item The In/Out Box entry to be deleted. This is always a
single item, not a multiple-item target object.

If many items are being deleted, this method is called many times in
succession.

The return value of this method is ignored.

This method is not implemented in protoTransport. If you want to take
some action as a result of the item being deleted, you can implement this
method to do so; however, you cannot prevent the item from being deleted.

ItemDuplicated 19

transport:ItemDuplicated(item)

Alerts a transport that an item has been duplicated. This message is sent to a
transport by the In/Out Box just after an item belonging to that transport is
duplicated from within the In/Out Box.

item The duplicate In/Out Box entry. This is always a single
item, not a multiple-item target object. You can modify
this object to modify the duplicate entry.

If many items are being duplicated, this method is called many times in
succession.

The return value of this method is ignored.

This method is not implemented in protoTransport. If you want to take
some action as a result of the item being duplicated, you can implement this
method to do so; however, you cannot prevent the item from being
duplicated.

C H A P T E R 1 9

Transport Interface Reference

19-26 Protos

ItemPutAway 19

transport:ItemPutAway(item)

Alerts the transport that an item has been put away by an application.

This message is sent to a transport by the In/Out Box right after an item has
been put away by an application. It provides an opportunity for the
transport to take some action.

item A frame that is the item put away.

ItemRequest 19

transport:ItemRequest(request)

Gets an item, or the next item in the queue, from the In/Out Box.

You call this method from SendRequest or ReceiveRequest to get an
item. If there is an item frame to be sent or a remote item to be received, the
item is returned; otherwise a nil return signals the end of the current
request.

request Pass the request frame received in the SendRequest or
ReceiveRequest message that was sent to the
transport.

Do not override this method.

If you have set the allowBodyCursors slot in your transport to true, then
during a send operation this method might return an item whose body slot
contains a multiple-item target object. It’s up to the transport to check if the
body slot contains such an object and resolve the individual items
appropriately before sending them. You can use the global functions
TargetIsCursor (page 18-26) and GetTargetCursor (page 18-25) to
check for a multiple-item target object and iterate over it. This is important
because the items in such an object can be aliases, which must be resolved
before trying to send them. After resolving each item but before sending it,
you should send the message SetupItem to the item’s format.

If your transport cannot handle body data that consists of multiple items,
you must set the allowBodyCursors slot to nil.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-27

If the body slot of an item originally contained an alias to a single item, the
alias is automatically resolved by ItemRequest. That is, single items
returned by ItemRequest always contain a body slot that is not an alias.

Note that you can save aliases to entries returned by ItemRequest. Later,
when using them, make sure that ResolveEntryAlias returns a non-nil
value, and that the item state slot is set as expected.

MakeLogEntry 19

transport:MakeLogEntry(logItem, item)

Lets your transport make a log entry for an item.

This message is sent to your transport by the In/Out Box when
ItemCompleted is called and a log entry needs to be made. You should
override this method to add transport-specific slots to the log entry.

logItem The log entry to which you can add slots. This is already
set up with the appSymbol, title, error, and
labels slots from the item frame, as well as the correct
new log state in the state slot.

item A frame that is the item sent or received.

This method should return the modified logItem frame.

The default MakeLogEntry method sets the title slot of logItem to the
value returned by transport:GetItemTitle(item).

MissingTarget 19

transport:MissingTarget(reserved)

Notifies the user that there is nothing to send. This message is sent to the
transport when the user requests a routing action and there is no target to be
sent. The default operation is to display an alert notifying the user, “Nothing
to Send.”

If you want, you can override this method to display a different message or
to do something different.

reserved Ignore this parameter.

C H A P T E R 1 9

Transport Interface Reference

19-28 Protos

NewFromItem 19

transport:NewFromItem(item)

Returns a new item frame based on a received item.

item An item received.

This method returns a new item frame, containing all but a few slots from
the item parameter.

This method is useful for transports that receive frame data. It first sends the
message transport:NewItem(nil) to obtain a new item frame. Then it
copies all slots from the frame passed in the item parameter into the new item
frame, except for these slots: category, connect, completionScript,
and remote.

If a destAppSymbol slot exists in the item frame, it is copied to the
appSymbol slot in the new item frame, and the appSymbol slot in the item
frame is copied to the fromAppSymbol slot in the new item frame. In this
way, you can set the target application differently from the originating
application.

For more information about using the NewFromItem method, see
“Obtaining an Item Frame” (page 22-13) in Newton Programmer�s Guide.

NewItem 19

transport:NewItem(context)

Returns a new item frame for the In/Out Box. The item frame returned by
this method should contain default values for the transport.

context A frame defining the context from which to get the
application symbol, or nil. During a send operation,
the In/Out Box sets this argument to the application
base view of the sending application, or to nil. If
context is not nil, NewItem sets the item.appSymbol
slot to the appSymbol found in context.

For more information about using the NewItem method, see “Obtaining an
Item Frame” (page 22-13) in Newton Programmer�s Guide.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-29

If you override this method, be sure to call the inherited method first, in your
version.

NormalizeAddress 19

transport:NormalizeAddress(nameFrame)

Converts a Names soup entry or name reference that contains an e-mail
address into a string representation of the Internet e-mail address.

nameFrame A Names soup entry, a pseudo-entry, or a name
reference that contains an email slot. A pseudo-entry
refers to a simple frame that contains at least an email
slot, for example: {name:{first:"Juneau",
last:"Macbeth"}, email:
"jmacbeth@acompany.com",}.

Normally, this method returns a string. However, if the value of the email
slot in nameFrame is not a string, that value is returned with no conversion.

The class of the email slot in nameFrame determines how the address is
converted, if at all. NormalizeAddress uses the Get method of the built-in
'|nameRef.email| name reference data definition to extract the e-mail
address string from the email slot.

After extracting the address string, the NormalizeAddress method uses
the transport slot addressSymbols to determine if the e-mail address
should be translated or not. If the class of the e-mail address contained in
nameFrame is listed in the addressSymbols slot, then no translation is
done—the system assumes that the transport knows how to handle the
address as is. The address string is returned exactly as extracted from the
nameFrame. Only addresses whose classes do not appear in the
addressSymbols slot are translated.

For an address that is to be translated, the translation is controlled by a frame
registered with the system for that class of e-mail address. New classes of
e-mail addresses can be registered by the RegEmailSystem function. The
translation can consist either of appending a string to the given address or of
passing it to a function object that returns a translated string. Most of the
built-in translations consist simply of appending a string (such as

C H A P T E R 1 9

Transport Interface Reference

19-30 Protos

“@eworld.com”) to the given address, if it is not already part of the address.
After translation, any spaces are removed from the resulting string before it
is returned.

Table 19-2 lists the built-in e-mail classes and the kind of translation done for
each. If a string is listed as the translation, that string is appended to the
given e-mail address, if it is not already part of that address.

Table 19-2 E-mail address translations

E-mail class Translation done

string nothing done

|string.email| nothing done

|string.email.internet| nothing done

|string.email.aol| “@aol.com”

|string.email.mcimail| “@mcimail.com”

|string.email.attmail| “@attmail.com”

|string.email.easylink| “@eln.attmail.com”

|string.email.prodigy| “@prodigy.com”

|string.email.genie| “@genie.geis.com”

|string.email.delphi| “@delphi.com”

|string.email.msn| “@msn.com”

|string.email.interchange| “@ichange.com”

|string.email.radiomail| “@radiomail.net”

|string.email.compuserve| Any comma (,) in the address is
changed to a period (.), and the string
“@compuserve.com” is appended to
the address if it is not already part of it.

|string.email.eworld| “@eworld.com”

C H A P T E R 1 9

Transport Interface Reference

Protos 19-31

PowerOffCheck 19

transport:PowerOffCheck(why)

Displays an alert to the user that the system wants to power off. The system
sends this message to the transport when it wants to power off and the
transport is not in the idle state.

why A symbol indicating why the system is powering off.
The values are as follows:

'user The user turned off the unit.
'idle The unit is going to sleep because it has

been idle.
'because Reason is unknown.

The default PowerOffCheck method displays a modal slip asking the user
to confirm that the unit can be turned off. If the user taps OK, the unit is
turned off. If the user taps Cancel, the power-off sequence is canceled. You
can override this method if you want different behavior.

If the PowerOffCheck method returns true, the system power-off
sequence proceeds normally. If it returns nil, the power-off sequence is
canceled.

For more information, see “Power-Off Handling” (page 22-20) in Newton
Programmer�s Guide.

QueueRequest 19

transport:QueueRequest(doWhat, newRequest)

Queues a send or receive request made by the user while the transport is
already sending or receiving.

doWhat Either a symbol, or the request frame for a send or
receive request already in progress. If you specify a
symbol, it must name a transport method that the
system calls when the state of the transport returns to
idle. It passes newRequest as a parameter to this method.
This defers the new request until after the current one
finishes and then invokes a new request.

C H A P T E R 1 9

Transport Interface Reference

19-32 Protos

If you specify a request frame, newRequest is appended
to it, so that the ItemRequest method eventually
returns items from newRequest during the same
communication session. The request frame is the frame
passed into a previous SendRequest or
ReceiveRequest method.

newRequest The request frame describing the new request that you
want to queue. This is the parameter passed to the
SendRequest or ReceiveRequest method from
which you called QueueRequest.

For more information about using the QueueRequest method, see
“Handling Requests When the Transport Is Active” (page 22-12) in Newton
Programmer�s Guide.

ReceiveRequest 19

transport:ReceiveRequest(request)

Requests the transport to receive items. The In Box sends this message to the
transport. Define this method if receiving is supported by the transport.

request A frame identifying the cause of the receive request.
There is one important slot:

cause A symbol indicating the cause of the
receive request. The symbol 'user
indicates that the user tapped the Receive
button in the In/Out Box. The symbol
'remote indicates a user request that the
text of one or more remotely stored
messages be retrieved.

Note that if the cause slot is set to 'remote, the user might have requested
that multiple remote items be downloaded. In this case, use the
ItemRequest method to retrieve subsequent requested items and
download them.

For more information about using the ReceiveRequest method, see
“Receiving Data” (page 22-9) in Newton Programmer�s Guide.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-33

SendRequest 19

transport:SendRequest(request)

Requests the transport to send items. The Out Box sends this message to the
transport. Define this method if sending is supported by the transport.

request A frame identifying the data to be transmitted and the
cause of the send request. There is one important slot in
this frame that you might need:

cause A symbol indicating the cause of the send
request, as described in Table 19-3.

Your SendRequest method must use the ItemRequest method
(page 19-26) to get the item (or next item) to send. In your SendRequest
method, keep calling ItemRequest until it returns nil, signaling no more
items to send.

If you encounter an error in your SendRequest method, you must call
ItemCompleted to inform the In/Out Box that an item was not sent.

Table 19-3 Causes of a send request

Symbol Description of cause

'user The user selected the item and tapped the Send button
in the In/Out Box.

'item The user chose to send the item immediately in the
routing slip (the connect slot is set to true).

'submit The user chose to send the item later in the routing slip.

'remote The user has requested that the text of a remotely stored
sent message be retrieved. This could be used in a
system in which sent items were stored remotely to
retrieve the text of one of those items.

'periodic The item was sent by a transport as a result of a
scheduled action.

C H A P T E R 1 9

Transport Interface Reference

19-34 Protos

For more information about using the SendRequest method, see “Sending
Data” (page 22-8) in Newton Programmer�s Guide.

SetConfig 19

transport:SetConfig(prefName, value)

Sets a value for the transport preferences.

prefName A symbol identifying a transport preferences item.

value A value to set in the prefName slot.

SetStatusDialog 19

transport:SetStatusDialog(newStatus, name, values)

Sets the current state of the transport and displays a status view to the user.

newStatus Can be any symbol, such as 'Disconnected,
'Connecting, 'Connected, 'Sending,
'Receiving, 'Disconnecting, or 'Listening. If
status is nil, the status is not modified. This parameter
sets the current state of the transport.

name A symbol identifying the status view subtype template
to use for determining which child views to add to the
status view. This is the value of the name slot in the
subtype template. For more details on the status
subtypes, see “Providing a Status Template”
(page 22-21) in Newton Programmer�s Guide. If you
specify nil, the last symbol used is assumed; if you
haven’t called this function before, the default value
'vStatus is used.

values A string giving the current status message (if that’s the
only element you’re using or changing). Alternately,
you can specify a frame of values, one for each subtype
child item you want set.

Each child template contains a name slot that identifies
the name of the important slot that controls the

C H A P T E R 1 9

Transport Interface Reference

Protos 19-35

appearance of that child view. You specify a slot in this
frame for each child item that you want to set. The
name of each slot you specify is the value of the
corresponding name slot in the child template. The
value of the slot is the value you want to give to that
child element.

For example, if a child view of the specified subtype has
a name slot of 'foo and the foo slot in that child
template is expected to be a string, then in values you
would specify a slot named foo whose value was a
string. For more details, see “Providing a Status
Template” (page 22-21) in Newton Programmer�s Guide.

If you don’t pass the string in this parameter, there must
be an entry in the dialogStatusMsgs frame that
corresponds to the status symbol, for string display
purposes.

The return value of this method is always nil.

Do not override this method.

If a status slip is already open when this method is called, it is updated with
the new status information (the child views are closed and reopened). If a
status slip is not already open, and the autoStatus slot of the transport
user preferences frame is true, and the transport is not idle, this method
opens a status slip and sets it as specified.

TranslateError 19

transport:TranslateError(error)

Lets your transport translate an error code into a string error message, when
an error condition occurs.

error An integer error code.

The string equivalent of the error code should be returned. If your transport
does not know how to translate the error, call the inherited function to do the
translation (for example, inherited:TranslateError(error)).

C H A P T E R 1 9

Transport Interface Reference

19-36 Protos

VerifyRoutingInfo 19

transport:VerifyRoutingInfo(item, multiItem, entry, format)

Lets the transport modify each item within a multiple-item target object,
during a send operation.

This message is sent to a transport when a multiple-item target object is
submitted to the Out Box as a result of the user tapping the Send button in
the routing slip. This message is only sent if the transport cannot handle a
cursor in the body slot of an item (the transport slot allowBodyCursors is
set to nil). It is sent repeatedly—once for each item in the multiple target
object.

item An item submitted for sending, after it has been passed
to the SetupItem method of the routing format. This is
always a single item from the multiple-item target
object. You can modify or add slots to this item frame to
change the item before it is stored in the Out Box.

multiItem The original item frame that was submitted for sending,
which contains a multiple-item target object in its body
slot.

entry A resolved entry from multiItem, before it was passed to
the routing format’s SetupItem method.

format The routing format associated with the item.

The return value of this method is ignored.

This method is not implemented in protoTransport. If you want to take
some action as a result of a multiple-item target object being submitted to the
Out Box and being broken into its individual items, you can implement this
method to do so.

When only a single item (not a multiple-item target object) is submitted to
the Out Box, VerifyRoutingInfo is not called. In this case, if you need to
modify the item before it is sent, you can do this in the routing slip method
PrepareToSend.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-37

protoTransportHeader 19
This proto provides a template for the routing information view. For more
information about creating a routing information view, see “Providing a
Routing Information Template” (page 22-25) in Newton Programmer�s Guide.

Slot descriptions

transport The transport object to which this information view
belongs. This is set up automatically by the In/Out Box.

target A reference to the In/Out Box item. This object is found
automatically in context.

addedHeight Optional. An integer representing the additional height
you are adding to the view, in pixels. The default is 0.
You must specify this slot if you are adding additional
child views to the routing information view. Note that
you can specify this slot dynamically, in the BuildText
method or before the inherited
ViewSetupFormScript method is called.

context Optional. The view to which the InfoChanged
message should be sent. Defaults to nil, meaning the
message won’t be sent.

changed This slot is set to true if the user changes an entry field
in the view, otherwise it is set to nil.

The protoTransportHeader is based on the newtInfoBox proto.

The following methods are of interest.

BuildText 19

headerView:BuildText()

Adds lines of text to the header view.

Provide this method in your header view in order to add additional lines of
text to the header view, below the existing elements. This method is called by
the header view, before the view is opened. For each line you want to add,
call the AddText method, passing in the string for that line.

C H A P T E R 1 9

Transport Interface Reference

19-38 Protos

The return value of the BuildText method is not used.

AddText 19

headerView:AddText(string)

Constructs a line of text to add to the header view. You can call this method of
protoTransportHeader from your BuildText method to construct a line
of text, which is added to the header view, below the existing elements.

string A string of text to add to the header.

The string is given the proper font for the header view, and truncated, if
necessary, to fit within the header view.

The return value of the AddText method is unspecified. Do not rely on it.

InfoChanged 19

context:InfoChanged(changed)

Notifies another view when the routing information view is closed. This
message is sent to the view identified by the context slot in the routing
information view (see the slot description above) when the routing
information view is closed.

changed The value of the changed slot in the routing
information view. This is true if the user changed a
value in the view, or nil if nothing was changed.

protoFullRouteSlip 19
This proto provides a template for a full-featured routing slip view. For more
information about creating a routing slip, see “Providing a Routing Slip
Template” (page 22-26) in Newton Programmer�s Guide.

The following slots in the routing slip template are set by the system before
the routing slip view is opened.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-39

Slot descriptions

fields The item frame returned by the transport NewItem
method. This frame eventually becomes the In/Out Box
soup entry for the item. Note that
fields.currentFormat is set to the last routing
format used for this transport by this application. The
SetupItem method of the routing format sets the
fields.body slot to the target object.

target The target frame returned by the application’s
GetTargetInfo method. (GetTargetInfo is called
with the 'routing symbol as its argument.) This target
frame is the data being routed from the application
(usually the current or selected object). The system
looks at the data class of the target object to determine
the list of available routing formats, but no other
assumptions are made about what target contains.

IMPORTANT

The target object is always a frame; it is never an alias
that needs to be resolved. In some cases, this object may
be supplied by the In/Out Box, and not by an
application. In those cases, it may have been processed
somehow by the In/Out Box. Do not modify the
target frame; it is for read-only use. ▲

activeFormat The currently selected routing format.

transport The transport object.

editing A Boolean. This slot is set to true if the slip is opened
for editing. This occurs when the user readdresses an
item in the Out Box or when the slip is reopened after a
“send now” operation fails with an error. In the editing
state, the format picker and Send button are hidden,
and the user cannot select a different transport from the
transport picker in the routing slip (if there are multiple
transports in the same group).

C H A P T E R 1 9

Transport Interface Reference

19-40 Protos

You may want to set these other slots in the routing slip template.

Slot descriptions

viewJustify Optional. The default setting is vjParentFullH +
vjParentCenterV.

envelopeHeight Optional. An integer that specifies the height of the
envelope image, in pixels. The default is 115, which you
should generally leave as is. This value is
platform-specific and may vary according to the current
screen orientation.

envelopeWidth Optional. An integer that specifies the width of the
envelope image, in pixels. The default is 230, which you
should generally leave as is. This value is
platform-specific and may vary according to the current
screen orientation.

bottomIndent Optional. An integer that is the space below the
envelope image, in pixels. The default is 28, or 49 if
there is more than one routing format (then the routing
format picker is included). This leaves space for you to
include interface elements specific to your transport.
Note that this space is taken out of the overall height of
the routing slip, which is used for both the envelope
portion and the other portion below it.

Note that the ViewSetupFormScript, ViewSetupChildrenScript,
ViewDrawScript, ViewHideScript, and ViewQuitScript methods are
used internally in protoFullRouteSlip . If you need to override one of
these methods, be sure to call the inherited method also.

The following methods of protoFullRouteSlip are of interest.

BottomOfSlip 19

routingSlip:BottomOfSlip()

Returns the vertical coordinate of the bottom of the routing slip—that is, the
very bottom of the lower portion of the slip below the envelope image. You

C H A P T E R 1 9

Transport Interface Reference

Protos 19-41

must use this method to determine the bottom of the slip so that you can
correctly position interface elements in the lower portion of the routing slip.
All items in the lower portion of the routing slip must be positioned relative
to the bottom of the slip or sibling bottom-relative to the last child of the
routing slip proto, which is the Send button.

FormatChanged 19

routingSlip:FormatChanged(format)

Notifies the routing slip view that the user chose a new routing format in the
format picker.

format The new routing format chosen by the user.

If you want to receive this message, define a method to handle it.

Usually, you should return nil from this method. This allows the format
picker to proceed with executing its normal code, which means closing an
auxiliary view for the old routing format, if one is open, setting the
currentFormat slot in the item, calling the routing format’s SetupItem
method, opening an auxiliary view, if one is defined in the routing format,
and saving the chosen routing format in the application base view.

If the FormatChanged method returns true, the default code stops. The
assumption in the latter case is that you’ve done all the necessary processing
in your FormatChanged method.

OwnerInfoChanged 19

routingSlip:OwnerInfoChanged()

Notifies the routing slip view that the sender pop-up view changed, so you
can catch any changes. The sender pop-up view is the sender’s name and
worksite location, shown in the upper-left corner of the envelope.

If your routing slip depends on data in the sender’s current owner card or
worksite, you should define this method so that you can update addressing
or other information when changes occur. For example, you’ll probably want
to update the fromRef slot in the item frame if the owner persona changes.
To do that, you must implement this method.

C H A P T E R 1 9

Transport Interface Reference

19-42 Protos

In the OwnerInfoChanged method, you can obtain any changes by
checking slots in which you are interested in the user configuration frame,
using the GetUserConfig function. For example, the area code at the user’s
location can be found in the currentAreaCode slot. For a list of slots in the
user configuration frame, see “User Configuration Variables” (page 16-101).

PrepareToSend 19

routingSlip:PrepareToSend(when)

Notifies the routing slip view that the user selected Now or Later from the
Send picker.

when A symbol, 'Now or 'Later, indicating when the user
chose to send the item from the Send button picker.

If you want to do anything to the item before it is sent, you must define this
method. For example, you might want to validate the entries in the routing
slip or check something in the item itself before sending it.

Your PrepareToSend method should send the message ContinueSend to
the routing slip view if you want to continue the submission process. If, as a
result of your PrepareToSend method, you do not want to submit the item
to the Out Box, do not send the ContinueSend message, and the process
will be canceled.

The PrepareToSend method is defined in the protoFullRouteSlip
template. The default version simply sends the ContinueSend message to
itself to continue the submission process.

ContinueSend 19

routingSlip:ContinueSend(when)

Continues the process of submitting an item to the Out Box. Send this
message to the routing slip view from your PrepareToSend method if you
want to continue with the process of submitting the item. If you don’t want
to submit the item, don’t send this message.

when A symbol, 'Now or 'Later, indicating when the user
chose to send the item from the Send button picker.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-43

TransportChanged 19

routingSlip:TransportChanged(newSymbol)

Notifies the routing slip view if the transport is a member of a group and the
user changes the transport to a different member of the group.

newSymbol The appSymbol of the new transport chosen by the
user.

This message lets you take such necessary action as alerting the user that
addressing information might be lost as a result of changing transports. If
TransportChanged returns a non-nil value, the transport is not changed
and the routing slip is not closed. If it returns nil, the transport is changed
and the routing slip is closed and reopened.

You don’t need to supply this method.

protoAddressPicker 19
This proto provides a picker list to use in the routing slip for choosing an
address from the Names file. The protoAddressPicker is based on the
protoLabelPicker and protoPeoplePopup. For more information on
these protos, see Chapter 6, “Pickers, Pop-up Views, and Overviews,” in
Newton Programmer�s Guide.

Slot descriptions

viewBounds Set to the size and location you want for the picker.
text A string that is the picker label. The default is “Name”.
otherText A string that is the last item to be shown in the picker,

below the separator line. The default is “Other Names”.
selected An array of initially selected name references, or nil, to

select none initially. You will probably want to set this
slot to the toRef array in the item frame. When the
picker is closed, this array contains the name references
selected from the picker.

alternatives An array of alternative name references to show in the
picker. This is set up by the Intelligent Assistant.

C H A P T E R 1 9

Transport Interface Reference

19-44 Protos

class A symbol identifying a data definition for a name
reference object. This symbol identifies the type of name
reference object to use in creating the list, and
determines the information displayed in each column of
the list. The following name reference data definitions
are built into the system:
'|nameRef.email|

Lists names and e-mail addresses.
'|nameRef.fax|

Lists names and fax phone numbers.
'|nameRef.phone|

Lists names and voice phone numbers.
_picker A view template defining the picker to display when the

user wants to choose other recipients. The default is
protoPeoplePopup, which provides a name picker
based on protoPeoplePicker. Setting this slot allows
you to substitute an alternative directory service that
has the same interface as the protoPeoplePopup.

protoTransportPrefs 19
This proto provides a template for a preferences view for your transport. It is
based on the protoFloater. For more information about creating a
preferences view, see “Providing a Preferences Template” (page 22-33) in
Newton Programmer�s Guide.

Slot descriptions

viewBounds The size of the view and location where it should appear.
title Optional. A string that is the title of this transport,

displayed as part of the title at the top of the preferences
view, if you include it.

appSymbol Required. The transport appSymbol.
transport This slot is set at run-time with the transport to which

this preferences view belongs.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-45

silentPrefs A frame defining the text of the checkbox that controls
whether or not to show status dialogs. This frame has as
its default value the slots described in Table 19-4
(page 19-46). If you don’t want to include this item in
your preferences dialog, set this slot to nil.

sendPrefs A frame defining the choices applicable to when an item
is sent. This frame has as its default value the slots
described in Table 19-5 (page 19-46). If you don’t want
to include this item in your preferences dialog, set this
slot to nil.

outboxPrefs A frame defining the preference item applicable to the
Out Box. This frame has as its default value the slots
described in Table 19-6 (page 19-47). If you don’t want
to include this item in your preferences dialog, set this
slot to nil.

inboxPrefs A frame defining the preference item applicable to the
In Box. This frame has as its default value the slots
described in Table 19-7 (page 19-47). If you don’t want
to include this item in your preferences dialog, set this
slot to nil.

infoPrefs A frame defining functions that handle Info button
choices. The default frame defines one method,
DoInfoHelp, that opens the system help book. This
function is called if the user selects the Help item from
the Info menu. You may want to define the
DoInfoAbout, GenInfoAuxItems, and DoInfoAux
methods to include your own items on the Info button
menu. For details on methods that support the Info
button, see the description of protoInfoButton
(page 6-10).

The following four tables describe the default frames for the silentPrefs,
sendPrefs, outboxPrefs, and inboxPrefs slots. To override any of the
default slots in a frame, you must specify a new frame with all the slots
shown.

C H A P T E R 1 9

Transport Interface Reference

19-46 Protos

Table 19-4 Slots in silentPrefs frame

Slot Description

text A string that is the text shown next to the checkbox.
The default value is a localized version of the string,
“Show status dialogs.”

configuration A symbol identifying the slot in the transport’s
configuration frame in which this user preference item
is stored. The default value is 'autoStatus.

Table 19-5 Slots in sendPrefs frame

Slot Description

routeText A string that is the text labeling the preference item that
controls when sending occurs. The default value is a
localized version of the string, “When sending.”

routeChoices An array of strings to use for the picker that lists
choices. The default array is a localized version of this:
["Send now", "Send later", "Specify
when"].

testMethod A symbol identifying a sending method for which to
test in the transport object. If this method is not found in
the transport object, the “When sending” view element
is not automatically displayed in the preferences view.
The default value is 'SendRequest. In other words, if
the transport does not support sending, the “When
sending” view element won’t be included.

C H A P T E R 1 9

Transport Interface Reference

Protos 19-47

Table 19-6 Slots in outboxPrefs frame

Slot Description

logText A string that is the text labeling the Out Box preference
item, which controls logging. The default value is a
localized version of the string, “After sending.”

logChoices An array of strings to use for the picker that lists logging
choices. The default array is a localized version of this:
["File", "Log", "Delete"].

testMethod A symbol identifying a sending method for which to test
in the transport object. If this method is not found in the
transport object, the view element controlling Out Box
logging is not automatically displayed in the preferences
view. The default value is 'SendRequest. In other
words, if the transport does not support sending, this
view element won’t be included.

Table 19-7 Slots in inboxPrefs frame

Slot Description

logText A string that is the text shown next to the In Box
preference item, which controls where items are filed
after being read. The default value is a localized version
of the string, “File read items in.”

testMethod A symbol identifying a receiving method for which to
test in the transport object. If this method is not found in
the transport object, the view element controlling In Box
logging is not automatically displayed in the preferences
view. The default value is 'ReceiveRequest. In other
words, if the transport does not support receiving, this
view element won’t be included.

C H A P T E R 1 9

Transport Interface Reference

19-48 Functions and Methods

Functions and Methods 19

Utility Functions 19
This section describes utility functions used in the Transport interface.

RegTransport 19

RegTransport(symbol, transport)

Registers a new transport in the system. Call RegTransport from the
InstallScript function in your transport part.

symbol The transport appSymbol.

transport The transport template. This template must be based on
protoTransport.

The return value of this function is undefined.

RegTransport sends the InstallScript message to the transport, if this
message is defined in the transport. The InstallScript message is a hook
that allows the transport to do other initialization when it is installed. Note
that the InstallScript method of the transport is not related to the
InstallScript function in the part frame.

UnRegTransport 19

UnRegTransport(symbol)

Unregisters a transport from the system. Usually you would call this
function from the RemoveScript function in your transport part.

symbol The transport appSymbol passed to RegTransport.

The return value of this function is undefined.

C H A P T E R 1 9

Transport Interface Reference

Functions and Methods 19-49

DeleteTransport 19

DeleteTransport(symbol)

Removes transport-related information stored in the system, for example, the
user preferences for the transport. Usually you would call this function from
the DeletionScript function in your transport part.

symbol The transport appSymbol passed to RegTransport.

The return value of this function is undefined.

Note that the RemoveScript function in the transport part is also called,
following the DeletionScript function.

GetCurrentFormat 19

GetCurrentFormat(item)

Returns the routing format frame (not the format symbol) for an item from
the In or Out Box soup, or returns nil if a routing format cannot be found
for the item.

item The In/Out Box item whose routing format you want to
get.

GetGroupTransport 19

GetGroupTransport(groupSymbol)

Returns a symbol identifying the current (last-used) transport within a
transport group. If the current transport is no longer available, this function
returns a different one from the same group, if there is one. If there is no
current transport and none can be found in the group, it returns nil.

groupSymbol A symbol identifying a transport group. The following
group symbols are defined: 'print, 'fax, 'beam, and
'mail.

C H A P T E R 1 9

Transport Interface Reference

19-50 Functions and Methods

QuietSendAll 19

QuietSendAll(transportSym) // platform file function

Causes the In/Out Box to send a transport the SendRequest message for all
queued items waiting to be sent by that transport. The SendRequest
message includes a request argument, in which the cause slot is set to
'periodic.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kQuietSendAllFunc with (transportSym);
▲

transportSym A symbol identifying the transport that is to send
queued items.

If the specified transport is not found, this function returns the symbol
'noTransport. If this function completes normally, the return value is
unspecified.

Note that if there are no items to send, the system does not display an alert,
as with CheckOutbox.

Refresh 19

ownerApp:Refresh()

Causes the application that manages transports (typically the In/Out Box) to
refresh the view of the in box.

You must send the Refresh message to the ownerApp slot in the transport.

Note

In Newton OS version 2.0, the ownerApp slot must first be
set up by using the NTK platform file function
kSetupOwnerAppFunc in the transport InstallScript
method. ◆

C H A P T E R 1 9

Transport Interface Reference

Functions and Methods 19-51

You use Refresh to refresh the in box view after remote items are fully
retrieved and after remote items that are not fully retrieved are deleted. For
more information about handling remote items, see “Deferring Reception of
the Item Data” (page 22-10) in Newton Programmer�s Guide.

RemoveTempItems 19

ownerApp:RemoveTempItems(transportSym)

Causes the application that manages transports (typically the In/Out Box) to
delete all remote items from the specified transport that have not been fully
downloaded.

transportSym The transport symbol (from the appSymbol slot of the
transport).

After this message, you must send the Refresh message to the ownerApp
slot in the transport.

Note

In Newton OS version 2.0, the ownerApp slot must first be
set up by using the NTK platform file function
kSetupOwnerAppFunc in the transport InstallScript
method. ◆

Typically, you use the RemoveTempItems method after the transport
disconnects, to remove all remote items that the user chose not to retrieve
fully. For more information about handling remote items, see “Deferring
Reception of the Item Data” (page 22-10) in Newton Programmer�s Guide.

Constants and Symbols 20-1

C H A P T E R 2 0

EndpointInterfaceReference20

This chapter provides reference information for all the symbols, constants,
data structures, protos, methods, and global functions available for working
with the Endpoint interface.

Constants and Symbols 20

This section describes constants and symbols that your application uses to
interact with the Endpoint interface.

Data Form Symbols 20
The symbols in Table 20-1 specify how data is interpreted and handled by
the Endpoint interface.

Figure 20-0
Table 20-0

C H A P T E R 2 0

Endpoint Interface Reference

20-2 Constants and Symbols

Data Type Symbols 20
The symbols in Table 20-2 specify the data types that can be specified in the
typelist array when using data of the 'template form.

Table 20-1 Data form symbols

Data form Description

'char Data is converted to or from Unicode, using the endpoint
encoding slot.

'number For sending or receiving data, or getting or setting endpoint
options, the data is interpreted as a NewtonScript 30-bit
integer using 4 bytes.

'string For receiving data or getting endpoint options, the data is
converted to Unicode using the endpoint encoding slot
and returned as a NewtonScript character string with a
termination byte. For sending data, the NewtonScript
character string is converted from Unicode using the
encoding slot. The termination byte is not sent.

'bytes For receiving data or getting endpoint options, the data is
returned as an array of unsigned single-byte values. For
sending data, only the low-order bytes are used (the data is
truncated).

'binary No conversion done.

'template Used to exchange data with a service that expects C-type
data, such as when setting communication tool options.

'frame For output, the frame is flattened into a stream of bytes
prior to being sent, and for input, the byte stream is
unflattened and returned as a frame.

C H A P T E R 2 0

Endpoint Interface Reference

Constants and Symbols 20-3

Option Opcode Constants 20
The constants described in Table 20-3 are used in the opCode slot of an
endpoint option frame to specify how the option is to be set or gotten.

Table 20-2 Typelist data type symbols

Data type Description

'long Signed long integer

'ulong Unsigned long integer

'short 16-bit unsigned short integer

'byte 8-bit unsigned byte

'char 8-bit character (translated to/from Unicode)

'unicodechar 16-bit Unicode character

'boolean 8-bit plain Boolean value

'struct An aggregate structure, padded to a long word

'array An aggregate array

Table 20-3 Option opcode constants

Constant Value Description

opSetNegotiate 256 Sets the option, but the system may
substitute different values

opSetRequired 512 Sets the option, but fails if not possible

opGetDefault 768 Gets the default option value

opGetCurrent 1024 Gets the current option value

C H A P T E R 2 0

Endpoint Interface Reference

20-4 Constants and Symbols

Endpoint Error Code Constants 20
Endpoint error code constants are described in Table 20-4.

Table 20-4 Endpoint error code constants

Constant Value Description

kCommScriptNoActiveInputSpec –54000 An active input spec is required

kCommScriptBadForm –54001 Error in the form slot of an
input spec

kCommScriptZeroLengthData –54002 Trying to send zero-length data

kCommScriptExpectedSpec –54003 An input spec is required

kCommScriptInvalidOption –54004 The option you tried to set was
missing

kCommScriptInvalidEndSequence –54005 Error in the endSequence slot
of an input spec

kCommScriptInappropriatePartial –54006 Used the Partial method with
a bad input spec, or unable to
do a partial input

kCommScriptInappropriateTermination –54007 Error in termination slot of
input spec

kCommScriptInappropriateTarget –54008 Error in target slot of input
spec

kCommScriptInappropriateFilter –54009 Error in filter slot of input
spec

kCommScriptExpectedTarget –54010 Attempted to receive binary
data with no target object
specified

kCommScriptExpectedTemplate –54011 Attempted to send or receive
template data without a
template specified

C H A P T E R 2 0

Endpoint Interface Reference

Constants and Symbols 20-5

Option Error Code Constants 20

Option error code constants are described in Table 20-5.

kCommScriptInputSpecAlreadyActive –54012 Tried to set an input spec when
one was already active

kCommScriptInvalidProxy –54013 Invalid value in filter proxy of
input spec

kCommScriptNoEndpointAvailable –54014 Endpoint object is missing

kCommScriptInappropriateCall –54015 Method not supported, or called
inappropriately

kCommScriptCharNotSingleByte –54016 The character specified in the
filter proxy of the input spec is
more than a single byte

Table 20-5 Option error code constants

Constant Value Description

kCommOptionFailure –54021 Option failed

kCommOptionPartSuccess –54022 Option set, but set value is different from
requested value

kCommOptionReadOnly –54023 Set attempted on read-only option

kCommOptionNotSupported –54024 Option not supported

kCommOptionBadOpCode –54025 Invalid option opcode

kCommOptionNotFound –54026 Option not found

kCommOptionTruncated –54027 One or more requested options missing

Table 20-4 Endpoint error code constants (continued)

Constant Value Description

C H A P T E R 2 0

Endpoint Interface Reference

20-6 Constants and Symbols

Endpoint State Constants 20
The constants described in Table 20-6 are the possible return values of the
endpoint State method.

Other Endpoint Constants 20
Additional constants used in the Endpoint interface are described in
Table 20-7.

Table 20-6 Endpoint state constants

Constant Value Description

kUninit 0 Uninitialized

kUnbnd 1 Unbound

kIdle 2 Idle

kOutCon 3 Outgoing connection pending

kInCon 4 Incoming connection pending (Listen
method has completed but you have not
yet called Accept or Disconnect)

kDataXfer 5 Data transfer

kOutRel 6 Outgoing release pending

kInRel 7 Incoming release pending (connection
released by the remote side)

kInFlux 8 State is changing

kOutLstn 9 Listen method pending

C H A P T E R 2 0

Endpoint Interface Reference

Data Structures 20-7

Data Structures 20

This section describes the data structures that your application uses to
interact with the Endpoint interface.

Endpoint Option Frame 20
An endpoint option frame selects the communication tool to use, controls its
configuration and operation, and returns result code information from each
endpoint method call. Note that multiple option frames can be specified
together in an array, but arrays cannot be nested.

Slot descriptions

type The type of option, which can be 'service, 'option,
or 'address.

label The option identifier, which is dependent on the
communication tool. Usually it is a four-character string
that identifies the option. Constants are defined for all
the different options for the built-in communication
tools. For details, see Chapter 24, “Built-in
Communications Tools.”

Table 20-7 Other endpoint constants

Constant Value Description

kNoTimeout 0 Set no time-out for a request

kEOP 0 Send or receive flag; marks the last packet

kMore 1 Send or receive flag; more data is coming

kPacket 2 Send or receive flag; data is in packets (framed)

C H A P T E R 2 0

Endpoint Interface Reference

20-8 Data Structures

opCode A constant indicating how the tool should handle the
option request. Possible values include the following:
opSetRequired

Indicates that the request must fail if the
service is unable to honor it (for example,
setting a bps rate of 1.2 million). Note that
other options in the options array are
processed even though one or more may
fail.

opSetNegotiate
Indicates that the service can substitute a
“reasonable” value if the requested value
is unacceptable.

opGetDefault
Indicates that the system is to return the
default settings.

opGetCurrent
Indicates that the system is to return the
current settings.

form A symbol identifying the data form to be used in
interpreting the data slot. You don’t need to specify
this slot because the default value 'template applies
to all options.

result A result code, set on return from the endpoint method.
This slot is ignored if you set it; it is documented here
only because it is added to the option frame returned by
endpoint methods that can set options. The possible
result codes are listed in Table 20-5 (page 20-5).

data The option data. All the built-in communication tools
expect data of the 'template form. This consists of a
frame containing arglist and typelist arrays. For
more information on the template data form, see the
section “Template Data Form” beginning on page 23-5
in Newton Programmer�s Guide.

C H A P T E R 2 0

Endpoint Interface Reference

Data Structures 20-9

Callback Spec Frame 20
A callback spec frame controls whether an endpoint method executes
synchronously or asynchronously. It also defines a time-out and contains a
CompletionScript method that is called when the endpoint operation
completes.

Slot descriptions

async A Boolean value. If true, then the request is posted
asynchronously. This slot is optional and defaults to
nil. It is evaluated only at the time the endpoint
method is called.

reqTimeout An integer specifying the time, in milliseconds, that the
system should allow for the request to complete. If you
use this slot, specify an integer greater than 30. If a
time-out expires for an asynchronous request, that
request and all outstanding requests are canceled. This
slot is optional, defaults to kNoTimeout, and is
evaluated only at the time the method is called. This slot
is ignored if the callback spec is used with the Cancel
method, since time-outs don’t apply to Cancel.

The following method is also defined in a callback spec frame.

CompletionScript 20

callbackSpec:CompletionScript(endpoint, options, result)

Sent to a callback spec frame when an asynchronous request completes.

endpoint The endpoint associated with the request.

options A frame containing the returned options for those
requests that support the options parameter.

result The result code. If no error occurred, this parameter is
set to nil.

The CompletionScript method's return value is not used.

C H A P T E R 2 0

Endpoint Interface Reference

20-10 Data Structures

The CompletionScript slot in a callback spec is evaluated every time the
CompletionScript message is to be sent.

Output Spec Frame 20
An output spec frame is simply a type of callback spec frame with a few
additional slots tailored specifically for the Output method. These
additional slots allow you to pass flags and to define the output data form.
This section describes only slots that are not included in the standard
callback spec frame.

Slot descriptions

sendFlags Special protocol flags provided for certain
communication tools. This slot is optional and defaults
to kMore. Other possible values include kPacket and
kEOP. (For more details, see the section “Sending Data”
beginning on page 23-11 in Newton Programmer�s Guide.)

form A symbol defining how to translate the data being sent.
The value can be 'string, 'bytes, 'binary,
'number, 'frame, or 'template. By default, this slot
is set to 'string, 'bytes, or 'binary, depending on
the embedded NewtonScript type information. For
more information, see the section “Data Forms”
beginning on page 23-4 in Newton Programmer�s Guide.

target A slot used only when form is set to 'binary. This slot
contains a frame with the following two slots:
offset An integer that is the offset from the

beginning of the binary object at which to
begin sending data.

length An integer specifying the length of the
data to send, in bytes.

For more information on sending binary data and using
this slot, see the section “Working With Binary Data”
beginning on page 23-20 in Newton Programmer�s Guide.

C H A P T E R 2 0

Endpoint Interface Reference

Data Structures 20-11

Input Spec Frame 20
The input spec frame defines what kind of data you are looking for,
termination conditions that control when the input should be stopped, and
callback methods to notify you when input is stopped or other conditions
occur.

Slot descriptions

form A symbol identifying the input data form. This slot
defaults to 'string, and is evaluated when the input
spec is set. You can override the default setting by using
these other values: 'char, 'number, 'bytes,
'binary, 'template, or 'frame. For more
information on these data forms, see the section “Data
Forms” beginning on page 23-4 in Newton Programmer�s
Guide.

target A frame defining additional information pertaining to
'template and 'binary data forms. This frame is
described in the section “Input Spec Target Frame”
(page 20-15).

termination A frame defining input termination conditions. This
frame is described in the section “Input Spec
Termination Frame” (page 20-16).

discardAfter An integer that sets the input buffer size. If this buffer
overflows, then the oldest bytes are discarded. The
default value of this slot is 1024. Note that if you have
set the termination.byteCount slot, or if the byte
count is determined automatically, the value of this slot
is ignored. This slot is evaluated only at the time the
input spec is set.

rcvFlags Certain communication tools require framed receiving.
To use framed receiving, you must set this slot to
kPacket; otherwise, set this slot to nil or don’t
include it at all.

reqTimeout An integer specifying the time, in milliseconds, of
inactivity to allow during input. If there is no input for
the specified interval, the time-out expires, the input is

C H A P T E R 2 0

Endpoint Interface Reference

20-12 Data Structures

terminated, and the CompletionScript message is
sent to the input spec frame. This slot is optional,
defaults to kNoTimeout, and is evaluated only at the
time the SetInputSpec method is called. If you use
this slot, specify an integer greater than 30.

filter A frame defining how incoming data is to be processed.
This frame is described in the section “Input Spec Filter
Frame” (page 20-17).

rcvOptions An array of one or more communication tool options
associated with the receive request. If you have just one
option frame, you can specify it directly, without
enclosing it in an array.

partialFrequency
An integer specifying the frequency, in milliseconds, at
which the input data buffer should be checked. If new
data exists in the buffer, the PartialScript message
is sent. You must set this slot if you wish to use the
PartialScript method, as the default value is 0. This
slot is evaluated only at the time the input spec is set.

In addition to the slots listed here, you can define the following methods in
the input spec frame:

■ InputScript, which is called when one of the data input termination
conditions is met

■ PartialScript, which is called periodically at the frequency defined by
the partialFrequency slot to allow you to sample the incoming data

■ CompletionScript, which is called when the input is terminated
unexpectedly

These methods are described in the following subsections.

C H A P T E R 2 0

Endpoint Interface Reference

Data Structures 20-13

InputScript 20

inputSpec:InputScript(endpoint, data, terminator, options)

Sent to the input spec frame when one of the data termination conditions has
been met, or when the Input method is called.

endpoint The endpoint associated with the receive request.

data The data that meets the input conditions is returned in
this parameter, formatted as specified by the form slot
of the input spec. Note that if you had set the target
slot of the input spec, data would be the target frame’s
data object.

terminator A frame specifying the condition that caused the input
to terminate. Note that this data is irrelevant for the data
forms 'frame and 'template, since input terminates
automatically for them. If this argument is nil, it
indicates that the InputScript message was sent as a
result of invoking the Input method. The following
slots are included:
condition A symbol specifying the name of the slot

in the input spec termination frame
that caused the input to terminate (for
example, 'byteCount). If input was
terminated by the Input method, this slot
is set to nil.

index The value of the index into the
termination.endSequence array, if
this was the condition that caused
termination.

byteCount The number of bytes received.

options The processed options originally set in the rcvOptions
slot of the input spec. This parameter is nil if the
rcvOptions slot is nil. For more information on the
rcvOptions slot, see the section “Specifying Receive
Options” beginning on page 23-17 in Newton
Programmer�s Guide.

C H A P T E R 2 0

Endpoint Interface Reference

20-14 Data Structures

The return value of the InputScript method is ignored by the system.

In the input spec, the InputScript slot is evaluated when the
SetInputSpec message is sent to the endpoint, and every time the
InputScript message is sent to the input spec.

If the terminator argument is nil, it indicates that the InputScript
message was sent as a result of invoking the Input method. In this case, the
input spec is still active and you cannot set another one by calling
SetInputSpec. If you want to cancel the current input spec, you must use
Cancel to do so.

The current input spec (and therefore, the current InputScript method)
remains in effect after the InputScript method returns, unless you call
SetInputSpec to change the input spec. This feature maximizes
performance if the same input spec can be used for each receive.

PartialScript 20

inputSpec:PartialScript(endpoint, data)

Sent to the input spec frame periodically, at the interval defined by the
partialFrequency slot.

endpoint The endpoint associated with the receive request.

data All of the data currently in the input buffer is returned
in this parameter, formatted as specified by the form
slot of the input spec.

In the input spec, the PartialScript slot is evaluated every time the
PartialScript message is sent.

This method can be used only for data formatted with the input data forms
'string or 'bytes.

C H A P T E R 2 0

Endpoint Interface Reference

Data Structures 20-15

CompletionScript 20

inputSpec:CompletionScript(endpoint, options, result)

Sent to an input spec frame when the input spec completes in an unexpected
manner (for example, as a result of a time-out expiring or the Cancel
method).

endpoint The endpoint associated with the request.

options This parameter is not currently used; you can ignore it.

result The result code.

The CompletionScript method's return value is not used.

The CompletionScript slot in an input spec is evaluated every time the
CompletionScript message is to be sent.

Input Spec Target Frame 20
This section describes in detail the target slot of an input spec frame. The
target slot itself contains a frame defining additional information
pertaining to the data form of the input.

Slot descriptions

arglist The arglist array specification for the template. This
slot must be defined only for 'template data forms.
You provide placeholder values in the array, which is
filled in with actual data when it is received.

typelist The typelist array specification for the template. This
slot must be defined only for 'template data forms.
This slot is evaluated as needed.

data The binary object, virtual binary object, or string into
which received data is placed. This slot must be defined
for 'binary data forms only. It is evaluated as needed
and is modified based on the received data.

offset An integer specifying the offset within the binary object
at which the received binary data is to be written. The
offset is 0 by default. This slot is used only for binary
data and is evaluated when the input spec is set.

C H A P T E R 2 0

Endpoint Interface Reference

20-16 Data Structures

Input Spec Termination Frame 20
This section describes in detail the termination slot of an input spec
frame. The termination slot itself contains a frame defining input
termination conditions.

The slots are listed here in order of precedence. They are evaluated only at
the time the input spec is set.

Slot descriptions

byteCount An integer indicating a number of bytes. If you know
how many bytes you’re expecting, specify that number
here. Don't define this slot if you don't want to
terminate input after a specified number of bytes.

endSequence One or more objects, known as a termination sequence,
to look for in the incoming data stream. This slot can
hold a single character, a string, a number, or an array of
bytes. Or, you can specify an array of these elements,
where each element in the array defines a separate
termination sequence.

useEOP Set this slot to true to terminate input based on a
transport-level end-of-packet (EOP) indicator;
otherwise, set it to nil. If this slot is set to true, and an
EOP indicator is detected, input is terminated. Specify
this slot only if the input spec rcvFlags slot includes
the kPacket flag. Moreover, if the rcvFlags slot
includes the kPacket flag and you do not specify the
useEOP slot, the system effectively sets useEOP to the
default value true.

Note

If you set the kPacket flag and set the useEOP slot to
true, you cannot also use the byteCount slot in the
termination frame—if you do, byteCount will be
ignored. In this case, only an EOP indicator will
terminate input. If you do want to use the byteCount

C H A P T E R 2 0

Endpoint Interface Reference

Data Structures 20-17

slot with the kPacket flag, set the useEOP slot to nil.
In the latter case, the remote system should send an
EOP indicator with every packet, though input won’t
terminate until the byteCount condition is met. ◆

Input Spec Filter Frame 20
This section describes in detail the filter slot of an input spec frame. The
filter slot itself contains a frame defining how incoming data is to be
processed, or filtered.

Slot descriptions

byteProxy One or more characters or bytes in the input stream to
be replaced by zero or one characters. This slot is
evaluated only at the time the input spec is set. Specify
an array of one or more frames. Each frame must have
the following slots:
byte The single-byte character or byte to be

replaced.
proxy The single-byte character or byte to be

used instead. This slot can also be nil,
meaning that the original byte is to be
removed completely from the input
stream.

sevenBit Set to true to specify that the high-order bit of every
incoming byte be stripped (“zeroed out”). This slot is
evaluated only at the time the input spec is set, and its
default value is nil.

Note

An input spec filter can be used with all data forms except
'binary. ◆

C H A P T E R 2 0

Endpoint Interface Reference

20-18 Protos

Protos 20

This section describes endpoint protos.

protoBasicEndpoint 20
This is the basic endpoint object that encapsulates the details of a connection
and contains methods that perform communication operations.

Slot descriptions

encoding A constant specifying a translation table to be used for
the translation of all data to and from Unicode (the data
representation on Newton). By default, this slot is set to
kMacRomanEncoding. This slot is evaluated only
when the endpoint is instantiated.

The methods in protoBasicEndpoint are described in the following
subsections.

Instantiate 20

endpoint:Instantiate(endpoint, options)

Instantiates an endpoint.

endpoint A reference to the endpoint you’ve defined.

options An array containing a complete set of endpoint option
frames. For more information, see the section “Endpoint
Options” beginning on page 23-7 in Newton
Programmer�s Guide.

The return value of this method is a clone of the array passed in the options
parameter. The result slot in each option frame is set with a result code for
the option.

This method is synchronous.

C H A P T E R 2 0

Endpoint Interface Reference

Protos 20-19

Bind 20

endpoint:Bind(options, bindCallback)

Binds the endpoint to its local address and claims the needed system
resources. When used synchronously, this method waits for the binding to be
made before returning. When used asynchronously, this method posts the
binding request and then returns. After the binding is made or fails, the
system calls your callback method.

options An array of one or more option frames.

bindCallback A callback spec frame containing a method to be called
when the request completes. Both the callback spec and
the async slot within it must be defined if you want the
Bind method to complete asynchronously. If you want
to use this method synchronously, without a callback,
specify nil for this parameter. For details on callback
spec frames, see “Callback Spec Frame” (page 20-9).

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The result slot in each option frame
is set with a result code for the option.

UnBind 20

endpoint:UnBind(unbindCallback)

Releases the system resources and local address. When used synchronously,
this method waits for the unbinding to complete before returning. When
used asynchronously, this method posts the unbinding request and then
returns. After the unbinding is complete or fails, the system calls your
callback method.

unbindCallback A callback spec frame containing a method to be called
when the request completes. Both the callback spec and
the async slot within it must be defined if you want the
UnBind method to complete asynchronously. If you
want to use this method synchronously, without a
callback, specify nil for this parameter. For details on

C H A P T E R 2 0

Endpoint Interface Reference

20-20 Protos

callback spec frames, see “Callback Spec Frame”
(page 20-9).

You must disconnect the endpoint before sending this message to unbind it.

Dispose 20

endpoint:Dispose()

Closes the endpoint and deallocates the underlying endpoint structures. This
method is synchronous.

You must disconnect and unbind the endpoint before sending this message
to dispose it.

Connect 20

endpoint:Connect(options, connectCallback)

Initiates a connection to the remote system. When used synchronously, this
method waits for the connection to be made before returning. When used
asynchronously, this method posts the connection request and then returns.
After the connection is made or fails, the system calls your callback method.

options An array of one or more option frames.

connectCallback A callback spec frame containing a method to be called
when the request completes. Both the callback spec and
the async slot within it must be defined if you want the
Connect method to complete asynchronously. If you
want to use this method synchronously, without a
callback, specify nil for this parameter. For details on
callback spec frames, see “Callback Spec Frame”
(page 20-9).

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The result slot in each option frame
is set with a result code for the option.

Note that if you are connecting to receive data, you must set up your first
input spec by calling SetInputSpec after a connection has been established
(either by Connect or Accept).

C H A P T E R 2 0

Endpoint Interface Reference

Protos 20-21

Listen 20

endpoint:Listen(options, listenCallback)

Listens for a connection request from the remote system.

After the connection request is received, you must call the Accept or
Disconnect method to accept or reject the connection. When used
synchronously, this method waits for the connection request to be received
before returning. When used asynchronously, this method posts the listen
request and then returns. After the connection request is received or this
method fails, the system calls your callback method.

options An array of one or more option frames.

listenCallback A callback spec frame containing a method to be called
when the request completes. Both the callback spec and
the async slot within it must be defined if you want the
Listen method to complete asynchronously. If you
want to use this method synchronously, without a
callback, specify nil for this parameter. For details on
callback spec frames, see “Callback Spec Frame”
(page 20-9).

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The result slot in each option frame
is set with a result code for the option.

Accept 20

endpoint:Accept(options, acceptCallback)

Accepts a connection after a connection request was received by the Listen
method.

When used synchronously, this method waits for the connection to be
established before returning. When used asynchronously, this method posts
a request to establish a connection and then returns. After the connection is
established or this fails, the system calls your callback method.

options An array of one or more option frames.

C H A P T E R 2 0

Endpoint Interface Reference

20-22 Protos

acceptCallback A callback spec frame containing a method to be called
when the request completes. Both the callback spec and
the async slot within it must be defined if you want the
Accept method to complete asynchronously. If you
want to use this method synchronously, without a
callback, specify nil for this parameter. For details on
callback spec frames, see “Callback Spec Frame”
(page 20-9).

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The result slot in each option frame
is set with a result code for the option.

Note that if you are accepting a connection to receive data, you must set up
your first input spec by calling SetInputSpec after you have accepted the
connection.

Disconnect 20

endpoint:Disconnect(cancelPending, disconnectCallback)

Disconnects a connection.

When used synchronously, this method waits for the connection to be
disconnected before returning. When used asynchronously, this method
posts a request to disconnect a connection and then returns. After the
connection is disconnected or this fails, the system calls your callback
method.

cancelPending Set to true to specify that all outstanding requests
should be canceled. Set to nil to wait for all pending
output requests to complete before disconnecting. Note
that if you set this parameter to nil, and an input spec
is pending after all other requests have completed, the
input spec is then canceled.

disconnectCallback A callback spec frame containing a method to be called
when the request completes. Both the callback spec and
the async slot within it must be defined if you want the
Disconnect method to complete asynchronously. If

C H A P T E R 2 0

Endpoint Interface Reference

Protos 20-23

you want to use this method synchronously, without a
callback, specify nil for this parameter. For details on
callback spec frames, see “Callback Spec Frame”
(page 20-9).

For more discussion on canceling, see the section “Canceling Operations”
beginning on page 23-21 in Newton Programmer�s Guide.

Note

This method incorporates both the Disconnect and
Release methods from system software version 1. When
the cancelPending parameter is set to true, this method is
similar to the old Disconnect method. When the
cancelPending parameter is set to nil, this method is similar
to the old Release method. ◆

Output 20

endpoint:Output(data, options, outputSpec)

Sends the specified data.

data The data to be sent.

options An array of one or more option frames.

outputSpec An output spec containing a method to be called when
the Output method completes, as well as other options.
Both the output spec and the async slot within it must
be defined if you want the Output method to complete
asynchronously. If you want to use this method
synchronously, without a callback, specify nil for this
parameter. For details on output spec frames, see
“Output Spec Frame” (page 20-10).

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The result slot in each option frame
is set with a result code for the option.

Note that when sending data with the Output method, you can take
advantage of the default data forms by not explicitly specifying a data form

C H A P T E R 2 0

Endpoint Interface Reference

20-24 Protos

in the output spec. NewtonScript objects have type information embedded in
their values, allowing the system to select appropriate default data forms for
different kinds of data being sent. For example, if you are sending string data
and you don’t specify the data form, the 'string data form is used by
default.

The Output method also lets you specify the data as an array. For instance, if
you specify a 'number data form, you can specify the data parameter as an
array whose elements are numbers. Other forms you can send as arrays are
'string, 'template, 'char, and 'binary. (You cannot send arrays of
arrays or arrays of the form 'frame.)

If you do not specify the form slot (to use the default form), you can specify
the data parameter as a heterogeneous array whose elements are characters,
strings, numbers, or binary objects. This is a convenient way for you to
concatenate similar calls to the Output method into a single call.

SetInputSpec 20

endpoint:SetInputSpec(inputSpec)

Sets the specified input spec as the active input spec.

inputSpec The input spec frame to be set as active. Specifying nil
indicates you don’t want to post a new input spec. For
details on input spec frames, see “Input Spec Frame”
(page 20-11).

If you call the SetInputSpec method and an input spec is already active, a
kCommScriptInputSpecAlreadyActive error results. To prevent this
error, you must first call the Cancel method to cancel the current input spec.

▲ W A R N I N G

The Cancel method aborts all pending asynchronous
operations on the endpoint. Use it with caution. ▲

C H A P T E R 2 0

Endpoint Interface Reference

Protos 20-25

Input 20

endpoint:Input()

Causes the InputScript message to be sent to the current input spec. All
data in the input buffer is formatted and passed to the InputScript
method, and the input buffer is cleared. Note that the input spec is not
terminated.

You use this method only when receiving data of the forms 'string and
'bytes.

An input spec must be active at the time this method is called, or the method
throws an exception with the error kCommScriptNoActiveInputSpec.

IMPORTANT

Do not call this method in a polling loop to look for
incoming data. The Newton communications architecture
requires a return to the main event loop in order to process
incoming data from the endpoint’s underlying
communication tool. The Input method is included as an
alternate way of retrieving data from the incoming data
buffer, not as a way to implement synchronous data
receives. ▲

Partial 20

endpoint:Partial()

Returns all data in the input buffer, formatted according to the input data
form specified in the input spec. The data is not removed from the input
buffer. Use FlushPartial if you want to clear the input buffer.

You use this method only when receiving data of the forms 'string and
'bytes.

An input spec must be active at the time this method is called, or the method
throws an exception with the error kCommScriptNoActiveInputSpec.

C H A P T E R 2 0

Endpoint Interface Reference

20-26 Protos

IMPORTANT

Do not call this method in a polling loop to look for
incoming data. The Newton communications architecture
requires a return to the main event loop in order to process
incoming data from the endpoint’s underlying
communication tool. The Partial method is included as an
alternate way of retrieving data from the incoming data
buffer, not as a way to implement synchronous data
receives. ▲

FlushInput 20

endpoint:FlushInput()

Discards all bytes in the input buffer.

FlushPartial 20

endpoint:FlushPartial()

Discards all bytes in the input buffer through the last partial data read (see
the Partial method).

Cancel 20

endpoint:Cancel(cancelCallback)

Cancels all pending requests, synchronous or asynchronous.

cancelCallback A callback spec frame containing a
CompletionScript method to be called when the
request completes. Both the callback spec and the
async slot within it must be defined if you want the
Cancel method to complete asynchronously. This
callback spec is slightly different from a standard
callback spec in that you cannot set a request time-out—
the reqTimeout slot is ignored. If you want to use this
method synchronously, without a callback, specify nil
for this parameter. For details on callback spec frames,
see “Callback Spec Frame” (page 20-9).

C H A P T E R 2 0

Endpoint Interface Reference

Protos 20-27

If the Cancel method throws an exception with error -36003, that means
that a cancel operation is already in progress. In this case, you can probably
ignore the exception, but you might want to re-examine the program logic
that caused this double cancel.

If there is nothing to cancel, the Cancel method has no effect.

IMPORTANT

For more information on canceling asynchronous
operations, see the section “Canceling Operations”
beginning on page 23-21 in Newton Programmer�s Guide. ▲

Option 20

endpoint:Option(options, optionCallback)

Sets and/or returns the specified options, depending on the setting of the
opCode slot in each of the option frames in the options array.

options An array of one or more option frames.

optionCallback A callback spec frame containing a method to be called
when the request completes. Both the callback spec and
the async slot within it must be defined if you want the
Option method to complete asynchronously. If you
want to use this method synchronously, without a
callback, specify nil for this parameter. For details on
callback spec frames, see “Callback Spec Frame”
(page 20-9).

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The result slot in each option frame
is set with a result code for the option.

It is possible to specify options in the same array that are of the same type
and seem to conflict. Since options are processed one at a time, in order, the
last option of a particular type is the one that is actually implemented. This is
generally considered inappropriate and should be avoided, if possible. For
more information on option processing, see the section “Setting Endpoint
Options” beginning on page 23-8 in Newton Programmer�s Guide.

C H A P T E R 2 0

Endpoint Interface Reference

20-28 Protos

ExceptionHandler 20

endpoint:ExceptionHandler(error)

The system sends your endpoint this message (if you provide it) whenever
an exception is thrown and a corresponding CompletionScript method
does not exist.

error A frame (set by the system) describing the exception.
The following slots are included:

name A string specifying the exception name
(usually |evt.ex.comm|).

data An integer error code.
debug A symbol. This slot is used in the special

case where a callback can’t be called. It is
described in more detail below. This kind
of an error usually results in error –48803.

The debug slot of the error parameter is used in the special case where a
callback can’t be called. This slot can have one of the following symbol
values: 'inputscript, 'completionscript, 'eventhandler, or
'partialscript. The value corresponds to the type of callback that
caused the error. For example, if you defined an InputScript method with
only one argument (an error), your ExceptionHandler method will be
called with the debug slot of the error parameter set to 'inputscript.
Since this kind of error does not cause a break, you should check the debug
slot for callback errors. This does not apply to the ProgressScript method
used with the protoStreamingEndpoint.

You can think of exceptions as unsolicited events. If no ExceptionHandler
method is specified, the exception is passed up the handler chain. Exceptions
that are not caught are displayed as warning messages to the user.

EventHandler 20

endpoint:EventHandler(event)

The system sends your endpoint this message (if you provide it) whenever
an event occurs that is not handled by the default endpoint event handlers.

C H A P T E R 2 0

Endpoint Interface Reference

Protos 20-29

Generally, you can catch events specific to a particular communication tool
by using this method.

event A frame (set by the system) describing the event. The
following slots are included:

eventCode An integer event code.
data An integer representing event data.
serviceId A string representing the communication

tool that originated the event. For
example, "mods" identifies the modem
tool.

time An integer representing the time when the
event occurred. This is the number of
ticks since the system was last restarted,
not including time when it was turned off.

State 20

endpoint:State()

This synchronous method returns the state of an endpoint. The possible
return values are listed in Table 20-6 (page 20-6).

Note

The endpoint State method returns information about the
state of the NewtonScript endpoint, but does not necessarily
indicate the true state of the communication tool(s) in use by
the endpoint. Do not rely on the value returned by the
State method to determine a course of action for the
endpoint; it is intended for debugging only. ◆

protoStreamingEndpoint 20
The protoStreamingEndpoint proto uses the protoBasicEndpoint as
its proto. Besides all of the slots and methods included in
protoBasicEndpoint, protoStreamingEndpoint includes two
additional methods: StreamIn and StreamOut. These methods are
described in this section.

C H A P T E R 2 0

Endpoint Interface Reference

20-30 Protos

StreamIn 20

streamingEndpoint:StreamIn(streamSpec)

Posts a receive request to the communication tool. As data arrives, it is
unflattened into a frame and collected in memory.

This synchronous method does not return until after the receive operation
terminates.

streamSpec You may specify a frame that controls the receive
operation, or if you don’t need to, specify nil.

The streamSpec frame can have the following slots:

form Optional. This slot must be set to the symbol 'frame,
which is the default setting.

reqTimeout Optional. An integer specifying the time, in
milliseconds, that the system should allow for each
chunk to be received. If a time-out expires, the receive
operation and all outstanding requests are canceled.
This slot defaults to kNoTimeout and is evaluated only
at the time the method is called. If you use this slot,
specify an integer greater than 30.

rcvFlags Optional. This slot can contain flags provided for certain
transport-level protocols. For more information, see the
section “Specifying Flags for Receiving” beginning on
page 23-15 in Newton Programmer�s Guide.

target Optional. If you are receiving a frame containing
embedded virtual binary objects, this slot specifies on
which store to place the objects. This slot must contain a
frame with a single slot, store. The store slot must
contain a reference to the store on which virtual binary
objects are to be created.

The ProgressScript method (page 20-32) can also be defined in the
streamSpec frame.

Virtual binary objects embedded in a received frame are not copied into the
NewtonScript heap along with the rest of the frame, if you specify a store to
receive them in the target slot of the streamSpec frame. Use this technique
to avoid overflowing the NewtonScript heap when receiving such objects.

C H A P T E R 2 0

Endpoint Interface Reference

Protos 20-31

Note

The StreamIn method cannot receive version 1
flattened frames. ◆

StreamOut 20

streamingEndpoint:StreamOut(data, streamSpec)

Takes a frame and sends it in chunks while flattening it.

This synchronous method does not return until after the send operation
completes.

data The data to send. This object must be a frame.

streamSpec You may specify a frame that controls the send
operation, or if you don’t need to, specify nil.

The streamSpec frame has the following slots:

form Optional. This slot must be set to the symbol 'frame,
which is the default setting.

reqTimeout Optional. An integer specifying the time, in
milliseconds, that the system should allow for each
chunk to be sent. If a time-out expires, the send
operation and all outstanding requests are canceled.
This slot defaults to kNoTimeout and is evaluated only
at the time the method is called. If you use this slot,
specify an integer greater than 30.

sendFlags Optional. This slot can contain protocol flags provided
for certain communication tools. For more details, see
the section “Sending Data” beginning on page 23-11 in
Newton Programmer�s Guide.

The ProgressScript method, described next, can also be defined in the
streamSpec frame.

Note

The StreamOut method sends data using version 2
(or later) of the flattened frame format. ◆

C H A P T E R 2 0

Endpoint Interface Reference

20-32 Functions and Methods

ProgressScript 20

streamSpec:ProgressScript(bytes, totalBytes)

Informs your application of StreamOut or StreamIn progress.

The system sends this message periodically to your streamSpec frame during
the sending (StreamOut) or receiving (StreamIn) process to inform your
application of progress.

bytes The number of bytes that have been sent (or received) so
far.

totalBytes The total number of bytes that are to be sent (or
received).

A value of nil in either of these parameters signifies that the number is
unknown.

This method must return a Boolean value. A return value of non-nil tells
the system to continue sending (or receiving), and nil tells it to cancel the
send (or receive) operation. Stopping the operation in this way is a “clean”
cancel; that is, no errors are returned and no exceptions occur.

Depending on the size of the data being sent or received, and the amount of
time used to perform the operation, the ProgressScript message may
never be sent if the operation completes before it can be triggered.

Functions and Methods 20

Utility Functions 20
This section includes a description of some global functions applicable to
endpoint communications.

C H A P T E R 2 0

Endpoint Interface Reference

Functions and Methods 20-33

MakeAppleTalkOption 20

MakeAppleTalkOption(NBPaddressString)

Places the specified NBP (Name Binding Protocol) address string in an
option frame that is usable by the Connect method. The option frame is
returned.

NBPaddressString A string containing an AppleTalk NBP address of the
form "name:type@zone".

MakeModemOption 20

MakeModemOption()

Returns an option frame of the 'template form. This frame contains the
modem kCMOModemDialing option, and the values are extracted from the
user preferences stored in the system soup. The option frame is usable by the
endpoint Option method or as an argument to any other endpoint method
that takes an option frame as an argument.

MakePhoneOption 20

MakePhoneOption(phoneString)

Places the specified phone number string in an option frame of the
'address type that is usable by the Connect method. The option frame is
returned.

phoneString A string containing a phone number.

Translate 20

Translate(data, translator, store, progressScript)

Translates data using the specified translation engine. This function returns
the translated data.

data The data to be translated. The type of this object
depends on the translator used.

translator A symbol indicating the type of translator to use.
Table 20-8 lists the translators available, and the

C H A P T E R 2 0

Endpoint Interface Reference

20-34 Functions and Methods

corresponding type of the data object to be used with
each.

store Specifies the store on which you want the translated
object to be created. If you specify a valid store, the
translated object is created as a virtual binary object on
that store. This is recommended for large objects. If you
specify nil, a normal object is created on the
NewtonScript heap. Specify nil if this parameter does
not apply to a particular translation (for example
flattened frame to frame).

progressScript A function object that may be called periodically during
the translation process to inform your application of
progress. This function is passed two parameters: the
first is the number of bytes that have been translated
thus far, and the second is the total number of bytes that
are to be translated. If either of these parameters is nil,
that signifies that the number is unknown.

This callback function must return a Boolean value. A
return value of non-nil tells the system to continue
translation, and nil tells the system to cancel the
translation.

Note that this callback feature is not implemented by
either of the two existing translators, so this parameter
is currently ignored.

Table 20-8 Data translators

Translator Data type Description

'flattener Frame Translates a frame into a binary
object containing a flattened frame.

'unflattener Binary object Translates a binary object
containing a flattened frame into a
frame.

21-1

C H A P T E R 2 1

Built-in Communications
Tools Reference 21

This chapter provides reference information for the constants, options,
methods, and functions that you use with the Newton built-in
communications tools.

When you use a built-in communications tool, you need to include a service
option in your options array. The service option must specify the service
identifier for the tool that you are using. For example, to use the built-in
serial tool with MNP, you include an option like the following:

myOptions := [

{ label: kCMSMNPID,

 type: 'service,

 opCode: opSetRequired }];

Figure 21-0
Table 21-0

C H A P T E R 2 1

Built-in Communications Tools Reference

21-2 Options for the Standard Asynchronous Serial Tool

Table 21-1 shows the service option label for each built-in communications
tool.

Use of the built-in communications tools is described in “Built-in
Communications Tools” (page 24-1) in Newton Programmer�s Guide.

Options for the Standard Asynchronous Serial Tool 21

This section describes the options you can use to configure the serial
communication tool. Table 21-2 summarizes the standard serial options.

Table 21-1 Built-in communications tool service option labels

Service option label Value Built-in communication tool

kCMSAsyncSerial "aser" asynchronous serial

kCMSMNPID "mnps" serial with MNP

kCMSModemID "mods" modem

kCMSSlowIR "slir" infrared

kCMSFramedAsyncSerial "fser" framed, asynchronous, serial

kCMSAppleTalkID "atlk" AppleTalk

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-3

Table 21-2 Summary of serial options

Label Value Use When Description

kCMOSerialHWChipLoc "schp" Before or
at binding

Sets which serial
hardware to use.

kCMOSerialChipSpec "sers" Before or
at binding

Sets which serial
hardware to use and
returns information
about the serial
hardware.

kCMOSerialCircuitControl "sctl" After
connecting

Controls usage of the
serial interface lines.

kCMOSerialBuffers "sbuf" Before or
at binding

Sets the size of the input
and output buffers.

kCMOSerialIOParms "siop" Any time Sets the bps rate, stop
bits, data bits, and parity
options.

kCMOSerialBitRate "sbps " Any time Changes the bps rate.

kCMOOutputFlowControlParms "oflc" Any time Sets output flow control
parameters.

kCMOInputFlowControlParms "iflc" Any time Sets input flow control
parameters.

kCMOSerialBreak "sbrk" After
connecting

Sends a break.

kCMOSerialDiscard "sdsc" After
connecting

Discards data in input
and/or output buffer.

kCMOSerialEventEnables "sevt" Any time Configures the serial tool
to complete an endpoint
event on particular state
changes.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-4 Options for the Standard Asynchronous Serial Tool

Serial Chip Location Option 21
The serial chip location option, with label kCMOSerialHWChipLoc,
specifies which serial hardware in the system to use for the endpoint. This
option must be set during or after binding of the endpoint; however, you can
use this option at any time to retrieve the serial chip location information.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialHWChipLoc,

opCode: opSetRequired,

form: 'template,

result: nil, // not needed; returned

data : {

arglist: [

kHWLocExternalSerial,

0

],

typelist: [

'struct,

kCMOSerialBytesAvailable "sbav" After
connecting

Read-only option returns
the number of bytes
available in the input
buffer.

kCMOSerialIOStats "sios" After
connecting

Read-only option reports
statistics from the
current serial connection.

kHMOSerExtClockDivide "cdiv" After
binding

Used only with an
external clock to set the
clock divide factor.

Table 21-2 Summary of serial options (continued)

Label Value Use When Description

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-5

['array, 'char, 4], // location label

'ulong // service ID

]

}

};

The possible values for the location label field within the data slot are listed
in Table 21-3. Note that these locations are hardware platform dependent.

The external serial port is typically the default setting; however, this can vary
since the default is established by the communications tool.

The service ID field within the data slot specifies a four-character string
identifying a communications tool. If the location label slot is nil, the
default serial chip location for the specified communications tool is used,
regardless of whether or not this is the current tool.

The service ID field and the location label field are mutually exclusive. You
should specify an identifier in only one of these fields. If you specify both
fields, the location label field takes precedence.

Table 21-3 Serial chip location labels

Constant Value Description

kHWLocExternalSerial "extr" Use the external serial port
(typical default).

kHWLocBuiltInIR "infr" Use the built-in infrared port.

kHWLocBuiltInModem "mdem" Use the built-in modem.

kHWLocPCMCIASlot1 "slt1" Use the application card in
slot 1.

kHWLocPCMCIASlot2 "slt2" Use the application card in
slot 2.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-6 Options for the Standard Asynchronous Serial Tool

Serial Chip Specification Option 21
The serial chip specification option, with label kCMOSerialChipSpec, is
used to specify or return information about the current serial chip. It can be
used to select the serial hardware with which to bind and is especially useful
for selecting serial hardware on an application card device. This option is a
superset of the serial chip location option.

If you use this option to select the serial hardware with which to bind, you
must use it before or in your call to the endpoint Bind method. You can,
however, use this option at any time to retrieve serial chip information.

Note

The serial chip specification option is considered an “expert”
option. It is only useful in special circumstances. ◆

The serial chip specification option also returns information about the serial
hardware. You can use this option to retrieve information at any time.

The following example shows the use of this option to return serial hardware
information:

local option := {

type: 'option,

label: kCMOSerialChipSpec,

opCode: opSetRequired,

form: 'template,

result: nil, // not needed; returned

data : {

arglist: [

0, // chip location

0, // features supported by this chip

0, // output signals supported by chip

0, // input signals supported by chip

0, // parity supported

0, // data and stop bits supported

0, // serial chip type

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-7

nil, // chip in use

0, // reserved

0, // reserved

0, // application card CIS manufacturer ID

0 // card CIS manufacturer ID info

],

typelist: [

'struct,

'ulong, // fHWLoc

'ulong, // fSerFeatures

'byte, // fSerOutSupported

'byte, // fSerInSupported

'byte, // fParitySupport

'byte, // fDataStopBitSupport

'byte, // fUARTType

'boolean,// fChipNotInUse

'byte, // reserved

'byte, // reserved

'short, // fCIS_ManFID

'short // fCIS_ManFIDInfo

]

}

};

C H A P T E R 2 1

Built-in Communications Tools Reference

21-8 Options for the Standard Asynchronous Serial Tool

Table 21-4 shows the fields in the serial chip specification option.

Table 21-4 Serial chip specification option fields

Option Field Description

fHWLoc Specifies the serial chip location. The default
value is 0.

fSerFeatures Features supported by this chip. The default
value is 0.

fSerOutSupported Output signals supported by this chip. The
default value is 0.

fSerInSupported Input signals supported by this chip. The
default value is 0.

fParitySupport Parity supported by this chip. See Table 21-5
for the constants you can specify. The default
value is 0.

fDataStopBitSupport Number of data and stop bits supported by
this chip. See Table 21-5 for the constants you
can specify. The default value is 0.

fUARTType Type of serial chip. See Table 21-5 for the
constants you can specify. The default value
is 0.

fChipNotInUse A Boolean specifying whether or not the chip
is in use (The default value is true, which
means the chip is not in use).

fCIS_ManFID Application card Card Information Structure
(CIS) manufacturer ID. The default value is 0.

fCIS_ManFIDInfo Application card CIS manufacturer ID
information. The default value is 0.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-9

The constants you can use to specify various field values in the serial chip
specifications option are listed in Table 21-5.

Table 21-5 Serial chip specification option constants

Constant Value Description

Parity Support Constants

kSerCap_Parity_Space 0x00000001 No parity

kSerCap_Parity_Mark 0x00000002 Mark parity

kSerCap_Parity_Odd 0x00000004 Odd parity

kSerCap_Parity_Even 0x00000008 Even parity

Data and Stop Bits Support Constants

kSerCap_DataBits_5 0x00000001 5 data bits

kSerCap_DataBits_6 0x00000002 6 data bits

kSerCap_DataBits_7 0x00000004 7 data bits

kSerCap_DataBits_8 0x00000008 8 data bits

kSerCap_StopBits_1 0x00000010 1 stop bit

kSerCap_StopBits_1_5 0x00000020 1.5 stop bits

kSerCap_StopBits_2 0x00000040 2 stop bits

kSerCap_StopBits_All 0x00000070 Supports all stop bit
choices

kSerCap_DataBits_All 0x0000000F Supports all data bit
choices

Serial chip types

kSerialChip8250 0x00 8250 Universal
Asynchronous Receiver/
Transmitter (UART)

kSerialChip16450 0x01 16450 UART

C H A P T E R 2 1

Built-in Communications Tools Reference

21-10 Options for the Standard Asynchronous Serial Tool

Serial Circuit Control Option 21
The serial circuit control option, with label kCMOSerialCircuitControl,
controls usage of the serial control lines. You can only use this option after
the endpoint is connected. When you do set it, this option returns the current
state.

Note

The serial circuit control option is considered an “expert”
option. It is only useful in special circumstances. ◆

Note that in the external serial port, DTR and RTS signals are combined on
the HSKo line, and the RTS line is used for hardware input flow control.

IMPORTANT

The RTS line should not be set or cleared if hardware input
flow control is enabled. ▲

The following example shows the use of the serial circuit control option:

local option := {

type: 'option,

label: kCMOSerialCircuitControl,

opCode: opSetRequired,

form: 'template, // not needed

kSerialChip16550 0x02 16550 UART

kSerialChip8530 0x20 8530 UART (SCC chip)

0x21 Reserved for future use

0x22 Reserved for future use

0x23 Reserved for future use

kSerialChipUnknown 0x00 Unknown type of UART

Table 21-5 Serial chip specification option constants (continued)

Constant Value Description

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-11

result: nil, // not needed; returned

data : {

arglist: [

kSerOutDTR, // set DTR

0, // use 1K byte receive buffer

0, // will be set on return

0 // will be set on return

],

typelist: [

'struct,

'byte, // fSerOutToSet

'byte, // fSerOutToClear

'byte, // fSerOutState

'byte // fSerInState

]

}

};

The fields in the serial circuit control option frame are described in Table 21-6.

Table 21-6 Serial circuit control option fields

Option field Description

fSerOutToSet Output lines to assert. Combine the values from
Table 21-7 for each output line you want to assert.
The default value is 0.

fSerOutToClear Output lines to negate. Combine the values from
Table 21-7 for each output line you want to negate.
The default value is 0.

fSerOutState Current output line state. This field is returned after
any lines you specify are set or cleared.

fSerInState Current input line state. This field is returned.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-12 Options for the Standard Asynchronous Serial Tool

The constants you can use to specify the various serial control lines are listed
in Table 21-7.

When the kSerInBreak bit is on, the serial chip has detected a "break"
condition on the receive data line. Normally the line is logically high when
characters are not being sent and in between characters ("marking", binary 1,
less than –3 volts). It drops low ("spacing", binary 0, greater than +3 volts) at
the start of a character (start bit), and is high for a bit time at the end of a
character (stop bit). If the line is held low for more than a byte time, the serial
chip reports a "break" condition, and a consequent interrupt on it.

You can ask for an "event" with the serial event configuration option, which
is described in “Serial Event Configuration Option” (page 21-21). You can
use this in terminal programs as a kind of user-initiated interrupt.

Table 21-7 Serial circuit control option constants

Constant Value Description

Serial Output Lines

kSerOutDTR 0x01 DTR line.

kSerOutRTS 0x02 RTS line (also known as HSKo on the
external serial port).

Serial Input Lines

kSerInDSR 0x02 DSR line.

kSerInDCD 0x08 DCD line (also known as GPi on the
external serial port).

kSerInRI 0x10 RI line (also known as GPi on the external
serial port).

kSerInCTS 0x20 CTS line (also known as HSKi on the
external serial port).

kSerInBreak 0x80 A "break" condition

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-13

You can also send a break for a specified amount of time by using the serial
send break option, which is described in “Serial Send Break Option”
(page 21-20).

Serial Buffer Size Option 21
Th serial buffer size option, with label kCMOSerialBuffers, lets you
increase the size of the buffers used by the serial tool. Buffers larger than 4KB
are not supported; an error results if you specify too large a buffer. Also note
you can get an out-of-memory error at connect time if the serial tool cannot
allocate the buffers.

This option is often useful because appropriate buffer size can increase
performance and decrease overrun errors. For communications that use
packet-oriented protocols, a good buffer size is one that is a few bytes larger
than the typical packet size.

For streamed communications, output buffer size is not as important as
input buffer size and can be left at the typical output size. The input buffer
can be increased, especially for data rates above 9600 bps. If no flow control
is operating, input buffer size may be the only way to control overruns.

In addition to setting the size of the input and output buffers, this option sets
the number of received error characters to remember. The specification of
receive markers can be left at a small number like 8, since multiple errors
typically mean something is wrong with the link, and buffering more than 8
error characters won’t provide much more interesting information (data is
often flushed after errors anyway). The total size of the input buffer is
limited to 4 KB, which includes about 8 bytes per marker. Typical input
buffer size is 256 to 1024 bytes.

Note that the usable size of a buffer is usually between one and four bytes
less than the buffer size, because of DMA boundary constraints and other
considerations.

You can only set the serial buffer size option before or at connect time. You
can, however, use this option at any time to retrieve the current buffer
settings.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-14 Options for the Standard Asynchronous Serial Tool

The following example shows the use of the serial buffer size option:

local option := {

type: 'option,

label: kCMOSerialBuffers,

opCode: opSetRequired,

form: 'template,// not needed

result: nil, // not needed; returned

data : {

arglist: [

256, // use 256 byte transmit buffer

1024, // use 1K byte receive buffer

8, // remember up to 8 error characters

],

typelist: [

'struct,

'ulong, // output buffer size in bytes

'ulong, // input buffer size in bytes

'ulong, // error characters to remember

]

}

};

The default output buffer size is 512 bytes and the default input buffer size is
512 bytes.

Serial Configuration Option 21
The serial configuration option, with label kCMOSerialIOParms, specifies
the bps rate, stop bits, data bits, and parity options for the serial tool. You
typically set this option at endpoint open or connect time. You can also use
this option to change the data format after a connection has been established;
however, this might require resetting some serial chips, which can cause
problems with serial inputs.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-15

This option returns the actual values that were set. You can compare those
values with what you requested to see if you actually got the connection
configuration that you requested.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialIOParms,

opCode: opSetRequired,

form: 'template, // not needed

result: nil, // not needed; returned

data : {

arglist: [

k1StopBits, // 1 stop bit

kNoParity, // no parity bit

k8DataBits, // 8 data bits

k57600bps, // date rate 57600 bps

],

typelist: [

'struct,

'long, // stop bits

'long, // parity

'long, // data bits

'long, // bps

]

}

};

C H A P T E R 2 1

Built-in Communications Tools Reference

21-16 Options for the Standard Asynchronous Serial Tool

In the stop bits field, you can use the following constants:

In the parity field, you can use the following constants:

In the data bits field, you can use the following constants:

In the bps field, you can use the following constants to specify the interface
speed:

Constant Value Description
k1StopBits 0 1 stop bit (default)

k1pt5StopBits 1 1.5 stop bits

k2StopBits 2 2 stop bits

Constant Value Description
kNoParity 0 no parity (default)

kOddParity 1 odd parity

kEvenParity 2 even parity

Constant Value (number of data bits)
k5DataBits 5

k6DataBits 6

k7DataBits 7

k8DataBits 8 (default)

Constant Value
kExternalClock 1
k300bps 300
k600bps 600
k1200bps 1200
k2400bps 2400
k4800bps 4800
k7200bps 7200

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-17

Serial Data Rate Option 21
The serial data rate option, with label kCMOSerialBitRate, is used for
changing the bps rate after a connection has already been made. If the data
bit, stop bit, and parity values don’t have to be changed, the serial date rate
option is a reliable way of changing the data rate.

You can use this option at any time. It returns the actual bit rate that was set.
You can compare this value with what you requested to see if you actually
got the speed that you requested.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialBitRate,

opCode: opSetRequired,

form: 'number,

result: nil, // not needed; returned

data: k19200bps, // change to 19200

};

k9600bps 9600 (default)
k12000bps 12000
k14400bps 14400
k19200bps 19200
k38400bps 38400
k57600bps 57600
k115200bps 115200
k230400bps 230400

Constant Value

C H A P T E R 2 1

Built-in Communications Tools Reference

21-18 Options for the Standard Asynchronous Serial Tool

You can specify the same values in the data slot as for the bps field in the
serial configuration option, given on (page 21-16). The default value is 9600
bps.

Serial Flow Control Options 21
The two serial flow control options configure software and hardware flow for
input and output. Software flow control uses XON and XOFF characters to
control data flow. Hardware flow control uses the RTS line for input flow
control and the CTS line for output flow control.

The input serial flow control option has the label
kCMOInputFlowControlParms. The output serial flow control option has
the label kCMOOutputFlowControlParms. Both of these options can be
used at any time.

The following example shows the use of the
kCMOOutputFlowControlParms option. The
kCMOInputFlowControlParms option is set in an identical way.

local option := {

type: 'option,

label: kCMOOutputFlowControlParms,

opCode: opSetRequired,

form: 'template,// not needed

result: nil, // not needed; returned

data : {

arglist: [

unicodeDC1, // xonChar

unicodeDC3, // xoffChar

true, // useSoftFlowControl

nil, // useHardFlowControl

0, // returned

0, // returned

],

typelist: [

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-19

'struct,

'char, // XON character

'char, // XOFF character

'boolean, // software flow control

'boolean, // hardware flow control

'boolean, // hardware flow blocked

'boolean, // software flow blocked

]

}

};

The fields in the serial flow control option frame are described in Table 21-8.

Table 21-8 Serial flow control option fields

Option field Description

XON character Specifies the XON character to use for software
flow control (the default value is DC1, 0x11).

XOFF character Specifies the XOFF character to use for software
flow control (the default value is DC3, 0x13).

software flow control To enable software flow control, specify true. To
disable it, specify nil (default).

hardware flow control To enable hardware flow control, specify true.
To disable it, specify nil (default).

hardware flow blocked Read-only. Returns true if hardware flow
control is blocked.

software flow blocked Read-only. Returns true if software flow control
is blocked.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-20 Options for the Standard Asynchronous Serial Tool

Serial Send Break Option 21
You use the serial send break option, with label kCMOSerialBreak, to send
a break (string of start bits) for the amount of time specified. No
synchronization is done with output.

Use this option after the endpoint is connected. Note that you can only set
this option; you cannot read the current setting, since the option performs an
action rather than setting some kind of parameter.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialBreak,

opCode: opSetRequired,

form: 'number,

result: nil, // not needed; returned

data: 100*kMilliseconds, // send 100 ms break

};

Specify the length of time for the break (in the data slot) in milliseconds by
specifying an integer multiplied by the constant kMilliseconds. The
default value is 75 milliseconds.

Serial Discard Data Option 21
You use the serial discard data option, with label kCMOSerialDiscard, to
discard data in the input or output buffers. Discarding is useful after error
conditions, or before synchronization is achieved in serial communications.

Use this option after the endpoint is connected. Note that you can only set
this option; you cannot read the current setting, since the option performs an
action rather than setting some kind of parameter.

With modem endpoints, this option works only when Microcom Networking
Protocol (MNP) is not being used.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-21

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialDiscard,

opCode: opSetRequired,

form: 'template, // not needed

result: nil, // not needed; returned

data : {

arglist: [

true, // discard input chars

nil, // but not output

],

typelist: [

'struct,

'boolean, // clear input buffer

'boolean, // clear output buffer

]

}

};

The first data field controls the input buffer and the second data field
controls the output buffer. Specify true to discard data in a buffer, or nil to
leave it untouched.

The default for the input buffer is true, meaning discard characters. The
default for the output buffer is nil, meaning leave it untouched.

Serial Event Configuration Option 21
You use the serial event configuration option, with label
kCMOSerialEventEnables, to configure the serial tool to send an
EventHandler message to your endpoint when particular state changes
occur. You can use this option at any time.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-22 Options for the Standard Asynchronous Serial Tool

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialEventEnables,

opCode: opSetRequired,

form: 'template,// not needed

result: nil, // not needed; returned

data : {

arglist: [

kSerialEventHSKiNegatedMask +

kSerialEventHSKiAssertedMask,

// send event on CTS/HSKi changes

0, // no DCD event specified

],

typelist: [

'struct,

'ulong, // event masks

'ulong, // DCD down time, in microseconds

]

}

};

The first data field specifies one or more event mask constants for state
changes that you want to trigger an event. Combine the constants, which are
shown in Table 21-9, to specify more than one event. The default value is
zero, for no events.

For the kSerialEventDCDNegatedMask event, you need to specify in the
second data field the amount of time, in microseconds, that DCD must be
negated before this event is reported. It’s common for the carrier to drop for
short periods of time during a connection, and this is a way to mask drops
that are not significant. The default value is zero.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-23

The serial tool passes two parameters when it sends an EventHandler
message to your endpoint. The first is the integer value 1. The second
parameter is an integer value that indicates which event occurred, using the
same mask bits as shown in Table 21-9. Some higher-order bits may be set as
well, so don’t count on them being zero.

You must provide an EventHandler method in your endpoint to receive
the message from the serial tool. See “EventHandler” (page 20-28) for more
information about this method.

Table 21-9 Serial event constants

Constant Value Description

kSerialEventBreakStartedMask 0x00000001 A serial line break
condition is detected.

kSerialEventBreakEndedMask 0x00000002 A serial line break
condition ends.

kSerialEventDCDNegatedMask 0x00000004 The DCD line is
negated (DCD is also
known as GPi in the
external serial port).

kSerialEventDCDAssertedMask 0x00000008 The DCD line is
asserted.

kSerialEventHSKiNegatedMask 0x00000010 The CTS line is
negated (CTS is also
known as HSKi in the
external serial port).

kSerialEventHSKiAssertedMask 0x00000020 The CTS line is
asserted.

kSerialEventExtClkDetectEnableMask 0x00000040 The serial tool detects
more than 100
transitions per second
on the CTS line, and
thus assumes this line
is a clock input.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-24 Options for the Standard Asynchronous Serial Tool

Serial Bytes Available Option 21
The serial bytes available option, with label kCMOSerialBytesAvailable,
is a read-only option that returns the number of bytes waiting to be read
from the receive buffer.

You can only use this option after the endpoint is connected.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialBytesAvailable,

opCode: opGetCurrent,

form: 'number,

result: nil, // not needed; returned

data: 0, // returned

};

Serial Statistics Option 21
The serial statistics option, with label kCMOSerialIOStats, is a read-only
option that returns various software and hardware statistics related to the
serial tool.

You can only use this option after the endpoint is connected.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialIOStats,

opCode: opGetCurrent,

form: 'template,// not needed

result: nil, // not needed; returned

data : {

arglist: [

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Standard Asynchronous Serial Tool 21-25

0, // returned

0, // returned

0, // returned

0, // returned

0, // returned

0, // returned

nil, // returned

],

typelist: [

'struct,

'ulong, // parity error count

'ulong, // framing error count

'ulong, // soft overrun count

'ulong, // hard overrun count

'byte, // GPi state

'byte, // HSKi state

'boolean // external clock detect

]

}

};

The fields in the serial statistics option frame are described in Table 21-10..

Table 21-10 Serial statistics option fields

Option field Description

parity error count Number of parity errors encountered. Reading
this value resets it to zero.1

framing error count Number of framing errors encountered. Reading
this value resets it to zero.1

soft overrun count Number of soft overrun errors encountered.
Reading this value resets it to zero.1

C H A P T E R 2 1

Built-in Communications Tools Reference

21-26 Options for the Standard Asynchronous Serial Tool

Parity, framing, and overrun errors can all occur when receiving data. Hard
overruns occur when the serial driver doesn’t unload the data from the
hardware before it is overwritten by subsequent data. Soft overruns occur
when the endpoint doesn’t consume data fast enough and the serial tool
buffer fills up, resulting in discarded data.

Soft overruns can be avoided by using input flow control, by increasing the
serial tool’s receive buffer, and by handling the data from the serial tool in a
more efficient manner.

Serial External Clock Divide Option 21
The serial external clock divide option, with label
kHMOSerExtClockDivide, controls how the clock rate is divided when
using an external clock. This option is not supported by all serial chips.

You can use this option after binding your endpoint. Any changes that you
make with this option take effect at endpoint connect time. If you are already
connected and you set the clock rate with this option, you must follow the
setting of this option with the setting of the kCMOSerialIOParms
(page 21-14) and kCMOSerialBitRate (page 21-17) options.

1 The count is cumulative from the last time the statistics were read by this option
call, or from the time of the endpoint Open call if they haven’t been read yet.

hard overrun count Number of hard overrun errors encountered.
Reading this value resets it to zero.1

GPi state State of DCD (GPi) line. Zero = negated,
one = asserted.

HSKi state State of CTS (HSKi) line. Zero = negated,
one = asserted.

external clock detect True if an external clock is detected,
otherwise nil.

Table 21-10 Serial statistics option fields (continued)

Option field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Serial Tool with MNP Compression 21-27

Note

The serial external clock divide option is considered an
“expert” option. ◆

The following example shows the use of this option:

local option := {

type: 'option,

label: kHMOSerExtClockDivide,

opCode: opSetRequired,

form: 'byte,

result: nil, // not needed; returned

data: kSerClk_DivideBy_16,

};

You can use the following constants in the data slot:

Options for the Serial Tool with MNP Compression 21

This section describes the options you can use to configure the serial
communication tool with MNP compression (the MNP tool). The MNP tool
uses all of the standard serial tool options and two additional MNP options.
One of the MNP options, the data compression type option, is described in
“MNP Compression Option” (page 21-61). The other is described in this
section.

Constant Value Description
kSerClk_Default 0x00 Use the default

kSerClk_DivideBy_1 0x80 Divide by 1

kSerClk_DivideBy_16 0x81 Divide by 16

kSerClk_DivideBy_32 0x82 Divide by 32

kSerClk_DivideBy_64 0x83 Divide by 64

C H A P T E R 2 1

Built-in Communications Tools Reference

21-28 Options for the Serial Tool with MNP Compression

Table 21-11 summarizes the MNP serial options.

Serial MNP Data Rate Option 21
The serial MNP data rate option, with label kCMOMNPDataRate, is used by
the MNP tool to configure its internal timers. This option is required because
the serial port speed may be different than the end-to-end speed.

When using a serial MNP endpoint, you must set this option to the correct
value for MNP to function correctly. You must set this option at or before
calling your endpoint’s Connect method.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOMNPDataRate,

opCode: opSetRequired,

form: 'number,

data : 2400,

};

The data slot must be set to the rate, in bps, of the raw throughput of the
serial link used by MNP. The default value is 2400 bps.

Table 21-11 Summary of serial tool with MNP options

Label Value Use when Description

kCMOMNPCompression "mnpc" Before
connecting

Sets the data
compression type.

kCMOMNPDataRate "eter" Any time Configures internal
MNP timers.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Framed Asynchronous Serial Tool 21-29

Options for the Framed Asynchronous Serial Tool 21

The framed asynchronous serial tool is a superset of the standard
asynchronous serial tool that supports framed data. The framing is
controlled by the two additional options used by this tool.

Table 21-12 summarizes the additional framed asynchronous serial tool
options.

Serial Framing Configuration Option 21
The serial framing configuration option, with label kCMOFramingParms,
configures data framing parameters. This option applies only to the framed
asynchronous serial tool.

The following example shows the use of this option:

local option := {

label: kCMOFramingParms,

type: 'option,

opCode: opSetRequired,

data : {

arglist: [

unicodeDLE, // escape character

Table 21-12 Summary of framed serial options

Label Value Use when Description

kCMOFramingParms "fram" Any time Configures data framing
parameters.

kCMOFramedAsyncStats "frst" Any time Read-only option returns the
number of bytes discarded while
looking for a valid header.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-30 Options for the Framed Asynchronous Serial Tool

unicodeETX, // EOM character

true, // syn/dle/stx header

true, // send crc at end

true, // check crc on receive

],

typelist: [

'struct,

'char,

'char,

'boolean,

'boolean,

'boolean,

]

}

};

The fields in the serial framing configuration option frame are described in
Table 21-13.

Table 21-13 Serial framing configuration option fields

Option field Description

escape character Specifies the character to use for escape. The
default value is DLE (0x10).

EOM character Specifies the character to use for end of message.
The default value is ETX (0x03).

syn/dle/stx
header

To include the SYN/DLE/STX header, specify
true. To disable this feature, specify nil.

send crc at end To compute and send a 2-byte CRC at the end of a
frame, specify true. To disable this feature,
specify nil.

check crc on
receive

To compute and check the 2-byte CRC at the end
of each frame, specify true. To disable this
feature, specify nil.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-31

The example above of setting the serial framing configuration option shows
the default settings, which implement BSC framing. This kind of framing is
shown in Figure 24-1 (page 24-5) in Newton Programmer�s Guide.

Serial Framing Statistics Option 21
The serial framing statistics option, with label kCMOFramedAsyncStats, is
a read-only option that returns the number of bytes that have been discarded
from the receive buffer while looking for a valid frame header. This option
applies only to the framed asynchronous serial tool.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOFramedAsyncStats,

opCode: opGetCurrent,

form: 'number,

result: nil, // not needed; returned

data: 0, // not needed; returned (# of bytes)

};

Options for the Modem Tool 21

This section describes the options that you can use with the built-in modem
tool. Table 21-14 summarizes the modem tool options.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-32 Options for the Modem Tool

Table 21-14 Summary of modem options

Label Value Use When Description

kCMOModemPrefs "mpre" Any time Configures the modem
controller.

kCMOModemProfile "mpro" Any time Override modem setup
selected in preferences.
Use when instatiating.

kCMOModemECType "mecp" Any time Specifies the type of error
control protocol to be
used in the modem
connection.

kCMOModemDialing "mdo" Any time Controls the parameters
associated with dialing.

kCMOModemConnectType "mcto" Any time Configures the modem
endpoint for the type of
connection desired (voice,
fax, data, or cellular data).

kCMOModemConnectSpeed "mspd" After
connecting

Read-only option
indicating modem to
modem raw connection
speed.

kCMOModemFaxCapabilities "mfax" After bind,
before
connecting

Read-only option
indicating the fax service
class capabilities and
modem modulation
capabilities.

kCMOModemFaxEnabledCaps "mfec" Any time Determines or sets
currently enabled fax
service and modem
modulation capabilities.

kCMOModemVoiceSupport "mvso" After bind,
before
connecting

Read-only option
indicating if the modem
supports line current
sense (LCS).

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-33

Modem Address Option 21
You use the modem address option, with label kCMARouteLabel, to specify
the address to use during the connection phase. You can specify different
routing types in this option, one of which is kPhoneNumber. You use the
kPhoneNumber constant with the modem tool to specify that you are
providing a phone number.

The following example shows the use of this option:

local option := {

label: kCMARouteLabel,

type: 'address,

opCode: opSetRequired,

data: {

arglist: [

kPhoneNumber, // type

size, // phone string length

phoneStr, // the phone number

],

typelist: [

'struct,

'long,

'uLong,

kCMOMNPSpeedNegotiation "mnpn" Any time Sets MNP data rate speed.

kCMOMNPCompression "mnpc" Before
connecting

Sets the data compression
type.

kCMOMNPStatistics "mnps" After
connecting

Read-only option
reporting performance
statistics from the current
MNP connection.

Table 21-14 Summary of modem options (continued)

Label Value Use When Description

C H A P T E R 2 1

Built-in Communications Tools Reference

21-34 Options for the Modem Tool

['array, 'char, 0],

]

}

};

Alternatively, you can call the global function MakeModemOption to
construct an address option. This function is described in
“MakeModemOption” (page 20-33).

Modem Preferences Option 21
You use the modem preferences option, with label kCMOModemPrefs, to
configure the modem controller. You can enable or disable certain features of
the controller with this option, which must be set before you call your
endpoint’s Bind method.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOModemPrefs,

opCode: opSetRequired,

form: 'template,// not needed

data : {

arglist: [

true, // connect in direct mode

true, // id modem

true, // require positive id

true, // use hardware cd

true, // use software cd

true, // use config string

true, // use dial options

true, // hang up at disconnect

true, // enable pass thru

true, // enable dial out stream

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-35

19200, // direct mode speed

3, // hwcd delay low speed

15, // hwcd delay high speed

],

typelist: [

'struct,

'boolean, // fConnectInDirectMode

'boolean, // fIdModem

'boolean, // fRequirePositiveId

'boolean, // fUseHardwareCD

'boolean, // fUseSoftwareCD

'boolean, // fUseConfigString

'boolean, // fUseDialOptions

'boolean, // fHangUpAtDisconnect

'boolean, // fEnablePassThru

'boolean, // fEnableDialOutStream

'ulong, // fDirectModeSpeed

'ulong, // fHWCDDelayLowSpeed

'ulong, // fHWCDDelayHighSpeed

]

}

};

The fields in the modem preferences option frame are described in
Table 21-15.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-36 Options for the Modem Tool

Table 21-15 Modem preferences option fields

Option Field Description

fConnectInDirectMode If true, forces the modem to connect in direct mode (no
speed buffering; DTE-DCE speed is set to match
DCE-DCE speed). If nil, speed buffering is used if the
modem profile indicates the modem can support speed
buffering. The default value is nil.

fIdModem If true, the modem tool executes the ID sequence in an
attempt to identify which modem is connected. If the
modem is identified, the modem tool configures the
active modem profile accordingly. The ID sequence is run
when the Bind call is made to the modem tool. Note that
the modem is reset during the ID sequence using the
AT&F command.

If nil, the modem tool skips the ID sequence and
configures the active profile to the default. In this case,
the modem is not reset. The default value is true.

fRequirePositiveId If true, the modem tool Bind will fail if the modem is
not identified successfully. If nil, and the modem tool
can not identify the modem, the default profile is used,
and the Bind succeeds. The default value is nil.

fUseHardwareCD If true, the modem tool will sense the CD line for
determining loss of carrier. External modems must use a
cable that connects the CD RS-232 signal to the Newton
GPi serial pin (pin 7 on MessagePads). If nil, CD is
ignored. The default value is true.

fUseSoftwareCD Ignored.

fUseConfigString If true, before initiating a connection, the modem tool
sends the current configuration string to the modem (as
determined by active modem profile and the connection
type). If nil, no configuration string is sent. The default
value is true.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-37

fUseDialOptions If true, the modem tool sets the modem dialing
configuration according to current option settings. This is
done before initiating a connection and after the
configuration string is sent to modem. If nil, the dial
configuration string is not sent to modem. The default
dial configuration string is
ATM1L2X4S7=060S8=001S6=003\n. The default value
is true.

fHangUpAtDisconnect If true, the modem tool hangs up the modem using the
hang-up sequence when the modem disconnects. If nil,
when the modem disconnects, the modem tool does not
send any commands to the modem. The default value is
true.

fEnablePassThru If true, the modem tool connects/disconnects in
pass-through mode. In pass-through mode, all modem
controller functionality is disabled, and the modem tool
behaves the same as a serial endpoint. If nil, the modem
tool controller is enabled for normal modem tool
operation. The default value is nil.

fEnableDialOutStream If true, enables dialing of the output stream. After
connecting, all data output by modem tool client
endpoint is sent to the modem as dial commands. This
feature can be used for interactive dialing. If nil, the
modem handles client endpoint output as normal data.
The default value is nil.

Table 21-15 Modem preferences option fields (continued)

Option Field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

21-38 Options for the Modem Tool

Modem Profile Option 21
You use the modem profile option, with label kCMOModemProfile, to
define the characteristics of a modem. The profile is used by the modem
controller to configure and connect the modem.

The modem profile option specifies a number of modem characteristics,
including the following:

■ whether the modem supports asynchronous speed buffering, in which
case CTS flow control must be supported

■ whether the modem supports special cellular configuration (e.g., signal
attenuation)

■ error control types supported

■ possible connection speeds

■ the highest speed supported for the DTE-DCE interface

■ the maximum command processing time

■ the configuration strings used for various types of connections

Applications do not usually need to set this option. The modem profile is
usually established by the modem setup, which enables a particular modem

fDirectModeSpeed The speed in bits per second (bps) at which modem tool
begins direct mode connection. The default value is
19200 bps.

fHWCDDelayLowSpeed The amount of time, in seconds, that the CD line must be
deasserted before considering the line disconnected. This
value is used for connection speeds less than 2400 bps.
The default value is 3 seconds.

fHWCDDelayHighSpeed The amount of time, in seconds, that the CD line must be
deasserted before considering the line disconnected. This
value is used for connection speeds greater than 2400
bps. The default value is 15 seconds.

Table 21-15 Modem preferences option fields (continued)

Option Field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-39

to work with all applications that use a modem endpoint. Users can choose
the appropriate modem setup in the modem preferences. See Chapter 25,
“Modem Setup Service,” for a description of how to write a modem setup
package.

If your application needs to customize the active modem profile, you can set
this option in the configuration options for your endpoint. You should
disable the modem ID feature in your modem preferences option by setting
the fIdModem slot in that option to nil.

The following example shows the use of this option:

local Stuffer := func(src, dst)

begin

local count := StrLen(src);

local index := Length(dst);

SetLength(dst, index + count + 1);

for i:=0 to count-1 do

dst[index + i] := Ord(src[i]);

dst[index + count] := 0;

count + 1;

end;

local data := [];

local size :=

// modem id string

call Stuffer with ("pagemodem", data) +

// config string no EC

call Stuffer with ("ATE0&C1S12=12S11=60S23=5\n", data) +

// config string EC only

call Stuffer with ("AT\n", data) +

// config string EC and fallback

call Stuffer with ("AT\n", data) +

// config string EC cellular

call Stuffer with ("AT\n", data) +

// config string direct connect

call Stuffer with ("ATE0&C1S12=12S11=60S23=5\n", data);

C H A P T E R 2 1

Built-in Communications Tools Reference

21-40 Options for the Modem Tool

local option := {

type: 'option,

label:kCMOModemProfile,

opCode:opSetRequired,

form: 'template,// not needed

data : {

arglist: [

nil, // supports Cellular

nil, // supports EC

nil, // supports LCS

true, // direct connect only

255, // connect speeds

1200, // config speed

2000, // command response timeout

40, // max characters per command line

25, // inter-command delay

size, // modem strings length

data, // the strings, packed&byte-aligned

],

typelist: [

'struct,

'boolean, // fSupportsCellular

'boolean, // fSupportsEC

'boolean, // fSupportsLCS

'boolean, // fDirectConnectOnly

'ulong, // fConnectSpeeds

'ulong, // fConfigSpeed

'ulong, // fCommandResponseTimeOut

'ulong, // fMaxCharsPerCmdLine

'ulong, // fInterCmdDelay

'ulong, // fModemStringsLen

['array, 'byte, size], // fModemStrings

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-41

]

}

};

The fields in the modem profile option frame are described in Table 21-16.

Table 21-16 Modem profile option fields

Option field Description

fSupportsCellular If true, indicates that the modem profile contains an
fConfigStrCellular. This string is used for
cellular type data connections (e.g., turn on MNP 10).
If nil, the modem profile does not contain an
fConfigStrCellular. In this case, the normal data
mode configuration string is used for cellular
connections. The default value is nil.

fSupportsEC If true, indicates that the modem supports built-in
error correction, and the profile contains
configuration strings for error correction. The default
value is nil.

fSupportsLCS If true, indicates that the modem supports line
current sense (LCS). LCS is used for determining
when a user has lifted the phone handset off hook.
Applications take advantage of this feature by
allowing the modem to determine when it should
release the line for a voice call. If nil, the modem
does not support LCS. In this case, an application can
use a dialog box and user interaction to determine
when to tell the modem to release the line (command
ATH). The default value is nil.

fDirectConnectOnly If true, indicates that the modem only supports
direct connect mode and can’t support speed
buffering. In this case, the DTE speed must be
adjusted to the modem speed after the carrier is
established. If nil, indicates that the modem
supports speed buffering and the use of CTS flow
control. The default value is true.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-42 Options for the Modem Tool

fConnectSpeeds Indicates speeds (in bps) at which the modem can
connect. This value does not affect the modem
configuration. The intention is for the application to
read this value to determine the modem capabilities.
The default value is 255, which represents these
speeds: 300, 1200, 2400, 4800, 7200, 9600, 12000, and
14400. Here are the bit flags, which are combined to
yield the final value:

0x00000001 300 bps
0x00000002 1,200 bps
0x00000004 2,400 bps
0x00000008 4,800 bps
0x00000010 7,200 bps
0x00000020 9,600 bps
0x00000040 12,000 bps
0x00000080 14,400 bps
0x00000100 16,800 bps
0x00000200 19,200 bps
0x00000400 21,600 bps
0x00000800 24,000 bps
0x00001000 26,800 bps
0x00002000 29,000 bps
0x00004000 31,400 bps

fConfigSpeed Indicates the speed at which to configure the modem,
in bps. The default value is 19200.

fCommandResponseTimeOut Indicates how long (in milliseconds) the modem
command response state machine should wait for
modem response to a command before timing out.
The default value is 2000.

Table 21-16 Modem profile option fields (continued)

Option field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-43

Table 21-17 shows the modem configuration strings in the fModemStrings
field of the modem profile option.

fMaxCharsPerCmdLine Indicates the maximum number of characters per
command line, not counting the AT prefix and the
ending carriage return. The modem controller uses
this number to ensure the dial string does not exceed
the modem’s capability. If the number of characters in
the dial string exceeds this number, the dial string
will be split into multiple commands, with a
semicolon (;) appended to the intermediate dial string
commands. The default value is 40.

fInterCmdDelay Indicates the minimum amount of delay required
between modem commands, in milliseconds. This is
the time from last response received to next command
sent. The default value is 25.

fModemStringsLen Indicates the length of the modem strings in the
fModemStrings field (packed together byte-aligned
and null terminated). This value includes the
termination characters.

fModemStrings An array of bytes that contains the modem
configuration strings shown in Table 21-17. You can
create this array with the Stuffer function shown in
the example.

Table 21-17 Modem profile configuration strings

Configuration string Explanation

Modem id string Modem response to the ATI4 command. If the
modem responds with more than one result
string, you can specify only one string. The
default value is unknown.

Table 21-16 Modem profile option fields (continued)

Option field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

21-44 Options for the Modem Tool

Config string no EC Modem command string used to configure the
modem for a non-error-corrected connection.
Uses speed buffering. This string is used for
FAX connections. The default value is
"ATE0&C1S12=12W2&K3&Q6\n".

Config string EC only Modem command string used to configure the
modem for an error corrected connection. Uses
speed buffering. This string should be nil for
modems that do not support error correction.
The default value is nil.

Config string EC and
fallback

Modem command string used to negotiate for
error correction. If error-correction negotiation
fails, the modem falls back to a
non-error-corrected connection. Uses speed
buffering. This string should be nil for
modems that do not support error correction.
The default value is nil.

Config string EC
cellular

Modem command string used to configure the
modem to connect over a cellular connection.
This command should be used to turn on MNP
10 and power attenuation. Uses speed buffering.
This string should be nil for modems that do
not support error correction. The default value
is nil.

Config string direct
connect

Modem command string used to configure the
modem to connect in direct mode. Speed
buffering is disabled. After connecting in data
mode, the DTE speed is adjusted to match the
modem speed. The default value is
"ATE0&C1S12=12W2&K0&Q0\n"

Table 21-17 Modem profile configuration strings (continued)

Configuration string Explanation

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-45

Modem Error Control Type Option 21
The modem error control type option, with label kCMOModemECType,
specifies the type of error control protocol to use in the modem connection. If
you specify more than one type of error control protocol, the modem tool
uses precedence to determine which type of error control protocol to use for
the connection.

The following pseudo-code shows how the modem tool determines which
error control protocol to use when you specify more than one:

if (External EC is enabled) then

begin

if (No EC is enabled) then

use fConfigStrECAndFallback

else

use fConfigStrECOnly

end

else usefConfigStrNoEC;

// attempt MNP connection

if (MNP connection fails)

begin

if (No EC is enabled)

fallback to normal connection

else

disconnect

end

else

connected with MNP

C H A P T E R 2 1

Built-in Communications Tools Reference

21-46 Options for the Modem Tool

Note

Cellular connections take precedence over external error
control. In other words, if the connection type is cellular,
as specified by the modem dialing option,
fConfigStrCellular is used even if external error
control is enabled separately. The modem dialing option is
described in “Modem Dialing Option” (page 21-47). ◆

You must set the modem error control option at instantiation time. The
following example shows the use of this option:

local option := {

type: 'option,

label: kCMOModemECType,

opCode: opSetNegotiate,

form: 'number,

data : kModemECProtocolNone,

};

The possible values for the data slot are listed in Table 21-18. Note that these
values can be combined together to specify multiple error control types. The
default is kModemECProtocolMNP+kModemECProtocolNone.

Table 21-18 Modem error control type

Constant Value Description

kModemECProtocolNone 0x00000001 No error control.

kModemECProtocolMNP 0x00000002 Use internal MNP class 4.

kModemECProtocolExternal 0x00000008 Use external modem’s built-in
error control.

kModemECInternalOnly 0x00000010 Connect with internal error control
only; overrides other settings.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-47

What happens when a reliable connection cannot be established depends on
which error control types you specify. If you include
kModemECProtocolNone in your specification, then the modem tool “falls
back” to a connection with no error control. If you do not include
kModemECProtocolNone in your specification and a reliable connection
cannot be established, the connection fails.

If you specify kModemECInternalOnly, the Newton’s internal error control
is used. This setting takes precedence over the other error control types.

Modem setups have two configuration strings for error control: one with
fall-back to no error control, the other with error control only. If you have
kModemECProtocolMNP or kModemECProtocolExternal specified, then
which string is used depends on whether you have
kModemECProtocolNone specified: if you do, the fallback string is used; if
you don’t, the error-control-only string is used.

Modem Dialing Option 21
You use the modem dialing option, with label kCMOModemDialing, to
control the parameters associated with dialing. You must set this option in
your call to the endpoint Connect method or after the endpoint is connected.

Rather than setting the modem dialing option manually, you should use the
global function MakeModemOption, which is described in
“MakeModemOption” (page 20-33). This method reads the user preferences
and builds the modem dialing option frame for you.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOModemDialing,

opCode: opSetRequired,

form: 'template,// not needed

data : {

arglist: [

true, // speaker on

C H A P T E R 2 1

Built-in Communications Tools Reference

21-48 Options for the Modem Tool

true, // detect dial tone

true, // detect busy

true, // dtmf tone dialing

nil, // manual dial

2, // speaker volume

2, // wait for carrier in seconds

2, // wait for blind dial in seconds

2, // comma delay in seconds

2, // ring to answer after in rings

10, // the country ID

nil, // use fConfigStrCellular

],

typelist: [

'struct,

'boolean, // fSpeakerOn

'boolean, // fDetectDialTone

'boolean, // fDetectBusy

'boolean, // fDTMFToneDialing

'boolean, // fManualDial

'char, // fSpeakerVolume

'byte, // fWaitForCarrier

'byte, // fWaitBeforeBlindDial

'byte, // fCommaDelay

'byte, // fRingToAnswerAfter

'ulong, // fCountryId

'boolean, // fCellularConnection

]

}

};

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-49

The fields in the modem dialing option frame are described in Table 21-19.

Table 21-19 Modem dialing option fields

Option Field Description

fSpeakerOn If true, the modem speaker is turned on during the
carrier establishment (ATM1). If nil, the speaker is off
(ATM0). The default value is true.

fDetectDialTone If true, the modem detects and requires a dial tone before
dialing (ATX4 or ATX2, depending on fDetectBusy). If
nil, dial tone is not detected or required. In this case, the
modem waits fWaitBeforeBlindDial seconds and
then dials (ATX3 or ATX1, depending on
fDetectDialTone). The default value is true.

fDetectBusy If true, the modem detects the busy signal and reports
this with the BUSY result (ATX4 or ATX3, depending on
the value of fDetectDialTone). If nil, the busy signal is
ignored and the BUSY result code is not used (ATX2 or
ATX1, depending on value of fDetectDialTone). The
default value is true.

fDTMFToneDialing If true, the modem uses DTMF dialing (ATDT…). If nil,
the modem uses pulse dialing (ATDP…). The default value
is true.

fManualDial If true, the modem goes off-hook to connect without
dialing a number (e.g., ATDT). If nil, a phone number is
required to originate a modem connection. The default
value is nil.

fSpeakerVolume Modem speaker level. This value is used in the ATLn
command. Use one of the following:

kSpeakerVolumeLow "1"
kSpeakerVolumeMedium "2"
kSpeakerVolumeHigh "3"

Note that these are one-character strings. The default value
is kSpeakerVolumeMedium.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-50 Options for the Modem Tool

▲ W A R N I N G

Some modem setups are written exclusively for cellular
modems, which means that you must only set the value of
fCellularConnection to true if you are also specifying
your own modem profile that includes an
fCellularConnection string. ▲

fWaitForCarrier The amount of time, in seconds, that the modem waits to
establish carrier before going off-hook. This value sets
modem register S7. The default value is 55.

fWaitBeforeBlindDial The amount of time, in seconds, that the modem waits
after going off-hook until dialing when dial tone is not
required (when fDetectDialTone is nil). This value
sets modem register S6. The default value is 3.

fCommaDelay The amount of time, in seconds, that the modem pauses in
dialing when a comma is encountered in the dial string.
This value sets modem register S8. The default value is 1.

fRingToAnswerAfter The number of rings after which to answer when waiting
for an incoming call. This value sets modem register S0.
The default value is 2.

fCountryId The current location of the user, derived from the Time
Zones setting. The following values are defined, based on
the country codes:

kUSACountryId 1
kCanadaCountryId 10
kJapanCountryId 81

The default value is kUSACountryId.

fCellularConnection Indicates that the fConfigStrCellular string from the
Modem Profile Option should be used.

Table 21-19 Modem dialing option fields (continued)

Option Field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-51

Modem Connection Type Option 21
You use the modem connection type option, with label
kCMOModemConnectType, to configure the modem endpoint for the type of
connection desired. The modem tool distinguishes among voice connections,
fax connections, data connections, and cellular data connections.

For voice connections, the modem tool acts as an auto-dialer. The modem is
taken off-hook, the number is dialed, and the modem returns to command
mode without attempting to establish the carrier.

For fax connections, the modem tool configures the modem in EIA/TIA 578
Service Class One mode; Class One commands are then used to send a fax.

For data connections, the modem tool configures and connects the modem
according to the modem tool’s current configuration (for example active
modem profile, modem preferences).

If more than one type of connection is enabled, the modem tool initiates the
connection type with the highest precedence. The connection precedence
order is voice (highest), fax, and data (lowest).

When listening for a connection, voice takes precedence. If both data and fax
are enabled, the type of connection is determined by the modem
handshaking.

You must set this option before or in the call to your endpoint’s Connect
method.

The following example shows the use of the modem connection type option:

local option := {

type: 'option,

label: kCMOModemConnectType,

opCode: opSetRequired,

form: 'template,// not needed

data : {

arglist: [

nil, // voice enabled

nil, // fax enabled

C H A P T E R 2 1

Built-in Communications Tools Reference

21-52 Options for the Modem Tool

true, // data enabled

nil, // reserved

nil, // immediate connection

],

typelist: [

'struct,

'boolean, // fVoiceEnable

'boolean, // fFaxEnable

'boolean, // fDataEnable

'boolean, // reserved

'boolean, // fImmediate

]

}

};

The fields in the modem connection type option frame are described in
Table 21-20.

Table 21-20 Modem connection type option fields

Option Field Description

fVoiceEnable If true, enables voice connection (auto-dial with
modem). The default value is nil.

fFaxEnable If true, enables fax connection. The default value
is nil.

fDataEnable If true, enables data connection. The default value
is true.

fImmediate If true, go off-hook immediately after configuring the
modem. The dialing step (or when listening, the waiting
for ring step) is skipped. The default value is nil.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-53

Modem Connection Speed Option 21
You use the modem connect speed option, with label
kCMOModemConnectSpeed, to retrieve the modem-to-modem raw
connection speed, in bps. This value is not a measure of throughput, which
can vary because of compression, but instead is a measure of the raw bit rate
of the modem-to-modem connection. This option is read only. The intended
use is for determining modem connection speed, while the modem is
connected. You can only use this option when the endpoint is in the
connected state.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOModemConnectSpeed,

opCode: opGetCurrent,

form: 'number,

data : 0,

};

Modem Fax Capabilities Option 21
You use the modem fax capabilities option, with label
kCMOModemFaxCapabilities, to determine the fax service class
capabilities and modem modulation capabilities. You can only use this
option after the endpoint Bind call. This is a read-only option that returns
the values for the modem.

The following example shows the use of the modem fax capabilities option:

local option := {

type: 'option,

label: kCMOModemFaxCapabilities,

opCode: opGetCurrent,

form: 'template,// not needed

C H A P T E R 2 1

Built-in Communications Tools Reference

21-54 Options for the Modem Tool

data : {

arglist: [

0,

0,

0, // returned

0, // returned

0, // returned

0, // returned

0, // returned

],

typelist: [

'struct,

'ulong, // fServiceId

'ulong, // fExtendedResult

'ulong, // fServiceClass

'ulong, // fTransmitDataMod

'ulong, // fTransmitHDLCDataMod

'ulong, // fReceiveDataMod

'ulong, // fReceiveHDLCDataMod

]

}

};

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-55

The fields in the modem fax capabilities option frame are described in
Table 21-21.

Table 21-21 Modem fax capabilities option fields

Option field Description

fServiceClass Indicates which fax service classes are supported by the
modem. The following service classes can be returned:

Constant Value Meaning

kModemFaxClass0 0x00000001 no fax service

kModemFaxClass1 0x00000002 Class 1 fax

kModemFaxClass2 0x00000004 Class 2 fax

kModemFaxClass2_0 0x00000008 Class 2.0 fax

fTransmitDataMod Indicates transmit modulations supported by the
AT+FTM=x command. See Table 21-22 (page 21-56) for
possible return values. The array of possible values needs
to be combined together.

fTransmitHDLCDataMod Indicates transmit HDLC modulations supported by the
AT+FTH=x command. See Table 21-22 for possible return
values. The array of possible values needs to be combined
together.

fReceiveDataMod Indicates receive modulations supported by the
AT+FRM=x command. See Table 21-22 for possible return
values. The array of possible values needs to be combined
together.

fReceiveHDLCDataMod Indicates receive HDLC modulations supported by the
AT+FRM=x command. See Table 21-22 for possible return
values. The array of possible values needs to be combined
together.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-56 Options for the Modem Tool

The fax modulation return values are shown in Table 21-22.

Modem Fax Enabled Capabilities Option 21
You use the modem fax enabled capabilities option, with label
kCMOModemFaxEnabledCaps, to determine or set which fax service class
capabilities and modem modulation capabilities are enabled. You can use
this option at any time.

Note

This option is available only with System Software
version 2.1 or later. ◆

Table 21-22 Modem fax modulation return values

Constant Value Description

kV21Ch2Mod 0x00000001 V.21 (300 bps)

kV27Ter24Mod 0x00000002 V.27 ter (2400 bps)

kV27Ter48Mod 0x00000004 V.27 ter (4800 bps)

kV29_72Mod 0x00000008 V.29 (7200 bps)

kV17_72Mod 0x00000010 V.17 (7200 bps)

kV17st_72Mod 0x00000020 V.17 short train (7200 bps)

kV29_96Mod 0x00000040 V.29 (9600 bps)

kV17_96Mod 0x00000080 V.17 (9600 bps)

kV17st_96Mod 0x00000100 V.17 short train (9600 bps)

kV17_12Mod 0x00000200 V.17 (12000 bps)

kV17st_12Mod 0x00000400 V.17 short train (12000 bps)

kV17_14Mod 0x00000800 V.17 (14400 bps)

kV17st_14Mod 0x00001000 V.17 short train (14400 bps)

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-57

The slots in the modem fax enabled capabilities option are the same as the
slots in the modem fax capabilities option described in the previous section
(page 21-53). You use this option to constrain which hardware capabilities
you want used for your application or to determine which capabilities are
currently enabled.

You don’t normally need to set this option because the modem setup chosen
by the user handles it. For example the “Moto Cellular” modem setup
constrains the fax send/receive speed to 4800 baud. For information about
writing modem setup packages, see “Defining a Modem Setup” (page 25-5)
in Newton Programmer�s Guide.

The following example shows the use of the modem fax capabilities option:

local option := {

type: 'option,

label: kCMOModemFaxEnabledCaps,

opCode: opSetCurrent,

form: 'template,// not needed

data : {

arglist: [

nil,

0,

kModemFaxClass0 + kModemFaxClass1

+ kModemFaxClass2 + kModemFaxClass2_0,

kV17st_14Mod + kV17_14Mod + kV17st_12Mod

+ kV17_12Mod + kV17st_96Mod + kV17_96Mod

+ kV17st_72Mod + kV17_72Mod + kV29_96Mod

+ kV29_72Mod + kV27Ter48Mod + kV27Ter24Mod,

kV21Ch2Mod,

kV17st_14Mod + kV17_14Mod + kV17st_12Mod

+ kV17_12Mod + kV17st_96Mod + kV17_96Mod

+ kV17st_72Mod + kV17_72Mod + kV29_96Mod

+ kV29_72Mod + kV27Ter48Mod + kV27Ter24Mod,

kV21Ch2Mod,

C H A P T E R 2 1

Built-in Communications Tools Reference

21-58 Options for the Modem Tool

],

typelist: [

'struct,

'ulong, // fServiceId

'ulong, // fExtendedResult

'ulong, // fServiceClass

'ulong, // fTransmitDataMod

'ulong, // fTransmitHDLCDataMod

'ulong, // fReceiveDataMod

'ulong, // fReceiveHDLCDataMod

]

}

};

Modem Voice Support Option 21
You use the modem voice support option, with label
kCMOModemVoiceSupport, to determine if the modem supports line
current sense (LCS). If the modem is capable of supporting LCS, it
automatically releases the phone line by going on hook when the user lifts
the handset when a voice connection is made with the modem tool.

A modem that supports LCS ignores the ATH0 command when auto-dialing
for a voice connection. Instead, it waits until it senses the current draw when
the handset is lifted. If the active modem does not support LCS, the modem
goes on-hook when the modem endpoint Disconnect call is made. If the
user has not lifted the handset when the Disconnect call is made, the
phone call is terminated. This option is read-only and is valid only after the
endpoint Bind call.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOModemVoiceSupport,

opCode: opGetCurrent,

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-59

form: 'template, // not needed

data : {

arglist: [

true, // supports LCS

],

typelist: [

'boolean, // fSupportsLCS

]

}

};

The single Boolean field in the data slot returns true if the modem
supports LCS and nil if it does not.

MNP Speed Negotiation Option 21
You use the MNP speed negotiation option, with label
kCMOMNPSpeedNegotiation, to control the MNP speed negotiation. If you
use this option before or when connecting, the modem tool negotiates with
the remote end to change the data speed to the specified level. After
connecting, you can determine the connection speed by getting the current
value with the serial MNP data rate option, which is described in “Serial
MNP Data Rate Option” (page 21-28).

Note

You can only use this option if you are using the Newton’s
built-in MNP software, which means that you must be using
the kModemECInternalOnly error control type. ◆

You typically use the serial configuration option (page 21-14) to establish the
connection parameters and then use the serial data rate option (page 21-17)
to change speeds during later negotiations. If you use both options in the
same call, the speed ends up at the rate specified by the latter option in the
option array.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-60 Options for the Modem Tool

The speed shift is negotiated in the link request (LR) packet and is fully
backwards compatible; previous implementations that don’t support this
feature simply ignore the speed negotiation LR parameter.

Note

The MNP link request packets are sent at the original
connect speed (set with either the serial configuration or
serial data rate options). When you use this MNP speed
negotiation option, it negotiates the MNP data rate speed,
and the serial port speed is set to this value. ◆

The following example shows the use of the MNP speed negotiation option:

local option := {

type: 'option,

label: kCMOMNPSpeedNegotiation,

opCode: opSetNegotiate,

form: 'template, // not needed

data : {

arglist: [

57600, // speed in bps

],

typelist: [

'struct,

'long, // fSpeed

]

}

};

The single integer field in the data slot specifies the desired data rate speed
in bps. The default value is 57600.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-61

MNP Compression Option 21
You use the MNP compression option, with label kCMOMNPCompression, is
to configure the data compression options in the modem tool. Data
compression can only be supported on MNP connections. The modem tool
supports V.42bis compression and MNP Class 5 compression.

The type of compression used during a connection must be negotiated with
the remote connection end. If both V.42bis and MNP Class 5 compression
types are enabled, the compression used for the connection is negotiated
with the remote end. V.42bis compression is given top priority, followed by
MNP Class 5. If neither compression scheme can be used, the connection can
be made with no compression. This option must be set at or before the
endpoint Connect call.

Note

You can only use this option if you are using the Newton’s
built-in MNP software, which means that you must be using
the kModemECInternalOnly error control type. ◆

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOMNPCompression,

opCode: opSetRequired,

form: 'number,

data : kMNPCompressionNone, // no compression

};

C H A P T E R 2 1

Built-in Communications Tools Reference

21-62 Options for the Modem Tool

The possible values for the data slot are listed in Table 21-23. Note that these
values can be combined to specify multiple compression types. The default
value is all three values combined together.

MNP Data Statistics Option 21
You use the MNP data statistics option, with label kCMOMNPStatistics, to
retrieve performance statistics from the current MNP connection. This is a
read-only option. You can use this option after your endpoint is connected.

Note

You can only use this option if you are using the Newton’s
built-in MNP software, which means that you must be using
the kModemECInternalOnly error control type. ◆

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOMNPStatistics,

opCode: opGetCurrent,

form: 'template, // not needed

data : {

arglist: [

0, // adapt value

0, // lt retrans count

0, // lr retrans count

Table 21-23 MNP compression type

Constant Value Description

kMNPCompressionNone 0x00000001 No compression.

kMNPCompressionMNP5 0x00000002 Use MNP class 5 compression.

kMNPCompressionV42bis 0x00000008 Use V.42bis compression.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Modem Tool 21-63

0, // total retransmissions

0, // rcv broken total

0, // force ack total

0, // rcv async err total

0, // frames received

0, // frames transmitted

0, // bytes received

0, // bytes transmitted

0, // write bytes in

0, // write bytes out

0, // read bytes in

0, // read bytes out

0, // write flush count

],

typelist: [

'struct,

'ulong, // fAdaptValue

'ulong, // fLTRetransCount

'ulong, // fLRRetransCount

'ulong, // fRetransTotal

'ulong, // fRcvBrokenTotal

'ulong, // fForceAckTotal

'ulong, // fRcvAsyncErrTotal

'ulong, // fFramesRcvd

'ulong, // fFramesXmited

'ulong, // fBytesRcvd

'ulong, // fBytesXmited

'ulong, // fWriteBytesIn

'ulong, // fWriteBytesOut

'ulong, // fReadBytesIn

'ulong, // fReadBytesOut

'ulong, // fWriteFlushCount

]

C H A P T E R 2 1

Built-in Communications Tools Reference

21-64 Options for the Modem Tool

}

};

The fields in the MNP data statistics option frame are described in
Table 21-24.

Table 21-24 MNP data statistics option fields

Option field Description

fAdaptValue Maximum size data packet when the connection
supports adaptive packet sizing (Class 4). The
default value is 196.

fLTRetransCount Number of times current data packet (LT) has
been retransmitted. The default value is 0.

fLRRetransCount Retransmission count for connect packet (LR -
link request). The default value is 0.

fRetransTotal Total number of LT frame retransmissions during
connection. The default value is 0.

fRcvBrokenTotal Total number of broken frames received during
connection. The default value is 0.

fForceAckTotal Total number of forced acknowledgments during
connection. The default value is 0.

fRcvAsyncErrTotal Total number of serial driver async errors
(overruns) received during connection. The
default value is 0.

fFramesRcvd Total number of frames received during
connection. The default value is 0.

fFramesXmited Total number of frames transmitted during
connection. The default value is 0.

fBytesRcvd Total number of data bytes received during
connection. Includes packet header/tail. The
default value is 0.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Infrared Tool 21-65

Options for the Infrared Tool 21

This section describes the options that you can use with the infrared (IR) tool.
Table 21-25 summarizes the infrared tool options.

fBytesXmited Total number of data bytes transmitted during
connection. Includes packet header/tail. The
default value is 0.

fWriteBytesIn Total number of user data bytes transmitted
during connection (before compression). The
default value is 0.

fWriteBytesOut Total number of user data bytes transmitted
during connection (after compression). The
default value is 0.

fReadBytesIn Total number of user data bytes received during
connection (before decompression). The default
value is 0.

fReadBytesOut Total number of user data bytes received during
connection (after decompression). The default
value is 0.

fWriteFlushCount Number of flush calls to V.42bis compressor
during connection. The default value is 0.

Table 21-24 MNP data statistics option fields (continued)

Option field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

21-66 Options for the Infrared Tool

Infrared Connection Option 21
The infrared connection option, with label kCMOSlowIRConnect, controls
how the infrared connection is made. You can set it in the Instantiate,
Bind, or Connect methods.

The following example shows the use of this option:

local option := {

label: kCMOSlowIRConnect, // "irco"

type: 'option,

opCode: opSetNegotiate,

data: {

arglist: [connect],

typelist: ['ulong]

}

};

Table 21-25 Summary of infrared options

Label Value Use when Description

kCMOSlowIRConnect “irco” When
initiating,
connecting,
or listening

Controls how the
connection is made

kCMOSlowIRProtocolType “irpt” After
connecting
or accepting

Read-only option returns
the protocol and speed of
the connection

kCMOSlowIRStats “irst” After
connecting
or accepting

Read-only option returns
statistics about the data
received and sent

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Infrared Tool 21-67

The connect field is interpreted as a series of bit flags. The connect field
bit flags are as follows:

The kNormalConnect constant indicates that the infrared tool should
connect normally as controlled by the use of the Connect or Listen calls. If
you use the Connect call, the tool connects in active mode, expecting the
remote device to be listening passively. If you use the Listen call, the tool
connects in passive mode, expecting the remote device to be connecting
actively.

The irSymmetricConnect constant indicates that the tool should open in
symmetric mode; that is, the Connect call can act either as a Connect or a
Listen, depending on what the remote side is doing. If the remote side is
also attempting to open an active connection (via Connect) then the local
side opens as if Listen had been called instead.

You can determine in which state the tool was actually opened by looking at
the second bit, irActiveConnection. If this bit is set, the tool opened as
the active side (Connect). If this bit is cleared, the tool opened as the passive
side (Listen).

Infrared Protocol Type Option 21
The infrared protocol type option, with label kCMOSlowIRPRotocolType,
is a read-only option that reports the protocol and speed of the current
infrared connection. You can use this option after the endpoint is connected
or accepted.

Constant Value Description
kNormalConnect 0 Normal connection, if set.
irSymmetricConnect 1 Allows symmetric connection, if set.
irActiveConnection 2 This bit is set by the infrared tool to

indicate the type of connection made.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-68 Options for the Infrared Tool

The following example shows the use of this option:

local option := {

label: kCMOSlowIRProtocolType, // "irpt"

type: 'option,

opCode: opGetCurrent,

data: {

arglist: [

protocol,

options

],

typelist: [

'ulong,

'ulong

]

}

};

The possible values for the protocol field are as follows:

Constant Value Description
kUsingNegotiateIR 0 The tool is negotiating a connection

using the negotiation protocol (Sharp
protocol with Apple extensions). No
connection has been made.

kUsingSharpIR 1 A connection has been made to a
Sharp OZ/IQ or similar device using
the standard Sharp protocol.

kUsingNewton1 2 A connection has been made to a
Newton 1.x device using the Sharp
protocol with Apple extensions.

kUsingNewton2 4 A connection has been made to a
Newton 2.x device using the Sharp
protocol with Apple extensions.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the Infrared Tool 21-69

The possible values for the options field are as follows:

The infrared tool uses the Sharp Infrared protocol. Because of the
characteristics of this protocol, Apple recommends setting sendFlags to
kPacket+kEOP every time you send data. If you don’t set sendFlags to
this value, the protocol only sends after 512 bytes of data are queued up. This
queuing means input scripts do not terminate when you expect them to. For
the receiving side, the queuing means you will terminate after every output
if you set useEOP to true. If you are using byteCount, you should set
useEOP to nil if you want to trigger on byteCount instead of EOP.

For more information on sendFlags see “Output Spec Frame” (page 20-10).

For more information on useEOP and byteCount, see “Input Spec
Termination Frame” (page 20-16).

Infrared Statistics Option 21
The infrared statistics option, with label kCMOSlowIRStats, is a read-only
option that reports various statistics on the current infrared connection. You
can use this option after the endpoint is connected or accepted.

The following example shows the use of this option:

local option := {

label: kCMOSlowIRStats, // "irst"

type: 'option,

opCode: opGetCurrent,

data: {

arglist: [

dataPacketsIn,

checkSumErrs,

Constant Value Description
kUsing9600 1 Connection speed is 9600 bps
kUsing19200 2 Connection speed is 19200 bps
kUsing38400 4 Connection speed is 38400 bps

C H A P T E R 2 1

Built-in Communications Tools Reference

21-70 Options for the Infrared Tool

dataPacketsOut,

dataRetries,

falseStarts,

serialErrs,

protocolErrs

],

typelist: [

'ulong,

'ulong,

'ulong,

'ulong,

'ulong,

'ulong,

'ulong

]

}

};

The fields in the infrared statistics option frame are described in Table 21-26.

Table 21-26 Infrared statistics option fields

Option field Description

dataPacketsIn Number of data packets received.

checkSumErrs Number of checksum errors in received packets.

dataPacketsOut Number of data packets sent.

dataRetries Number of retries performed while sending.

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the AppleTalk Tool 21-71

Options for the AppleTalk Tool 21

This section describes the options that you can use with the AppleTalk tool.
Table 21-27 summarizes the AppleTalk tool options.

falseStarts Not used.

serialErrs Number of bytes with parity or framing errors or
serial chip buffer overruns.

protocolErrs Number of unexpected or out-of-sequence packets.
These can occur because a packet was garbled in
transmission and the two sides became
unsynchronized.

Table 21-27 Summary of AppleTalk options

Label Value Use When Description

kCMARouteLabel “rout” When
connecting
or listening

Sets an AppleTalk NBP
address.

kCMOAppleTalkBuffer “bsiz” When
connecting,
listening, or
accepting

Sets the size of the send,
receive, and attention
buffers.

Table 21-26 Infrared statistics option fields (continued)

Option field Description

C H A P T E R 2 1

Built-in Communications Tools Reference

21-72 Options for the AppleTalk Tool

AppleTalk Address Option 21
The AppleTalk address option, with label kCMARouteLabel, specifies the
AppleTalk NBP address. You must specify this option when connecting or
listening.

The following example shows the use of this option:

local NBPStr := "PrinterName:Laserwriter@zone";// address

local size := StrLen(NBPStr);

local opt := {

label: kCMARouteLabel,

type: 'address,

opCode: opSetRequired,

data: {

arglist: [

kNamedAppleTalkAddress, // type

kNamedAppleTalkAddress, // named addr type

kDefaultLink, // = "sltk"

size, // length

NBPStr, // NBP string

kCMOSerialBytesAvailable “sbav” After
connecting

Read-only option
returns the number of
bytes available in the
receive buffer.

kCMSAppleTalkID “atlk” For
instantiation

Specifies AppleTalk
tool type.

kCMOEndpointName “endp” For
instantiation

Specifies AppleTalk
endpoint. Must be used
as above.

Table 21-27 Summary of AppleTalk options (continued)

Label Value Use When Description

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the AppleTalk Tool 21-73

],

typelist: [

'struct,

'long,

'long,

['array, 'char, 4],

'ulong,

['array, 'unicodeChar, 0],

]

}

};

You need to set the size and the NBP string. The value of size is the length in
bytes of the NBP string that you are passing.

You must pass the kCMARouteLabel option to the ADSP's Connect and
Listen methods. For Connect, the option value specifies to whom you are
connecting. For Listen, the option value specifies who you are.

Alternatively, you can construct an address option by calling the
MakeAppletalkOption function, which is described in
“MakeAppleTalkOption” (page 20-33).

AppleTalk Buffer Size Option 21
The AppleTalk buffer size option, with label kCMOAppleTalkBuffer,
specifies the sizes of the send, receive, and attention buffers. You must
specify a separate option for each buffer type. You can set this option in
conjunction with the Connect, Listen, or Accept methods.

The buffer types are identified by integers, as follows:

Buffer type Identifier Default size

Send kSndbuffer 511

Receive kRevBuffer 511

Attention kAtnBuffer 0

C H A P T E R 2 1

Built-in Communications Tools Reference

21-74 Options for the AppleTalk Tool

The following example shows the use of this option:

local opt := {

label: kCMOAppleTalkBuffer,

type: 'option,

opCode: opSetRequired,

data: {

arglist: [

kBufferType, // kSndbuffer, kRevBuffer,

// or kAtnBuffer

kSize, // buffer size in bytes

],

typelist: [

'struct,

'ulong,

'long,

]

}

};

AppleTalk Bytes Available Option 21
The AppleTalk bytes available option, with label
kCMOSerialBytesAvailable, is a read-only option that the number of
bytes waiting to be read from the receive buffer. You can use this option after
the endpoint is connected.

The following example shows the use of this option:

local option := {

type: 'option,

label: kCMOSerialBytesAvailable,

opCode: opGetCurrent,

form: 'number,

result: nil, // not needed; returned

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for the AppleTalk Tool 21-75

data: 0, // returned

};

AppleTalk Tool Type Option 21
The AppleTalk tool type option, with label kCMSAppleTalkID, specifies
which AppleTalk tool to use. At the current time you must use the ADSP
tool. You must specify this option at instantiation time and you must specify
exactly as shown in the following example:

local option := {

type: 'option,

label: kCMSAppleTalkID,

type: 'option,

opCode: opSetRequired,

form: 'template,

data: {

arglist: ["adsp"], // or KCMOAppleTalkADSP

typelist:[

'struct

['array, 'char, 4]

]

},

};

▲ W A R N I N G

You must specify the AppleTalk tool type option in your
Instantiate call for the AppleTalk tool. You must specify
this option exactly as shown above for your connection to
work. ▲

C H A P T E R 2 1

Built-in Communications Tools Reference

21-76 AppleTalk Functions

AppleTalk Endpoint Name Option 21
The AppleTalk endpoint name option, with label kCMOEndpointName,
specifies which built-in endpoint the AppleTalk tool is to use. You must
specify this option at instantiation time and you must specify exactly as
shown in the following example:

local option := {

type: 'option,

label: kCMOEndpointName,

opCode: opSetRequired,

form: 'template,

data: {

arglist: [kADSPEndpoint],

typelist: [

'struct

['array, 'char, 0]

]

}

};

▲ W A R N I N G

You must specify the AppleTalk endpoint name option in
your Instantiate call for the AppleTalk tool. You must
specify this option exactly as shown above for your
connection to work. ▲

AppleTalk Functions 21

This section describes the global functions you can use to obtain the
addresses of other devices on an AppleTalk network.

C H A P T E R 2 1

Built-in Communications Tools Reference

AppleTalk Functions 21-77

AppleTalk Driver Functions 21
This section describes the functions you can use to open and close the
AppleTalk drivers. For more information about these drivers, see “AppleTalk
Functions” (page 24-12) in Newton Programmer�s Guide.

OpenAppleTalk 21

OpenAppleTalk()

Opens the AppleTalk drivers and returns zero if successful. You can call
OpenAppleTalk as many times are you like. Be sure to call
CloseAppleTalk at least as many times as you call OpenAppleTalk.

If AppleTalk is already open, the OpenAppleTalk function increments a
counter and returns 0.

You do not need to call OpenAppleTalk to access zone information. The
zone information function open and close AppleTalk if necessary.

CloseAppleTalk 21

CloseAppleTalk()

Closes the AppleTalk drivers and returns zero if successful. You can call
CloseAppleTalk as many times as you like. If AppleTalk is not open, this
call does nothing. If the open counter is 1, this call closes the AppleTalk
drivers; otherwise, it decrements the open count.

You do not need to call CloseAppleTalk to access zone information. The
zone information function open and close AppleTalk if necessary.

AppleTalkOpenCount 21

AppleTalkOpenCount()

Returns the open count for the AppleTalk drivers. A return value of 0 means
the drivers are closed.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-78 AppleTalk Functions

Functions for Obtaining AppleTalk Zone Information 21
This section describes the global functions you can use to obtain zone
information.

HaveZones 21

HaveZones()

Returns true if a connection exists and zones are available. Returns nil if
there are no zones available.

If the AppleTalk drivers are not opened, this function automatically opens
and then closes them.

GetMyZone 21

GetMyZone()

Returns a string naming the current AppleTalk zone. A return value of "*"
identifies the default zone, which usually means that no AppleTalk router
was found.

If the AppleTalk drivers are not opened, this function automatically opens
and then closes them.

GetZoneList 21

GetZoneList()

Returns an array containing strings of all the existing zone names, or returns
nil if no zones are available, which usually means that no AppleTalk router
was found.

If the AppleTalk drivers are not opened, this function automatically opens
and then closes them.

C H A P T E R 2 1

Built-in Communications Tools Reference

AppleTalk Functions 21-79

GetNames 21

GetNames(fromWhat)

Returns a string or an array of names based on the fromWhat parameter.

fromWhat A network address in the form name:type@zone.

If fromWhat is a string, GetNames returns a string; if fromWhat is an array,
GetNames returns an array of names.

The following example shows the use of this function:

#4415501 "Idiot Savante:LaserWriter@RD1/

NewHaven-LocalTalk"

GetNames(GetUserConfig('currentPrinter).printerName)

#4417791 "Idiot Savante"

GetZoneFromName 21

GetZoneFromName(fromWhat)

Returns the zone name as a string based on the fromWhat parameter

fromWhat A network address in the form name:type@zone.

The following example shows the use of this function:

GetZoneFromName(

GetUserConfig('currentPrinter).printerName)

#44184A9 "RD1/NewHaven-LocalTalk"

NBPStart 21

NBPStart(entity)

Begins a lookup of network entities, as specified by the entity parameter.

If the AppleTalk drivers are not opened, this function automatically opens
and then closes them.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-80 AppleTalk Functions

The NBPStart function returns a lookup ID that is used with the other NBP
functions described in this section. This function returns nil if the lookup
cannot be started.

entity A string specifying the type of entity to search for and
the zones in which to search. The entity string must
have the form "name:type@zone". You can use the wild
card characters "*"to identify the local zone, "=" to
match all strings, and "≈" (Option–x) to match a
partially specified string. For example
"=:≈Laser≈@*" searches for all entities whose type
contains the string "Laser" in the local zone. The
characters ";" and "@" are reserved to separate the
name from the type and the type from the zone,
respectively.

To get the names of the entities that are found, use the NBPGetNames
function. For example, to look for LaserWriters in the current zone, use the
following code:

lookupID := NBPStart("=:LaserWriter@*");

NBPGetNames(lookupID);

NBPGetCount 21

NBPGetCount(lookupID)

Returns the number of entities found by the currently running NBP lookup.

lookupID The lookup ID returned by the NBPStart function used
to start this lookup.

The following example shows the use of this function:

lookupID := NBPStart("=:LaserWriter@*");

NBPGetCount(lookupID);

C H A P T E R 2 1

Built-in Communications Tools Reference

AppleTalk Functions 21-81

NBPGetNames 21

NBPGetNames(lookupID)

Returns an array of strings that are the names found by NBPStart.

lookupID The lookup ID returned by the NBPStart function used
to start this lookup.

For an example of using this function, see NBPStart.

NBPStop 21

NBPStop(lookupID)

Terminates a lookup started by NBPStart, returning 0 if successful, or
–10067 if not. NBPStop automatically closes the AppleTalk drivers.

lookupID The lookup ID returned by the NBPStart function used
to start this lookup.

NetChooser Methods 21
This section describes the methods you can use with the Net Chooser. For
more information on using the Net Chooser, see “The Net Chooser”
(page 24-13) in Newton Programmer�s Guide.

OpenNetChooser 21

NetChooser:OpenNetChooser(zone, lookupName, startSelection,who,
connText, headerText, lookforText)

Displays the chooser view.

zone A string identifying the pre-defined AppleTalk zone;
specify nil for the current zone.

lookupName A string identifying the name of the entity to be looked
up.

startSelection A string identifying the name of an entity to be selected
as the default.

C H A P T E R 2 1

Built-in Communications Tools Reference

21-82 Options for Resource Arbitration

who An identifier naming the context that does the
notification; self specifies the current context.

connText The string to be placed in the button that will select the
service.

headerText The string to be placed in the title string, and also in
possible notifications.

lookforText A string that informs the user what the chooser is trying
to find. The lookforText is appended to the string
"Looking for". This string appears while the list is
being assembled, or when the user chooses Change
Zone.

The following example shows the use of this method:

GetRoot().NetChooser:openNetChooser(nil,"=:LaserWriter@",

nil, self, "Use printer, sir", "Printer", "printers");

NetworkChooserDone 21

myChooser:NetworkChooserDone(currentSelection, currentZone)

To obtain the user’s selection, you need to provide a method called
NetworkChooserDone. This method must have the above format.

currentSelection Returns the selected entity

currentZone Returns the currently selected AppleTalk zone.

Options for Resource Arbitration 21

This section describes the resource arbitration options. For more information
about using these options, see “Resource Arbitration Options” (page 24-10)

C H A P T E R 2 1

Built-in Communications Tools Reference

Options for Resource Arbitration 21-83

in Newton Programmer�s Guide. Table 21-28 summarizes the resource
arbitration options.

Passive Claim Option 21
The resource-passive claim option, with label kCMOPassiveClaim, specifies
whether or not a communications tool is claiming its resources passively.

The following example shows the use of this option:

{

label: kCMOPassiveClaim,

type: 'option,

opCode: opSetRequired,

data: {

 arglist: [

true, // passively claim modem

],

typelist: [

kStruct,

kBoolean,

]

}

},

Table 21-28 Summary of resource arbitration options

Label Value Use When Description

kCMOPassiveClaim "cpcm" Before bind Specifies whether your tool claims
resources actively or passively

kCMOPassiveState "cpst" Typically on
listen

Specifies whether your tool
releases resources

C H A P T E R 2 1

Built-in Communications Tools Reference

21-84 Options for Resource Arbitration

If the data value is true, the communications tool is claiming its resources
passively. If the data value is nil, the tool is claiming its resources actively,
which means that another application cannot claim those resources.

Passive State Option 21
The resource-passive state option, with label kCMOPassiveClaim, specifies
whether or not your communications tool is currently in a state in which it
can release resources.

The following example shows the use of this option:

{

label: kCMOPassiveState,

type: 'option,

opCode: opSetRequired,

data: {

arglist: [

true, // passively claim modem

],

typelist: [

 kStruct,

kBoolean,

]

}

},

If the data value is true, the communications tool is willing to relinquish
use of its passively claimed resources. If the data value is nil, the
communications tool is not willing to relinquish use of its passively claimed
resources.

22-1

C H A P T E R 2 2

Modem Setup Service
Reference 22

This chapter describes the constants that you use with the modem setup
service. For more information about the modem setup service, see “Modem
Setup Service” (page 25-1) in Newton Programmer�s Guide.

Figure 22-0
Table 22-0

C H A P T E R 2 2

Modem Setup Service Reference

22-2 Modem Setup General Information Constants

Modem Setup General Information Constants 22

The following constants specify general information about the modem setup.

Table 22-1 Constants for modem setup general information

Constant Description

kModemName The string name that identifies this modem. This string
is shown as the modem name in the Modem
Preferences picker..

kVersion The integer version number of this modem setup
package. The Newton system software prevents a
modem setup package with an equivalent or lower
version number from overwriting one with a higher
version number that is already installed on a Newton.

kOrganization A string indicating the developer of the modem setup
package.

C H A P T E R 2 2

Modem Setup Service Reference

Modem Setup Preference Constants 22-3

Modem Setup Preference Constants 22

The following constants specify the modem setup preferences for
configuring the modem controller. For more information about the modem
preference option, see “Modem Preferences Option” (page 21-34)

Table 22-2 Constants for modem setup preferences

Constant Description

kIdModem Set to nil to prevent the modem tool from
executing a modem ID sequence and
automatically setting the modem profile.

kUseHardwareCD This is generally set to true for PCMCIA
modems. For serial modems, a setting of true
requires a special cable that connects the CD
signal from the modem to the GPi serial pin on
the Newton. A setting of true causes the
modem tool to sense the CD line to detect loss
of carrier. If this constant is set to nil, the CD
line is ignored.

kUseConfigString Set this to true, unless the modem happens to
be configured correctly when it is reset, which
is very unlikely. A setting of true means that a
modem configuration string is to be sent to
the modem before initiating a connection. The
modem configuration string is defined in
the modem profile option and depends on the
connection type. If this constant is set to nil,
no modem configuration string is sent.

C H A P T E R 2 2

Modem Setup Service Reference

22-4 Modem Setup Profile Constants

Modem Setup Profile Constants 22

The modem profile constants describe the modem characteristics, which are
used by the modem controller.

Note:

Where the backslash (\) is used in a configuration string,
you must specify two of them together (\\), since a single
backslash is used as the escape character in NewtonScript. ◆

kUseDialOptions Set this to true to send the default dialing
configuration string to the modem, following
the configuration string. The default dialing
configuration string is
ATM1L2X4S7=060S8=001S6=003\n. If you
specify nil, the dialing configuration string is
not sent to the modem.

kHangUpAtDisconnect Set this to true. This setting causes a “clean”
hang-up sequence to occur when the modem
disconnects. If this constant is set to nil, no
hang-up commands are sent to the modem on
disconnect.

Table 22-2 Constants for modem setup preferences (continued)

Constant Description

C H A P T E R 2 2

Modem Setup Service Reference

Modem Setup Profile Constants 22-5

Table 22-3 Constants for the modem setup profile

Constant Description

kSupportsEC Specify true if the modem supports any error
correction protocols (such as MNP 5, V.42, LAPM) and
the profile contains configuration strings for error
correction. Note that kDirectConnectOnly must also
be nil. Specify nil if the modem does not support
error correction.

kSupportsLCS Specify true if the modem supports LCS (Line Current
Sense); otherwise, specify nil. LCS is used for
determining when a user has lifted the telephone
handset off the hook. Applications can take advantage
of this feature by allowing the modem to determine
when it should release the line for a voice telephone call.

kDirectConnectOnly Normally this is set to nil. Set to true if the modem
does not support error correction or buffering.

kConnectSpeeds An array indicating the speeds (in bps) at which the
modem can connect. This array is not used, except by
applications that want to determine the modem
capabilities.

kCommandTimeout Indicates how long (in milliseconds) the modem tool
should wait for a modem response to a command
before timing out. A setting of 2000 ms is usually
sufficient, though some modems may require 3000 or
4000 ms.

kMaxCharsPerLine Indicates the maximum number of command line
characters that the modem can accept, not counting the
AT prefix and the ending carriage return.

kInterCmdDelay Indicates the minimum amount of delay required
between modem commands, in milliseconds. This is the
time from the last response received to the next
command sent. A setting of 25 ms is usually sufficient,
though you can adjust this to up to 40 ms if necessary.
This setting should be kept as low as possible.

C H A P T E R 2 2

Modem Setup Service Reference

22-6 Modem Setup Profile Constants

kModemIDString Normally set this to the string “unknown”. This string
is used if the modem tool attempts to identify the
modem using the ATI4 command. It should be set to
the same string with which the modem responds.

kConfigStrNoEC The configuration string used for non–error–corrected
data connections when kDirectConnectOnly is
true, and for FAX connections. This configuration
string must enable speed buffering. The default string is
shown in “The No Error Control Configuration String”
(page 22-7).

kConfigStrECOnly The configuration string used for data connections that
require error correction. This configuration string must
enable speed buffering and can be used only if
hardware flow control can be enabled. The default
string is nil. See “The Error Control Configuration
String” (page 22-8) for an example of an error control
configuration string.

kConfigStrECAndFallback The configuration string used for data connections that
allow error–corrected communication, and if error
correction negotiation fails, the modem falls back to a
non–error corrected connection. This configuration
string must enable speed buffering and can be used
only if hardware flow control can be enabled. The
default string is nil. See “The Error Control with
Fallback Configuration String” (page 22-9) for an
example of a configuration string for error control with
fallback.

kConfigStrDirectConnect The configuration string used for data connections for
modems that have no speed buffering, and have no
error correction or compression built in
(kDirectConnectOnly is set to true). The default
string is shown in “The Direct Connect Configuration
String” (page 22-9).

Table 22-3 Constants for the modem setup profile (continued)

Constant Description

C H A P T E R 2 2

Modem Setup Service Reference

Modem Setup Profile Constants 22-7

The No Error Control Configuration String 22
The following is the default value for the kConfigStrNoEC configuration
string:

E0 Echo off (always required).

&C1 DCD indicates the true state of the remote carrier.

S12=12 Escape guard time is 240 ms (12*20). Modems usually
set S12 to 50.

W2 Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use
Q0 with X1 or X4, and V1.

&K3 Enables bidirectional RTS/CTS flow control. The
modem uses CTS to control flow from the Newton, and
the Newton uses RTS to control flow from the modem.
This does not work on all modems. An alternate form is
\Q3\X0. It is possible that &R0 and \D1 will be required
as well.

&Q6 Use normal buffered mode. Again, this does not work
on all modems. An alternate form is to use \N0, or on
some modems \N7.

Without hardware flow control (kDirectConnectOnly is true), software
flow control should be used for FAX connections. In this case, instead of &K3,
use the following commands:

&K4 Enables bidirectional XON/XOFF flow control. The
modem and Newton halt data flow when they receive
XOFF (DC3) and resume data flow when they receive
XON (DC1). This does not work on all modems. An
alternate form is \Q1\X0.

&R1 Assume RTS is always asserted. This does not work on
all modems.

\D0 Force CTS on at all times. This does not work on all
modems.

C H A P T E R 2 2

Modem Setup Service Reference

22-8 Modem Setup Profile Constants

The Error Control Configuration String 22
The following is an example of a kConfigStrECOnly configuration string:

E0 Echo off (always required).

&C1 DCD indicates the true state of the remote carrier.

S12=12 Escape guard time is 240 ms (12*20). Modems usually
set S12 to 50.

W2 Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use
Q0 with X1 or X4, and V1.

&K3 Enables bidirectional RTS/CTS flow control. The
modem uses CTS to control flow from the Newton, and
the Newton uses RTS to control flow from the modem.
This does not work on all modems. An alternate form is
\Q3\X0. It is possible that &R0 and \D1 are required as
well.

&Q5 Use reliable mode. Again, this does not work on all
modems. An alternate form is to use &M4 or \N6.

\N6 Try to establish a reliable LAPM link; if that fails, try to
establish an MNP link, and if that fails, disconnect. You
could also try \N4, especially for cellular connections.

%C1 Enable bilateral MNP 5 or V.42bis data compression.
(Note that this can be interpreted differently on different
modems.)

\M1 Enable V.42 detection phase.

C H A P T E R 2 2

Modem Setup Service Reference

Modem Setup Profile Constants 22-9

The Error Control with Fallback Configuration String 22
The following is an example of a kConfigStrECAndFallback
configuration string:

E0 Echo off (always required).

&C1 DCD indicates the true state of the remote carrier.

S12=12 Escape guard time is 240 ms (12*20). Modems usually
set S12 to 50.

W2 Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use
Q0 with X1 or X4, and V1.

&K3 Enables bidirectional RTS/CTS flow control. The
modem uses CTS to control flow from the Newton, and
the Newton uses RTS to control flow from the modem.
This does not work on all modems. An alternate form is
\Q3\X0. It is possible that &R0 and \D1 are required as
well.

&Q5 Use reliable mode and fall back depending on the value
in register S36. Again, this does not work on all
modems. An alternate form is to use &Q9, &M4, or \N7.

%C1 Enable bilateral MNP 5 or V.42bis data compression.
(Note that this can be interpreted differently on different
modems.)

\M1 Enable V.42 detection phase.

The Direct Connect Configuration String 22
The following is the default value for the kConfigStrDirectConnect
configuration string:

E0 Echo off (always required)

&C1 DCD indicates the true state of the remote carrier.

C H A P T E R 2 2

Modem Setup Service Reference

22-10 Fax Profile Constants

S12=12 Escape guard time is 240 ms (12*20). Modems usually
set S12 to 50.

W2 Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use
Q0 with X1 or X4, and V1.

&K0 Disable serial port flow control. The Newton must be
dynamically configured to match speeds with the
modem’s negotiated speed. This does not work on all
modems. An alternate form is \Q0\X0.

&Q0 Use direct connect mode. Again, this does not work on
all modems. An alternate form is to use \N1.

%C0 Disable data compression. (Note that this can be
interpreted differently on different modems.)

Fax Profile Constants 22

The following constants specify the fax setup preferences for configuring the
modem controller.

Table 22-4 Constants for the fax profile

Constant Description
kTransmitDataMod Specifies the set of speeds at which the fax can

be sent. If this constant isn’t defined, then the
fax send speed isn’t restricted. The available
speeds are shown in Table 22-5 (page 22-11).

kReceiveDataMod Specifies the set of speeds at which the fax can
be received. If this constant isn’t defined, then
the fax receive speed isn’t restricted. The
available speeds are shown in Table 22-5
(page 22-11).

C H A P T E R 2 2

Modem Setup Service Reference

Fax Profile Constants 22-11

The speeds at which faxes are sent and received are specified by a bit table.
The individual on bits in the value indicate the available fax speeds. For
example:

kV21Ch2Mod + KV27Ter24Mod + kV27Ter48Mod.

Table 22-5 lists the strings available for these two constants.

kServiceClass Specifies which fax protocols are supported.
The available service classes are shown in
Table 22-6 (page 22-12).

You can only set the service class (use the
kServiceClass constant) for versions of the
software that support the Class 2 fax protocol.
Newton System Software version 2.1 and the
German version of Newton System Software
version 2.0 support the Class 2 fax protocol.

Table 22-5 Available fax speeds

Configuration string Value Bits per second

kV21Ch2Mod 0x00000001 300

kv27Ter24Mod 0x00000002 2400

kV27Ter48Mod 0x00000004 4800

kV29_72Mod 0x00000008 7200

kV17_72Mod 0x00000010 7200

kV17st_72Mod 0x00000020 7200

kV29_96Mod 0x00000040 9600

kV17_96Mod 0x00000080 9600

kV17st_96Mod 0x00000100 9600

Table 22-4 Constants for the fax profile (continued)

Constant Description

C H A P T E R 2 2

Modem Setup Service Reference

22-12 Fax Profile Constants

Table 22-6 lists the fax service classes.

kV17_12Mod 0x00000200 12000

kV17st_12Mod 0x00000400 12000

kV17st_14Mod 0x00001000 14400

Table 22-6 Available fax service classes

Configuration string Value Fax protocol

kModemFaxClass0 0x00000001 no fax service

kModemFaxClass1 0x00000002 Class 1 fax

kModemFaxClass2 0x00000004 Class 2 fax

kModemFaxClass2_0 0x00000008 Class 2.0 fax

Table 22-5 Available fax speeds (continued)

Configuration string Value Bits per second

23-1

C H A P T E R 2 3

Utility Functions Reference 23

This chapter describes a number of utility functions. The following groups of
functions are included here:

■ Object system

■ String

■ Bitwise

■ Array and sorted array

■ Integer Math

■ Floating point math

■ Control of floating point math

■ Financial

■ Exception handling

■ Message sending and deferred message sending

■ Data extraction

■ Data stuffing

■ Getting and Setting Global Variables

■ Debugging Functions

■ Miscellaneous

Figure 23-0
Table 23-0

C H A P T E R 2 3

Utility Functions Reference

23-2 Object System Functions

Object System Functions 23

The functions described in this section operate on NewtonScript objects.
They perform operations such as getting and checking for slots, removing
slots, cloning frames, and so forth.

ClassOf 23

ClassOf(object)

Returns the class of an object.

object The object whose class to return.

The return value is a symbol. Some common object classes are 'int, 'char,
'boolean, 'string, 'array, 'frame, 'function, and 'symbol. Note
that this is not necessarily the same as the primitive class of an object. For
binary, array, and frame objects, the class can be set differently from the
primitive class.

Frames or arrays without an explicitly assigned class are of the primitive
class 'frame or 'array, respectively. If a frame has a class slot, the value of
the class slot is returned. Here are some examples:

f:={multiply:func(x,y) x*y};

classof(f);

#1294 Frame

f:={multiply:func(x,y) x*y, class:'Arithmetic};

classof(f);

#1294 Arithmetic

s:="India Joze";

classof(s);

#1237 String

See also PrimClassOf.

C H A P T E R 2 3

Utility Functions Reference

Object System Functions 23-3

Clone 23

Clone(object)

Makes and returns a “shallow” copy of an object; that is, references within
the object are copied, but the data pointed to by the references is not.

object The object to copy.

Here is an example:

SeaFrame := {Ocean: "Pacific", Size: "large" , Color: "blue"};

seaFrameCopy := clone(seaFrame);

seaFrameCopy.Deep := true;

seaFrame

#441896D {Ocean: "Pacific", size: "large", Color: "blue"}

seaFrameCopy

#4418B0D {Ocean: "Pacific", size: "large", Color: "blue",

Deep: TRUE}

See Table 26-1 (page 26-2) in Newton Programmer�s Guide for a comparison
with other object copying functions.

DeepClone 23

DeepClone(object)

Makes and returns a “deep” copy of an object; that is, all of the data
referenced within the object is copied, including that referenced by magic
pointers (pointers to ROM objects).

object The object to copy.

It is not guaranteed that every part of the data structure is in RAM. (Certain
information, such as the symbols naming frame slots, may be shared with
the original object.)

Contrast this function with Clone, which only makes a “shallow” copy, and
the functions TotalClone and EnsureInternal, which ensure that the
object exists entirely in internal RAM. See Table 26-1 (page 26-2) in Newton
Programmer�s Guide for a comparison with other object copying functions.

C H A P T E R 2 3

Utility Functions Reference

23-4 Object System Functions

EnsureInternal 23

EnsureInternal(obj)

Ensures that the object exists entirely in internal RAM or ROM. This function
may copy all, some, or none of the object to ensure that it exists in RAM.
Note that magic pointers are not followed; that is, objects referenced through
magic pointers are not copied.

obj The object to ensure exists in internal RAM.

This function returns an object, which may or may not be a copy of the
original object.

See Table 26-1 (page 26-2) in Newton Programmer�s Guide for a comparison
with other object copying functions.

GetFunctionArgCount 23

GetFunctionArgCount(function)

Returns the number of arguments expected by a function.

function The function whose number of arguments to get.

GetSlot 23

GetSlot(frame, slotSymbol)

Returns the value of a slot in a frame. Only the frame specified is searched.

frame A reference to the frame in which to look for the slot.

slotSymbol A symbol naming the slot whose value to get.

If the slot doesn’t exist, this function returns nil.

Unlike GetVariable, GetSlot searches for a slot only in the indicated
frame. Inheritance is not used to find the slot.

The use of the NewtonScript dot operator is similar to the GetSlot function
in that it also returns the value of a frame slot. For example, the expression
frame.slot returns the value of the specified slot. However, when using
the dot operator, if the slot is not found in the specified frame, proto frames
are also searched for the slot (but not parent frames).

C H A P T E R 2 3

Utility Functions Reference

Object System Functions 23-5

GetVariable 23

GetVariable(frame, slotSymbol)

Returns the value of a slot in a frame. If the slot is not found, returns nil.

frame A reference to the frame in which to begin the search for
the slot.

slotSymbol A symbol naming the slot whose value to get.

This function begins its search for the slot in the specified frame and makes
use of the full proto and parent inheritance.

HasSlot 23

HasSlot(frame, slotSymbol)

Returns non-nil if the slot exists in the frame, otherwise returns nil.
Inheritance is not used to find the slot.

frame The name of the frame in which to look for the slot.

slotSymbol A symbol naming the slot whose existence to check.

HasVariable 23

HasVariable(frame, slotSymbol)

Returns non-nil if the slot exists in the frame, otherwise returns nil. This
function searches proto and parent frames of the specified frame if the slot is
not found there.

frame The name of the frame in which to begin the search for
the slot.

slotSymbol A symbol naming the slot whose existence to check. You
must use a single quote before the slot name because it
is a symbol.

C H A P T E R 2 3

Utility Functions Reference

23-6 Object System Functions

Intern 23

Intern(string)

May or may not create and return a symbol whose name is given as the
string parameter string. If a symbol with that name already exists, the
preexisting symbol is returned.

string The name of the symbol.

IsArray 23

IsArray(obj)

Returns non-nil if obj is an array.

obj The object to test.

IsBinary 23

IsBinary(obj)

Returns non-nil if obj is a binary object.

obj The object to test.

IsCharacter 23

IsCharacter(obj)

Returns non-nil if obj is a character, and returns nil otherwise.

obj The object to test.

IsFrame 23

IsFrame(obj)

Returns non-nil if obj is a frame.

obj The object to test.

C H A P T E R 2 3

Utility Functions Reference

Object System Functions 23-7

IsFunction 23

IsFunction(obj)

Returns non-nil if obj is a function, and returns nil otherwise.

obj The object to test.

IsImmediate 23

IsImmediate(obj)

Returns non-nil if obj is an immediate.

obj The object to test.

IsInstance 23

IsInstance(obj, class)

Returns non-nil if obj’s class symbol is the same as class or a subclass of class.

obj The object to test.

class A symbol specifying the class.

Note that this is equivalent to

IsSubclass(ClassOf(obj), class)

IsInteger 23

IsInteger(obj)

Returns non-nil if obj is an integer, and returns nil otherwise.

obj The object to test.

IsPathexpr 23

IsPathexpr(obj)

Returns non-nil if obj is a valid expression, and returns nil otherwise.

obj The object to test.

C H A P T E R 2 3

Utility Functions Reference

23-8 Object System Functions

IsNumber 23

IsNumber(obj)

Returns non-nil if obj is a number (integer or real), and returns nil
otherwise.

obj The object to test.

IsReadOnly 23

IsReadOnly(obj)

Returns non-nil if obj is read-only, and returns nil otherwise. You can use
IsReadOnly to determine if an array, frame, or binary object is writable.

obj An array, frame, or binary object to test. (Immediate
objects such as integers are never read-only.)

Here is an example:

if IsReadOnly(viewBounds) then

viewBounds := Clone(viewBounds);

This function should not be used to determine the location of an object; that
is, whether it is in the heap, in ROM, or in protected memory. The
NewtonScript language permits read-only objects in the NewtonScript heap,
or writable objects that exist in other locations.

IsReal 23

IsReal(obj)

Returns non-nil if obj is a real number, and returns nil otherwise.

obj The object to test.

IsString 23

IsString(obj)

Returns non-nil if obj is a string, and returns nil otherwise.

obj The object to test.

C H A P T E R 2 3

Utility Functions Reference

Object System Functions 23-9

IsSubclass 23

IsSubclass(sub, super)

Checks if a class is a subclass of another class.

sub A class symbol to test.

super A class symbol.

This function returns non-nil if sub is a subclass of super, or is the same as
super. Returns nil if sub is not a subclass of super. See also the related
function IsInstance (page 23-7).

IsSymbol 23

IsSymbol(obj)

Returns non-nil if obj is a symbol, and returns nil otherwise.

obj The object to test.

MakeBinary 23

MakeBinary(length, class)

Allocates a new binary object of the specified length and class.

length The size of the binary object in bytes.

class A symbol specifying the class.

Map 23

Map(obj, function)

Applies a function to the slot name and value of each element of an array or
frame.

obj An array or frame.

function Returns nil. A function to apply to the elements or
slots in obj. The function is passed two parameters: slot
and value. The slot parameter contains an integer array

C H A P T E R 2 3

Utility Functions Reference

23-10 Object System Functions

index if obj is an array, or a symbol naming a slot if obj is
a frame. The value parameter contains the value of the
array or frame slot referenced by the slot parameter.

This is equivalent to

for each slot,value in obj do call function with
(slot,value)

PrimClassOf 23

PrimClassOf(obj)

Returns the primitive class of an object.

obj The object whose primitive class to return.

Returns a symbol identifying the primitive data structure type of the object,
either: 'immediate, 'binary, 'array, or 'frame.

See also ClassOf.

RemoveSlot 23

RemoveSlot(obj, slot)

Removes a slot from a frame or array.

obj The name of the frame or array from which to remove
the slot.

slot A symbol naming the frame slot you want to remove, or
the index of the array slot to remove. Note that no
inheritance lookup is used to find this slot in obj.

This function returns the modified frame or array. If slot is not found, nothing
is done and the unmodified frame or array is returned. Note that the system
throws an exception if obj is read-only.

C H A P T E R 2 3

Utility Functions Reference

Object System Functions 23-11

ReplaceObject 23

ReplaceObject(originalObject, targetObject)

Causes all references to an object to be redirected to another object.

originalObject The original object.

targetObject The object to which you want to redirect references to
originalObject.

This function always returns nil.

Note that you cannot specify immediate objects as parameters to this
function.

Here is an example:

x:={name:"Star"};

y:={name:"Moon"};

replaceobject(x,y);

x;

#469E69 {name: "Moon"}

y;

#46A1E9 {name: "Moon"}

SetClass 23

SetClass(obj, classSymbol)

Sets the class of an object.

obj The object whose class to set.

classSymbol A symbol naming the class to give to the object.

This function returns the object whose class was set.

You can set the class of the following kinds of objects: frames, arrays, and
binary objects. Note that you cannot set the class of an immediate object.

C H A P T E R 2 3

Utility Functions Reference

23-12 Object System Functions

When setting the class of a frame, if a class slot doesn’t exist, one is created
in the frame. For example:

x:={name: "Star"};

setclass(x, 'someClass);

#46ACC9 {name: "Star",

 class: someClass}

SetVariable 23

SetVariable(frame, slotSymbol, value)

Sets the value of a slot in a frame. The value is returned.

frame A reference to the frame in which to begin the search for
the slot.

slotSymbol A symbol naming the slot whose value to set. If the slot
is not found, it is created in frame.

value The new value of the slot.

This function begins its search for the slot in the specified frame and makes
use of the full proto and parent inheritance.

If the slot is found in the proto chain, it is not set there, but is created and set
in frame, or in its parent chain, following the usual inheritance rules as they
apply to setting a value.

SymbolCompareLex 23

SymbolCompareLex(symbol1, symbol2)

Compares symbols lexically. This function returns a negative number if
symbol symbol1 is less than symbol symbol2. Returns zero if the two symbols
are equal. Returns a positive number if symbol1 is greater than symbol2. Case
is not significant (that is, 'Hello and 'hello are equal).

symbol1 A symbol.

symbol2 A symbol.

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-13

TotalClone 23

TotalClone(obj)

Makes and returns a “deep” copy of an object; that is, all of the data
referenced within the object is copied.

obj The object to copy.

This function is similar to DeepClone, except that this function guarantees
that the object returned exists entirely in internal RAM. Also, unlike
DeepClone, TotalClone does not follow magic pointers, so that objects
referenced through magic pointers are not copied. See Table 26-1 (page 26-2)
in Newton Programmer�s Guide for a comparison with other object copying
functions.

String Functions 23

These functions operate on and manipulate strings.

BeginsWith 23

BeginsWith(string, substr)

Returns non-nil if string begins with substr, or returns nil otherwise. This
function is case and diacritical-mark insensitive. An empty substr matches
any string.

string The string to test.

substr A string.

Capitalize 23

Capitalize(string)

Capitalizes the first character in string and returns the result. This function
modifies string.

string The string to modify.

C H A P T E R 2 3

Utility Functions Reference

23-14 String Functions

CapitalizeWords 23

CapitalizeWords(string)

Capitalizes the first character of each word in string and returns the result.
This function modifies string.

string The string to modify.

CharPos 23

CharPos(str, char, startpos)

Returns the position of the next occurrence of character in the specified
string, starting from the startPos (or nil if it’s not found).

str The specified string.

char The specified character in the string.

startpos The starting position of the character to return.

Downcase 23

Downcase(string)

Changes each character in string to lowercase and returns the result. This
function modifies string.

string A string or character (when used to interpret code).

EndsWith 23

EndsWith(string, substr)

Returns non-nil if string ends with substr, or returns nil otherwise. This
function is case and diacritical-mark insensitive. An empty substr matches
any string.

string The string to test.

substr A string.

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-15

EvalStringer 23

EvalStringer(frame, array)

Returns a string containing all of the elements in array concatenated. Any
symbols in array are evaluated in the context of the specified frame.

frame A frame used as the context for evaluating symbols in
array.

array An array.

Numbers, strings, characters, and symbols are converted to their natural
string representation. For elements that are frames, arrays, and Booleans, this
function converts them to an empty string.

FindStringInArray 23

FindStringInArray(array, string)

Finds a string in an array. This function compares the string to each element
of the array. If the string matches the value of an array element, the index of
that array element is returned. If the string is not found in the array, nil is
returned.

array An array to test.

string A string.

The string comparison used to find a match is case sensitive. The string in
the array must exactly match the string you specify in order for it to be
found; a partial word will not be found.

FindStringInFrame 23

FindStringInFrame(frame, stringArray, path)

Finds one or more strings, specified by stringArray, in a frame.

frame A frame to test.

stringArray An array containing strings.

path A Boolean indicating whether or not to return a
description of the locations of successful searches.

C H A P T E R 2 3

Utility Functions Reference

23-16 String Functions

This function compares the strings to each slot of the frame that contains a
string. If all of the strings you specify in stringArray are found somewhere in
the frame, this function returns non-nil. This function recursively searches
arrays and frames referenced within the target frame for the strings. If all of
the specified strings are not found within the target frame, including other
frames and arrays referenced in it, nil is returned.

The string comparison used to find a match is not case sensitive (unlike
FindStringInArray). Also, the search looks for word beginnings, so it
will not find a string unless it begins a word. For example, in the string
“blackboard”, this function would find the strings “blackboard” or “black”,
but not “board”.

If path is non-nil, and the strings are found in the frame, this function
returns an array of entries describing where each occurrence of the strings
was found in the frame. A group of three entries is added to the array for
each occurrence of a found string.

The first entry in each group is the complete value of the slot where the
string was found.

The second entry is the path to the slot where the string was found (array
elements are indicated by their index). This second entry can be either a slot
access expression; that is, aSlot.anotherSlot.lastSlot, or a path
expression array; that is [pathExpr: aSlot, 3, lastSlot] if the path
includes an array.

The third entry is the offset (in characters) of the string within the slot where
it was found.

Here is an example:

myframe:={type: 'person,

 data: {name: "Christine Morrison",

employer: {company: "Apple",

years: 4,

boss: "John Morris"}}}

findstringinframe(myframe, ["Morris"], true)

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-17

#52185B1 ["Christine Morrison",

 data.name,

 10,

 "John Morris",

 data.employer.boss,

 5]

FormattedNumberStr 23

FormattedNumberStr(number, formatString)

Returns a formatted string representation of a real number.

number A real number.

formatString A string specifying how the number should be
formatted.

This function works similar to (but not exactly like) the C function sprintf.
The formatString parameter specifies how the real number should be
formatted; that is, whether to use decimal or exponential notation, and how
many places to include after the decimal point. You can specify the following
formatString values:

%f Use decimal notation (such as "123.456000").

%e Use exponential notation (such as "1.234560e+02").

%E Use exponential notation (such as "1.234560E+02").

You can also specify a period followed by a number, after the % symbol (for
example,"%.2f") to indicate how many places to show following the decimal
point.

Note

FormattedNumberStr uses the current values of
GetLocale().numberFormat to get the separator and
decimal characters and settings. The example strings shown
above are for the US English locale. ◆

C H A P T E R 2 3

Utility Functions Reference

23-18 String Functions

IsAlphaNumeric 23

IsAlphaNumeric(char)

Returns non-nil if char is a number or a letter; otherwise, returns nil.

char A character to test.

IsWhiteSpace 23

IsWhiteSpace(char)

Returns non-nil if char is a space ($\20), tab ($\09), linefeed ($\0A), or
carriage return ($\0D) character; otherwise, returns nil.

char A character.

LatitudeToString 23

LatitudeToString(latitude)

Returns a string representation of the encoded latitude value.

latitude The latitude value.

LongitudeToString 23

LongitudeToString(longitude)

Returns a string representation of the encoded longitude value.

longitude The longitude value.

NumberStr 23

NumberStr(number)

Returns a string representation of the number passed in.

number An integer or real number to convert.

For example, if you pass in the value 1234.56, you get back: "1234.56". If
you pass in an integer, the string will contain an integer, and if you pass in a
real number, the string will contain a real number.

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-19

ParamStr 23

ParamStr(baseString, paramStrArray)

Returns a new string that is the result after the substitution has been
performed. The original baseString is not modified.

baseString The base string containing substitution placeholders.

paramStrArray An array of strings to substitute for the placeholders in
the base string. You can also specify numbers,
characters, or symbol data types to convert them to their
natural string representation.

This function returns the base string after the substitutions have been made.

The substitution placeholders in the base string are the following character
pairs: "^0", "^1", and so on up to "^9". There can be a maximum of 10
placeholders specified in any order in the base string. However, no numbers
can be skipped; that is, if the string contains ^2, it must also contain ^1 and
^0. The substitution is done by replacing placeholder ^0 with the first
element from the string array. Then placeholder ^1 is replaced by the second
element, and so on.

Placeholders can be nested up to three levels deep. This means that the
substitution strings can themselves contain placeholders, which are replaced
on subsequent passes up to two additional times after the initial replacement.

If you need to specify a caret (^) as part of a string, use two carets together
(^^).

ParamStr also supports conditional substitution using this syntax:

^?Xtrue|false|

The value X is an integer from 0 through 9, representing a standard
placeholder, as above. If the element in paramStrArray corresponding to this
placeholder is non-nil and not the empty string, the true characters are
interpreted. Otherwise, the true characters are skipped, and the false
characters are interpreted. The vertical bars act to delimit the true and false
portions of the string. Note that the true or false portions of the string may
contain no characters.

C H A P T E R 2 3

Utility Functions Reference

23-20 String Functions

Conditional operators can be nested, and any character can appear between
the delimiters. If you need to use the vertical bar character as part of a true or
false string, specify ^|.

The conditional operator is useful for avoiding the insertion of unnecessary
punctuation or spaces when building a string from elements that may
include optional or potentially empty items.

Here are some examples. If your baseString is:

"^2 ^0 of each ^1."

and your paramStrArray is

["Monday", "week", "Every"]

then ParamStr returns this string:

"Every Monday of each week."

If your baseString is

"^?0^0, ||^?1^1, ||^2" // false branches are empty

and your paramStrArray is:

["Sarah", "", "Smith"]

then ParamStr returns this string

"Sarah, Smith"

SPrintObject 23

SPrintObject(obj)

Returns a string of the object passed in. Numbers, strings, characters, and
symbols are converted to their natural string representation. For frames,
arrays, and Booleans, this function returns an empty string.

To convert the contents of a frame or array into strings, use the Foreach
statement along with the Stringer function to iterate over each slot.

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-21

To convert a Boolean into a string, you must check for non-nil or nil and
return the appropriate string.

Note

This function changes the number format depending on the
current locale setting. Real numbers may be formatted
unexpectedly. ◆

StrCompare 23

StrCompare(a, b)

Returns a negative number if string a is less than string b. Returns zero if
string a and b are equal. Returns a positive number if string a is greater than
string b. Case is not significant (that is, “Hello” and “hello” are equal).

a A string.

b A string.

Note that this is a content comparison of the two strings, not a pointer
comparison.

Use StrExactCompare to do a case-sensitive comparison of strings.

StrConcat 23

StrConcat(a, b)

Concatenates string b onto string a and returns the result as a new string.

a A string.

b A string.

StrEqual 23

StrEqual(a, b)

Returns non-nil if the two strings, a and b, are equal.

a A string.

b A string.

C H A P T E R 2 3

Utility Functions Reference

23-22 String Functions

Case is not significant. Note that this is a content comparison of the two
strings, not a pointer comparison.

Use StrExactCompare to do a case-sensitive comparison of strings.

StrExactCompare 23

StrExactCompare(a, b)

Returns a negative number if string a is less than string b. Returns zero if
string a and b are equal. Returns a positive number if string a is greater than
string b. Case and diacritical marks are significant (that is, “Hello” and
“hello” are not equal).

a A string.

b A string.

Note that this is a content comparison of the two strings, not a pointer
comparison.

Use StrCompare or StrEqual to do a case-insensitive comparison of
strings.

StrFilled 23

StrFilled(string)

Returns non-nil if the expression string evaluates to a string with a length
greater than zero. This function returns nil if the expression string is nil or
evaluates to an empty string.

string An expression that evaluates to a string.

StrFontWidth 23

StrFontWidth(string, fontSpec)

Returns the width of the string in pixels, if drawn in the specified font.

string A string.

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-23

fontSpec A frame having the following format:

{family:familyName,face:faceName,size:pointSize}

For more information about specifying fonts, see the section “Using Fonts for
Text and Ink Display” (page 8-17) in Newton Programmer�s Guide.

Stringer 23

Stringer(array)

Returns a string containing all of the elements in the array concatenated.

array An array.

Numbers, strings, characters, and symbols are converted to their natural
string representation. For elements that are frames, arrays, and Booleans, this
function converts them to an empty string.

StringFilter 23

Stringfilter(str, filter, instruction)

Returns a string filtered according to the instruction.

str The string to filter.

filter A string containing characters to filter from the string.

instruction One of the symbols shown in Table 23-1.

Table 23-1 Instruction symbols for StringFilter

Instruction symbol Meaning

'passAll Returns any letter in str that is also in filter.

'passBeginning Looks for any character in filter, and returns
everything in str after and including that
character.

'passOne Passes only the first letter of a group in the filter
and passes everything else. This is useful to
collapse an arbitrary number of spaces to one.

C H A P T E R 2 3

Utility Functions Reference

23-24 String Functions

StringToNumber 23

StringToNumber(string)

Parses a string representing a number and returns the real number value
(never an integer).

string A string.

The format of the real number returned by this function is determined by
values in the current locale bundle. The number of digits allowed on both
sides of the decimal is 63. Instead of simply changing the constants, a more
space-efficient way is to calculate the value. If the number of digits on either
side of the decimal point exceeds 63, StringToNumber returns nil. For
more information, see “Localizing Newton Applications” (page 20-1) in the
Newton Programmer�s Guide.

Strings with the following kinds of numbers can be parsed:

1

1.2

-12,345

(12,345.78)

StrLen 23

StrLen(string)

Returns the number of characters in a string, excluding the null terminator (if
one exists).

string A string.

'rejectAll Returns any letter in str that is not in filter.

'rejectBeginning Rejects any letter that is in filter until it reaches a
letter that isn’t in filter. It returns everything past
that point.

Table 23-1 Instruction symbols for StringFilter (continued)

Instruction symbol Meaning

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-25

StrMunger 23

StrMunger(dstString, dstStart, dstCount, srcString, srcStart, srcCount)

Replaces characters in dstString with characters from srcString and returns
the destination string after munging is complete. This function is destructive
to dstString.

dstString The destination string. The string must be writable, if
you specify a string literal, or an exception is thrown.
Use Clone (page 23-3) or a similar function to make a
writable copy from a string literal.

dstStart The starting position within dstString.

dstCount The number of characters to replace in dstString. You
can specify nil for dstCount to go to the end of the
string.

srcString A string. This can be nil to simply delete the characters.

srcStart The starting position in srcString from which to begin
taking characters to place into dstString.

srcCount The number of characters to use from srcString. You can
specify nil to go to the end of srcString.

Here is an example:

StrMunger("abcdef", 2, 3, "ZYXWV", 0, nil)

"abZYXWVf"

StrMunger can also be used to concatenate large strings; for example:

StrMunger(str1, StrLen(str1)+1, nil, str2, 0, nil);

C H A P T E R 2 3

Utility Functions Reference

23-26 String Functions

StrPos 23

StrPos(string, substr, start)

Returns the position of substr in string, or nil if substr is not found. The
search begins at character position start. (The first character position in a
string is zero.) This function is not case sensitive.

string A string.

substr A string.

start An integer.

Here is an example:

StrPos("abcdef", "Bcd", 0)

1

StrReplace 23

StrReplace(string, substr, replacement, count)

Replaces each occurrence of substr in string with replacement. The integer
count is the number of replacements to perform, or nil to replace all
occurrences. This function returns the number of replacements performed.
This function is destructive to string.

string A string.

substr A string.

replacement A string.

count An integer.

StrReplace positions the replacement pointer after the current replacement
for each iteration, so a three-time replacement of “a” in “aaa” with “ab”
yields “ababab, ”not “abbbaa,” as in some editors.

C H A P T E R 2 3

Utility Functions Reference

String Functions 23-27

StrTokenize 23

StrTokenize(str, delimiters)

Breaks up a string into chunks as defined by the delimiters argument. Each
time you call the closure (passing it no arguments) you get back the next
token, until there are no more tokens and it returns nil.

str A string to break up into tokens.

delimiters Either a character or string (list of characters) that is the
delimiter separating the pieces of the string.

For example, to break a sentence into space-separated words, do something
like the following:

fn := StrTokenize("the quick green fox", $);

#441BE8D <function, 0 arg(s) #441BE8D>

 while x := call fn with () do Print(x);

"the"

"quick"

"green"

"fox"

#2 NIL

StyledStrTruncate 23

StyledStrTruncate(string, length, font)

Truncates a string to the indicated length, in pixels. (Of course, the length
does not include the null terminator.) Returns the truncated string.

string A string.

length An integer specifying the length, in pixels, at which to
truncate the string.

font A font specification, which determines how many
characters of the string will fit in the specified length.
For details on specifying a font, refer to the section
“Using Fonts for Text and Ink Display” (page 8-17) in
the Newton Programmer�s Guide.

C H A P T E R 2 3

Utility Functions Reference

23-28 String Functions

This function adds an ellipsis (...) to the end of the truncated string.

SubstituteChars 23

SubstituteChars(targetStr, searchStr, replaceStr)

Substitutes characters in targetStr by searching for each character in searchStr
and replacing it by the value of string length in replaceStr. That is, for each
offset character “x” in targetStr, if it exists in searchStr, it will, in a copy of
targetStr, replace

copy[x]

with

replaceStr[y mod StrLength(replaceStr)].

If no substitutions are made, the original string is returned unmodified;
otherwise, a modified copy is returned.

For example:

SubstituteChars("Text with spaces\tand\ttabs", " \t",

"-")

creates

Text-with-spaces-and-tabs

or

SubstituteChars("(800) 41PHONE",

"ADGJMPTWBEHKNRUXCFILOSVY", "23456789"

to create

(800) 4174663

C H A P T E R 2 3

Utility Functions Reference

Bitwise Functions 23-29

SubStr 23

SubStr(string, start, count)

Returns a new string containing count characters from string, starting at
position start. Character positions begin with zero for the first character.

string A string.

start An integer.

count Can be an integer or nil value. If nil, SubStr will
return characters in to the end of the string.

TrimString 23

TrimString(string)

Removes any white space (spaces, tabs, and new line characters) from the
beginning and end of string and returns the result. The string parameter is
modified.

string A string.

Upcase 23

Upcase(string)

Capitalizes each character in string and returns the result. The string
parameter is modified.

string A string or character (when used to interpret code).

Bitwise Functions 23

These functions perform logical operations on bits.

C H A P T E R 2 3

Utility Functions Reference

23-30 Bitwise Functions

Band 23

Band(a, b)

Returns an integer result of its operation on one or two integer parameters.
Performs bitwise AND.

a An integer.

b An integer.

Bor 23

Bor(a, b)

Returns an integer result of its operation on one or two integer parameters.
Performs bitwise OR.

a An integer.

b An integer.

Bxor 23

Bxor(a, b)

Returns an integer result of its operation on one or two integer parameters.
Perform bitwise XOR.

a An integer.

b An integer.

Bnot 23

Bnot(a)

Returns an integer result of its operation on one or two integer parameters.
Performs bitwise NOT, respectively.

a An integer.

b An integer.

C H A P T E R 2 3

Utility Functions Reference

Array Functions 23-31

Array Functions 23

These functions operate on and manipulate arrays.

AddArraySlot 23

AddArraySlot (array, value)

Appends a new element onto an array.

array An array.

value A value to add as a new element in the array.

For example:

myArray := [123, 456]

#1634 myArray

addArraySlot (myArray, "I want chopstix")

#12 "I want chopstix"

myArray

#1634 [123, 456, "I want chopstix"]

Array 23

Array(size, initialValue)

Returns a new array with size number of elements that each contain
initialValue.

size An integer.

initialValue A value.

C H A P T E R 2 3

Utility Functions Reference

23-32 Array Functions

ArrayInsert 23

ArrayInsert(array, element, position)

Inserts an element into an array and returns the modified array.

array The array to modify.

element The element to insert into the array.

position The index where the new element is to be inserted.
Specify zero to insert the element at the beginning of the
array. Specify the result of Length(array) to insert the
element at the end of the array.

The length of the array increases by one.

ArrayMunger 23

ArrayMunger(dstArray, dstStart, dstCount, srcArray, srcStart,
srcCount)

Replaces elements in dstArray using elements from srcArray and returns the
destination array after munging is complete. This function is destructive to
dstArray.

dstArray The destination array.

dstStart The starting element in the destination array.

dstCount The number of elements to replace in dstArray. You can
specify nil for dstCount to go to the end of the array.

srcArray An array. You can specify nil for srcArray to delete the
elements.

srcStart The starting position in the source array from which to
begin taking elements to place into the destination array.

srcCount The number of elements to use from the source array.
You can specify nil to go to the end of the source array.

C H A P T E R 2 3

Utility Functions Reference

Array Functions 23-33

Here is an example:

ArrayMunger([10,20,30,40,50], 2, 3, [55,66,77,88,99], 0, nil)

[10, 20, 55, 66, 77, 88, 99]

Using ArrayMunger is the most efficient way to join two arrays.

To put B at the front of A:

ArrayMunger(A, 0, 0, B, 0, nil)

To put B at the end of A:

ArrayMunger(A, Length(A), 0, B, 0, nil)

You can also do this with SetUnion (page 23-41), which has the additional
property of eliminating duplicates. However, ArrayMunger is much faster if
you don’t need to eliminate duplicates.

ArrayRemoveCount 23

ArrayRemoveCount(array, startIndex, count)

Removes one or more elements from an array.

array The array from which to remove elements.This
parameter is modified by this function.

startIndex An integer that is the index of the first element to
remove.

count An integer specifying the number of elements to remove.

Any elements following those removed are shifted left so that no empty
elements remain.

C H A P T E R 2 3

Utility Functions Reference

23-34 Array Functions

InsertionSort 23

InsertionSort(array, test, key)

Sorts an array, preserving the original relative ordering of equivalent
elements.

array The array to modify by sorting.

test Indicates how to sort the array. See the description of
the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This sort performs well on arrays that are nearly sorted already and on very
small arrays. This sort is an O(n2) sort. To sort larger arrays, use Sort
(page 23-41) or StableSort (page 23-42).

Length 23

Length (array)

Returns the number of elements in an array, the number of slots in a frame,
or the size, in bytes, of a binary object.

array An array, frame, or binary object.

For example:

myArray := [123, 456, "I want chopstix"]

length (myArray)

#12 3

Note that arrays are indexed from 0, but length returns a count of the
number of characters. Therefore, the last element of this example is element 2.

C H A P T E R 2 3

Utility Functions Reference

Array Functions 23-35

Note

If you pass a string to this function, you will get the number
of bytes a string occupies. To get the length of strings, use
StrLen instead. ◆

LFetch 23

LFetch(array, item, start, test, key)

Searches an array in a linear manner for the specified element. LFetch
returns the element or nil if it is not found or if start is equal to or greater
than the length of the array.

array The array in which to search.

item The key value for which to search.

start The array index at which to begin searching.

test Indicates how to compare key values to test for a match.
Specify one of the following symbols for test:

'|=| If the objects being compared are
immediates and reals, their values are
compared for equivalency. For reference
objects, their identity is compared.

'|str=| For string objects, the contents of the
strings are compared for equivalency.

Alternatively, for nonstandard sorting situations, you
can specify a function object that compares two key
values and returns a Boolean or integer value indicating
whether or not they are equivalent. This function is
called to test for matches. The function is passed two
parameters, A and B, where A is the item parameter
passed to LFetch and B is the array element being
tested.

The function must return a non-nil value (or zero) if
the items are equivalent, or nil (or a non-zero integer)
if the items are not equivalent.

C H A P T E R 2 3

Utility Functions Reference

23-36 Array Functions

Note that specifying a function object for test results in
much slower performance than using one of the
predefined symbols.

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This function works just like LSearch, except that LSearch returns the
index of the found item.

If you know that the array you are working with is sorted, you can use the
function BFetch to search for an element. This function, based on binary
search algorithms, is much faster on large arrays than LFetch or LSearch,
though it can be used only on sorted arrays.

LSearch 23

LSearch(array, item, start, test, key)

Searches an array in a linear manner for the specified element. It returns the
index of the element, or nil if it is not found or if start is equal to or greater
than the length of the array.

array The array in which to search.

item The key value for which to search.

start The array index at which to begin searching.

test Indicates how to compare key values to test for a match.
Specify one of the following symbols for test:

'|=| If the objects being compared are
immediates and reals, their values are
compared for equivalency. For reference
objects, their identity is compared.

'|str=| For string objects, the contents of the
strings are compared for equivalency.

Alternatively, for nonstandard sorting situations, you
can specify a function object that compares two key

C H A P T E R 2 3

Utility Functions Reference

Array Functions 23-37

values and returns a Boolean or integer value indicating
whether or not they are equivalent. This function is
called to test for matches. The function is passed two
parameters, A and B, where A is the item parameter
passed to LSearch and B is the array element being
tested. The function must return a non-nil value (or
zero) if the items are equivalent, or nil (or a non-zero
integer) if the items are not equivalent. Note that
specifying a function object for test results in much
slower performance than using one of the predefined
symbols.

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This function works just like LFetch, except that LFetch returns the found
item instead of its index.

If you know that the array you are working with is sorted, you can use the
function BFind to search for an element. This function, based on binary
search algorithms, is much faster than LSearch, though it can be used only
on sorted arrays.

NewWeakArray 23

NewWeakArray(length)

Returns a new weak array with length number of elements, which are
initialized to nil.

length An integer specifying the size of the array to create.

A weak array is an array that does not prevent the objects it refers to from
being garbage-collected. That is, if the only references to an object are from
weak arrays, the object is destroyed during the next garbage collection cycle.
When that happens, the references in the weak arrays are replaced with nil.

C H A P T E R 2 3

Utility Functions Reference

23-38 Array Functions

The purpose of weak arrays is to cache objects without preventing them from
being garbage-collected. For example, if you want to keep an array of all
objects in existence of a certain type, you could add each object to an array as
it’s created. If you use a regular array, those objects can never be
garbage-collected, because there are always references to them in your array,
and the system eventually runs out of memory. However, if you use a weak
array, its references don’t affect garbage collection, so the objects are
garbage-collected normally, freeing memory when it is needed.

SetAdd 23

SetAdd (array,value,uniqueOnly)

Appends an element to the specified array and returns the modified array, or
nil if the element was not added.

array The array to which SetAdd appends the element in
value.

value The element to append to the array specified by array.

uniqueOnly Whether to add only unique elements to the array; if the
value of this parameter is non-nil, SetAdd appends
value to the array only if it is not already present in the
array. If the element specified by the value parameter is
already present in the array, SetAdd returns nil and
does not append the element. If uniqueOnly is nil, the
item is appended to the array without checking whether
it is unique.

Note

The type of comparison used in this function is pointer
comparison, not content comparison. ◆

SetContains 23

SetContains(array, item)

array An array.

item An item that may be in the array.

C H A P T E R 2 3

Utility Functions Reference

Array Functions 23-39

Searches each element of an array to determine if item is equal to one of the
array elements. If a match is found, this function returns the array index of
the matching array element. If item is not found in the array, nil is returned.

Note

The type of comparison used in this function is pointer
comparison, not content comparison. ◆

SetDifference 23

SetDifference(array1, array2)

Returns an array that contains all of the elements in array1 that do not exist
in array2.

array1 An array.

array2 An array.

If array1 is nil, nil is returned.

Notes

The type of comparison used in this function is pointer
comparison, not content comparison.

Arguments to this function can’t contain duplicate elements (no two
elements can be the same object). If they do, the return value of the function
is undefined ◆

SetLength 23

SetLength (array, length)

Sets the length of an array.

array An array.

length An integer.

C H A P T E R 2 3

Utility Functions Reference

23-40 Array Functions

This function is useful for increasing or decreasing the size of an array. If you
increase the size of the array, new elements are filled with a nil value. For
example:

myArray := [123, 456, "I want chopstix"]
#1634 myArray
setLength (myArray, 4)
#1634 [123, 456, "I want chopstix", NIL]
myArray [3] := 789
#3156 789
myArray
#1634 [123, 456, "I want chopstix", 789]

SetOverlaps 23

SetOverlaps(array1, array2)

Compares each element in array1 to each element in array2, and returns the
index of the first element in array1 that is equal to an element in array2. If no
equivalent elements are found, nil is returned.

array1 An array.

array2 An array.

Note

The type of comparison used in this function is pointer
comparison, not content comparison. ◆

SetRemove 23

SetRemove (array, value)

SetRemove removes the specified element from the specified array and
returns the modified array. The length of the array shifts left by one and all
elements after the deleted element shift by one to the next lowest-numbered
array position. If the item is not found in the array, this function returns nil.

array The array from which SetRemove removes the
specified element.

value The element to remove from the array specified by array.

C H A P T E R 2 3

Utility Functions Reference

Array Functions 23-41

Note

The type of comparison used in this function is identity
comparison, not pointer comparison. ◆

SetUnion 23

SetUnion(array1, array2, uniqueFlag)

Returns an array that contains all of the elements in array1 and array2.

array1 An array.

array2 An array.

uniqueFlag If any non-nil value is found, SetUnion does not
include any duplicate items in the array it returns. If
uniqueFlag is nil, all elements from both arrays are
included, even if there are duplicates.

If both arrays are nil, an empty array is returned.

SetUnion can eliminate duplicates. If you do not need that property, you
can combine two arrays more efficiently using ArrayMunger (page 23-32).

Note

The type of comparison used in this function is identity
comparison, not pointer comparison. ◆

Sort 23

Sort(array, test, key)

Sorts an array and returns it after it is sorted. The sort is destructive; that is,
the array you give it is modified. The sort also is not stable; that is, elements
with equal keys won’t necessarily have the same relative order after the sort.

array An array.

test Indicates how to sort the array. See the description of
the test parameter in “Sorted Array Functions”
(page 23-43).

C H A P T E R 2 3

Utility Functions Reference

23-42 Array Functions

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This example sorts myArray in ascending numerical order according to the
timestamp slot of the entries:

Sort(myArray, '|<|, 'timestamp)

This example sorts myArray in descending string order according to the first
and last names concatenated together:

Sort(myArray, '|str>|, func (e) e.first && e.last)

StableSort 23

StableSort(array, test, key)

Sorts an array, preserving the original relative ordering of equivalent
elements.

array The array to modify by sorting.

test Indicates how to sort the array. See the description of
the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This sort requires working memory, so may not be suitable for extremely
large arrays or in low-memory conditions.

C H A P T E R 2 3

Utility Functions Reference

Sorted Array Functions 23-43

Sorted Array Functions 23

This section describes new functions that operate on sorted arrays. These
functions are based on binary search algorithms, hence the “B” prefix to the
function names.

IMPORTANT

The arrays you pass to these functions must be ordered,
otherwise the results are undefined. To sort an array, you can
use the functions Sort, InsertionSort, or
StableSort. ▲

These sorted array functions each use test and key parameters to allow them
to be adapted to different data structures. Typically, these functions search, or
iterate over several items in an array. As each element in an array is
examined, the key argument extracts a value, called the key, from the
element. That key is treated as specified by the test argument.

Here’s an explanation of these parameters:

test Indicates the sort order of the array. Specify one of the
following symbols for test, to indicate how the array is
sorted:

'|<| Sorted in ascending numerical order.
'|>| Sorted in descending numerical order.
'|str<| Sorted in ascending string order, not case

sensitive.
'|str>| Sorted in descending string order, not

case sensitive.
'|sym<| Sorted in ascending symbol order, based

on lexical comparison of symbol name.
'|sym>| Sorted in descending symbol order, based

on lexical comparison of symbol name.

C H A P T E R 2 3

Utility Functions Reference

23-44 Sorted Array Functions

Alternatively, for nonstandard sorting situations, you
can specify a function object that compares two key
values and returns an integer that indicates how they
are sorted relative to each other. This function is called
by any of the sorted array functions to determine
sorting relationships between elements. The function is
passed two parameters, A and B, and must return a
positive integer if A sorts after B, must return zero if A
sorts equivalently to B, and a must return a negative
integer if A sorts before B. Note that specifying a
function object for test results in much slower
performance than using one of the predefined symbols.

key Defines the key within each array element. Specify nil
to use the array elements directly as they are. You can
specify a path expression, in which case the array
elements are assumed to be frames or arrays and the
path is applied to each element to find the key. You can
also specify a function that takes one parameter (the
element) and returns the key.

BDelete 23

BDelete(array, item, test, key, count)

Deletes elements from an ordered array.

This function returns the number of elements deleted.

array The array to modify.

item The key value for which to search. Elements with this
key are deleted.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one

C H A P T E R 2 3

Utility Functions Reference

Sorted Array Functions 23-45

parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

count The maximum number of elements to delete. Specify
nil to indicate that all matching elements are to be
deleted.

BDifference 23

BDifference(array1, array2, test, key)

Returns a new sorted array containing those elements from array1 that do not
have equivalent elements in array2.

array1 The first array. This array is not modified.

array2 The second array. This array is not modified.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

BFetch 23

BFetch(array, item, test, key)

Uses a binary search to find an element in a sorted array. The leftmost
matching element is returned, or nil is returned if no elements are found.

array The array to search.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

C H A P T E R 2 3

Utility Functions Reference

23-46 Sorted Array Functions

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This function works just like BFind, except that BFind returns the index of
the matched item.

BFetchRight 23

BFetchRight(array, item, test, key)

Uses a binary search to find an element in a sorted array. The rightmost
matching element is returned, or nil is returned if no elements are found.

array The array to search.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This function works just like BFindRight, except that BFindRight returns
the index of the matched item.

BFind 23

BFind(array, item, test, key)

Uses a binary search to find an element in a sorted array. The index of the
leftmost matching element is returned, or nil is returned if no elements are
matched.

array The array to search.

item The key value for which to search.

C H A P T E R 2 3

Utility Functions Reference

Sorted Array Functions 23-47

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This function works just like BFetch, except that BFetch returns the
matched item instead of its index.

BFindRight 23

BFindRight(array, item, test, key)

Uses a binary search to find an element in a sorted array. The index of the
rightmost matching element is returned, or nil is returned if no elements
are found.

array The array to search.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

This function works just like BFetchRight, except that BFetchRight
returns the matching item instead of its index.

C H A P T E R 2 3

Utility Functions Reference

23-48 Sorted Array Functions

BInsert 23

BInsert(array, element, test, key, uniqueOnly)

Inserts an element into the proper position in a sorted array. In the case of
equivalent elements, the element is inserted to the left of its equivalent.

array The array to modify.

element The new element to insert. Note that the key parameter
is used to extract its key value.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

uniqueOnly Specify non-nil to indicate that the element is not to be
inserted if the array already contains an element with an
equivalent key value. Specify 'returnElt to indicate
the same thing, and also that this function should return
an array element. It returns either the element that was
inserted, or if a matching element is found in the array,
that element is returned. This is useful when you want
to maintain an object list in order to conserve space or
ensure pointer equality.

Specify nil to indicate that the element is to be inserted
even if the array already contains an element with an
equivalent key. In this case, the new element is inserted
to the left of the existing equivalent elements.

This function has three possible return values, as follows:

■ It can return nil, signaling that the element was not inserted.

■ It can return an integer, which is the index at which the element was
inserted.

C H A P T E R 2 3

Utility Functions Reference

Sorted Array Functions 23-49

■ It can return an array element—either the element that was inserted (if it
was unique), or an element that already exists in the array, whose key
value matches the key value of the element you wanted to insert. This
type of return value can occur only if you specify 'returnElt for
uniqueOnly.

Here is an example of how you might use this function with uniqueOnly set
to 'returnElt to ensure pointer equality:

// :GetStr() returns a string input by the user

bodyColor := BInsert(colorList,:GetStr(),'|str<|,nil,'returnElt);

interiorColor:= BInsert(colorList,:GetStr(),'|str<|,nil,'returnElt);

if bodyColor = interiorColor then Print("bad idea");

If GetString returns a string already in colorList, this code makes sure
that the original string is reused. This is why using the = operator to test for
equality works. It also allows the duplicate string to be garbage-collected,
provided there are no remaining references to it.

BInsertRight 23

BInsertRight(array, element, test, key, uniqueOnly)

Inserts an element into the proper position in a sorted array. In the case of
equivalent elements, the element is inserted to the right of its equivalent. The
index at which it was inserted is returned, or nil is returned if it was not
inserted.

array The array to modify.

element The new element to insert. Note that the key parameter
is used to extract its key value.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one

C H A P T E R 2 3

Utility Functions Reference

23-50 Sorted Array Functions

parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

uniqueOnly A Boolean value. Specify a non-nil value to indicate
that the element is not to be inserted if the array already
contains an element with an equivalent key value.
Specify nil to indicate that the element is to be inserted
even if the array already contains an element with an
equivalent key. In the latter case, the new element is
inserted to the right of the existing equivalent elements.

BIntersect 23

BIntersect(array1, array2, test, key, uniqueOnly)

Returns a new sorted array consisting of the equivalent elements from the
two specified arrays.

array1 The first array.; this array is not modified.

array2 The second array; this array is not modified.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

uniqueOnly A Boolean value. Specify a non-nil value to indicate
that elements with duplicate key values are not allowed
in the resulting array. Note that this works only if array1
and array2 are both free of equivalent elements.

Specify nil to indicate that elements with duplicate key
values are allowed in the resulting array. Note that this
guarantees that the resulting array has at least two
equivalent elements for every intersecting value, since
intersection finds equivalent elements.

C H A P T E R 2 3

Utility Functions Reference

Sorted Array Functions 23-51

If equivalent elements are found in the resulting array,
they are ordered as follows: equivalent elements from
the same source array retain their original ordering, and
equivalent elements from array1 come before those in
array2.

BMerge 23

BMerge(array1, array2, test, key, uniqueOnly)

Merges two ordered arrays into one new ordered array, which is returned.

array1 The first array; this array is not modified.

array2 The second array; this array is not modified.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

uniqueOnly A Boolean value. Specify a non-nil value to indicate
that elements with duplicate key values are not allowed
in the resulting array. Note that this works only if array1
and array2 are both free of equivalent elements.

Specify nil to indicate that elements with duplicate key
values are allowed in the resulting array.

If equivalent elements are found in the resulting array,
they are ordered as follows: equivalent elements from
the same source array retain their original ordering, and
equivalent elements from array1 come before those in
array2.

C H A P T E R 2 3

Utility Functions Reference

23-52 Sorted Array Functions

BSearchLeft 23

BSearchLeft(array, item, test, key)

Uses binary search to find an element in a sorted array. The index of the
smallest and leftmost element that is greater than or equal to item is returned.
The value Length(array) is returned if item is larger than all elements.

array The array to search.

item The key value for which to search.

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

Here is an example of how this function might be used:

// This code extracts all elements between "F" and "Na"

array := ["Ag","C","F","Fe","Hg","K","N","Na","Ni","Pu","Zn"];

pos1 := Min(Length(array)-1,BSearchLeft(array,"F",'|str<|,nil));

pos2 := Max(0,BSearchRight(array,"Na",'|str<|,nil));

ArrayMunger([],0,nil,array, pos1, pos2-pos1+1);

BSearchRight 23

BSearchRight(array, item, test, key)

Uses binary search to find an element in a sorted array. The index of the
largest and rightmost element that is less than or equal to item is returned.
The value –1 is returned if all elements are larger than item.

array The array to search.

item The key value for which to search.

C H A P T E R 2 3

Utility Functions Reference

Integer Math Functions 23-53

test Indicates the sort order of the array. See the description
of the test parameter in “Sorted Array Functions”
(page 23-43).

key Defines the key within each array element. Specify nil,
a path expression, or a function that takes one
parameter. See the description of the key parameter in
“Sorted Array Functions” (page 23-43).

Integer Math Functions 23

These math functions operate on or return integers. (Some of the floating
point functions can also operate on integers.)

Abs 23

Abs(x)

Returns the absolute value of an integer or real number.

x An integer or real number.

Ceiling 23

Ceiling(x)

Returns the smallest integer that is not less than the specified real number.
(Rounds up the real number to an integer.)

x A real number.

Floor 23

Floor(x)

Returns the largest integer that is not greater than the specified real number.
(Rounds down the real number to an integer.)

x A real number.

C H A P T E R 2 3

Utility Functions Reference

23-54 Integer Math Functions

GetRandomState 23

GetRandomState()

Returns the current state of the random number generator as a binary object
of unspecified format. The random state object is useful only for passing to
SetRandomState.

Max 23

Max(a, b)

Returns the maximum value of the two integers a and b.

a An integer.

b An integer.

Min 23

Min(a, b)

Returns the minimum value of the two integers a and b.

a An integer.

b An integer.

Real 23

Real(x)

Converts the specified integer to a real number.

x An integer.

Random 23

Random (low, high)

Returns a random integer in the range between the two integers, low and
high. The range is inclusive of the numbers low and high.

low An integer.

high An integer.

C H A P T E R 2 3

Utility Functions Reference

Integer Math Functions 23-55

For example:

random (0, 100)

#120 72

SetRandomSeed 23

SetRandomSeed (seedNumber)

Seeds the random number generator with the number you specify.

seedNumber An integer.

When seeded with the same number, the random number generator
(Random function) returns the same sequence of random numbers each time
you reseed it. Do not use 0 to seed the generator as it will return 0 instead of
a random number. To generate virtually random numbers, seed it with the
value returned from the time function Ticks, as follows:

SetRandomSeed(Ticks());

Note

There is only one random number generator on the Newton,
so calls by other functions may interfere with your function
getting a consistent sequence of values. ◆

SetRandomState 23

SetRandomState(randomState)

Resets the random number generator to a previously saved state.

randomState A random state object returned by GetRandomState.

The return value of this function is unspecified.

Note that this function provides different functionality from
SetRandomSeed, which lets you conveniently initialize the random state by
providing an integer seed value.

C H A P T E R 2 3

Utility Functions Reference

23-56 Floating Point Math Functions

Floating Point Math Functions 23

NewtonScript provides the floating point math functions documented in this
section.

The NewtonScript floating point number system is based on standards 754
and 854, adopted by the Institute of Electrical and Electronics Engineers
(IEEE). For more details on IEEE-standard arithmetic than are given here,
refer to the PowerPC Numerics volume of Inside Macintosh or to the Apple
Numerics Manual, Second Edition. These books describe SANE, the standard
Apple numeric environment. The NewtonScript environment supports many
features of SANE.

NewtonScript floating point numbers (also called real numbers) correspond
to the double format of the IEEE standards. The number system supports
representations for the following values:

■ Normal numbers—numbers with approximately 16 decimal digits of

precision, ranging from down to .

■ Subnormal numbers—numbers ranging from down to

, whose precision diminishes from approximately 16 decimal
digits down to less than one digit.

■ Signed zeros—the values +0 and –0, which compare equal, but whose
behavior differs when, for example, it is divided into nonzero values.

■ Signed infinities—the values +INF and -INF, which indicate results too
large to represent or the result of dividing a nonzero numerator by a zero
denominator.

■ Not-a-Number symbols, or NaNs—values used to represent missing or
uninitialized data, or the results of operations, such as , which have
no meaning in the real number system.

In some application areas, you may find it useful to think of signed zeros and
infinities in terms of mathematical limits. For example, although +0 and –0

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-57

compare as equal, it may be the case for a function f that

, and you may find it useful to exploit that fact.

Similarly, you may find it useful to interpret g(+INF) as .

The functions in this section follow the model of the arithmetic operations set
forth in the IEEE standards; namely, they produce results that are exact when
the results are exactly representable in the number system, and otherwise
deliver the nearest (or nearly so) representable number to the mathematically
correct result. The IEEE standards specify that one or more exceptions be
raised when the result of an operation is different from the mathematical
result, or when the result is not defined in the real number system. The
possible exceptions are

■ Inexact—the result is rounded or otherwise altered from the mathematical
result.

■ Underflow—the nonzero result is too tiny to represent except as zero or a
subnormal number, and is rounded to less precision than a normal
number.

■ Overflow—the result is too huge to represent as a normal number.

■ Divide by zero—the quotient of a nonzero value divided by zero produces
+INF or -INF, according to the arguments’ signs.

■ Invalid—the result is not mathematically defined, as is the case with 0/0.

See “Managing the Floating Point Environment” (page 23-73) for further
discussion of the handling of floating point exceptions.

One feature of the IEEE standards and SANE is the choice of rounding
direction for results not exactly representable. In NewtonScript systems,
rounding is always to the nearest representable number (with ties going to
the value whose least-significant bit is zero). The IEEE standards also specify
rounding to the nearest value toward 0, toward +INF, or toward -INF.
However, the standards are written as though the rounding direction is
determined by a state variable in the floating point environment (see
“Managing the Floating Point Environment” (page 23-73)), while on the
ARM family of processors used by NewtonScript systems, rounding
direction is determined on an instruction-by-instruction basis.

C H A P T E R 2 3

Utility Functions Reference

23-58 Floating Point Math Functions

Acos 23

Acos(x)

Returns the inverse cosine in radians of x. Acos raises invalid for x < –1 or
x > 1. It raises inexact for all values except 1. Acos returns values between
zero and π.

x An integer or real number.

Acosh 23

Acosh(x)

Returns the inverse hyperbolic cosine of x. Acosh raises invalid for x < 1. It
raises inexact for all values except 1. Acosh(+INF) returns +INF, but Acosh
never overflows. Its value at the largest finite real number is approximately
710.

x An integer or real number.

Asin 23

Asin(x)

Returns the inverse sine in radians of x. Asin raises invalid for x < –1 or
x > 1. It raises inexact for all values except zero and raises underflow for any
finite x near zero. Asin returns values between –π/2 and π/2.

x An integer or real number.

Asinh 23

Asinh(x)

Returns the inverse hyperbolic sine of x. Asinh raises inexact for any values
except zero. Asinh(-INF) returns -INF and Asinh(+INF) returns +INF.
Asinh raises underflow for x near zero.

x An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-59

Atan 23

Atan(x)

Returns the inverse tangent in radians of x. It raises inexact for any values
except zero. Atan(-INF) returns –π/2 and Atan(+INF) returns π/2. Atan
returns values between –π/2 and π/2. It raises inexact for any nonzero x.

x An integer or real number.

Atan2 23

Atan2(x,y)

Returns the inverse tangent in radians of x/y. Atan2 uses the algebraic signs
of x and y to determine the quadrant of the result. It returns values between
–π and π. Its special cases are those of Atan.

x An integer or real number.

y An integer or real number.

Atanh 23

Atanh(x)

Returns the inverse hyperbolic of x. Atanh raises invalid for x < –1 or x > 1.
It raises inexact for all valid arguments except zero and raises underflow for
any finite x near zero. Atanh(-1.0) returns -INF and Atan(+1.0)returns
+INF.

x An integer or real number.

CopySign 23

CopySign(x,y)

Returns the value with the magnitude of x and sign of y.

x An integer or real number.

y An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

23-60 Floating Point Math Functions

Note

The order of the parameters for CopySign matches the
recommendation of the IEEE 754 floating point standard,
which is the opposite of the SANE copysign function. ◆

Cos 23

Cos(x)

Returns the cosine of the radian value x. Cos raises inexact for all finite
arguments except zero. It is periodic with period 2π. Cos raises invalid when
x is infinite.

x An integer or real number.

Cosh 23

Cosh(x)

Returns the hyperbolic cosine of x. Cosh raises inexact for all finite
arguments except zero. Cosh(-INF) and Cosh(+INF) return +INF. Cosh
raises overflow for finite values of large magnitude.

x An integer or real number.

Erf 23

Erf(x)

Returns , the error function of x. Erf raises inexact for all
arguments except zero. It raises underflow for arguments near zero.
Erf(-INF) returns –1 and Erf(+INF) returns 1.

x An integer or real number.

Mathematically, the sum of Erf(x) and Erfc(x) should be 1, though the
relationship may not hold when roundoff or underflow affects the results
significantly.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-61

Erfc 23

Erfc(x)

Returns , the complementary error function of x. Erfc raises
inexact for all arguments except zero. Erfc(-INF) returns 2 and
Erfc(+INF) returns +0.

x An integer or real number.

Exp 23

Exp(x)

Returns ex, the exponential of the x. Exp is inexact for all nonzero finite
arguments. Exp(-INF) returns +0 and Exp(+INF) returns +INF. Exp raises
overflow for large, positive, finite x, and raises underflow for negative, finite
x of large magnitude.

x An integer or real number.

Expm1 23

Expm1(x)

Returns ex – 1, one less than the exponential of x. Expm1 avoids loss of
accuracy when x is nearly zero, and the difference is nearly zero. Expm1 is
inexact for all nonzero finite arguments. Expm1(-INF) returns –1 and
Expm1(+INF) returns +INF. Expm1 raises overflow for large, positive, finite
x, and raises underflow for x near zero.

x An integer or real number.

Fabs 23

Fabs(x)

Returns the absolute value of x. It never raises an exception.

x An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

23-62 Floating Point Math Functions

FDim 23

FDim(x,y)

Returns the positive difference between its parameters:

■ If x > y, FDim returns x – y

■ Otherwise, if x <= y, FDim returns +0

■ Otherwise, if x is a NaN, FDim returns x.

■ Otherwise (y is a NaN), FDim returns y.

x An integer or real number.

y An integer or real number.

FMax 23

FMax(x,y)

Returns the maximum of its two parameters. NaN parameters are treated as
missing data:

■ If one parameter is a NaN and the other is a number, the number is
returned.

■ If both parameters are NaNs, the first parameter is returned.

(This corresponds to the max function in FORTRAN.)

x An integer or real number.

y An integer or real number.

FMin 23

FMin(x,y)

Returns the minimum of its two parameters. NaN parameters are treated as
missing data:

■ If one parameter is a NaN and the other is a number, then the number is
returned.

■ Otherwise, if both are NaNs, the first parameter is returned.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-63

(This corresponds to the min function in FORTRAN.)

x An integer or real number.

y An integer or real number.

Fmod 23

Fmod(x,y)

Returns the remainder when x is divided by y to produce a truncated
integral quotient. That is, Fmod returns the value x - y*Trunc(x/y).

x An integer or real number.

y An integer or real number.

Gamma 23

Gamma(x)

Returns Γ(x), the gamma function applied to x. Gamma raises inexact for all
nonintegral x. It raises invalid for nonpositive integral arguments z.
Gamma(p) returns (p-1)! for positive, integral p, with 0! defined as 1.
Gamma(+INF) returns +INF. Gamma can raise overflow.

x An integer or real number.

Hypot 23

Hypot(x,y)

Returns the square root of the sum of the squares of x and y, avoiding the
hazards of overflow and underflow when the arguments are large or tiny in
magnitude but the result is within range.

x An integer or real number.

y An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

23-64 Floating Point Math Functions

IsFinite 23

IsFinite(x)

Returns true if x is finite; returns nil if x is infinite.

x An integer or real number.

IsNaN 23

IsNaN(x)

Returns true if x is a NaN; returns nil if x is a number.

x An integer or real number.

Note

Saying that x “is a NaN” and “is not a number” are not the
same thing. A NaN is a nonnumerical value in a numerical
format; on the other hand, a string such as "foo" is not a
number because it is not a numerical object. ◆

IsNormal 23

IsNormal(x)

Returns true if x is a normal number; returns nil if x is zero, subnormal,
infinite, or a NaN.

x An integer or real number.

LessEqualOrGreater 23

LessEqualOrGreater(x, y)

Returns true if neither x nor y is a NaN; therefore, the two arguments are
ordered; otherwise, returns nil.

x An integer or real number.

y An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-65

LessOrGreater 23

LessOrGreater(x, y)

Returns true if either x < y or x > y; otherwise, returns nil.

x An integer or real number.

y An integer or real number.

LGamma 23

LGamma(x)

Returns the natural logarithm of Γ(x), the gamma function applied to x.
LGamma raises inexact for all positive x. It raises invalid for negative or zero
x. LGamma(+INF) returns +INF.

x An integer or real number.

Log 23

Log(x)

Returns the natural logarithm of x. Log raises inexact for positive, finite
arguments except 1. Log(0.0) returns -INF and raises divide by zero.
Log(+INF) returns +INF. Log raises invalid for x < 0.

x An integer or real number.

Logb 23

Logb(x)

Returns the integral value k such that 1 ≤ |x|*2–k < 2, when x is finite and
nonzero. Logb(0.0) returns -INF and raises divide by zero. Logb(-INF)
and Logb(+INF) return +INF.

Log1p 23

Log1p(x)

Returns the natural logarithm of 1+x. While accurate for all arguments no
less than –1, Log1p preserves accuracy when x is nearly zero—when

C H A P T E R 2 3

Utility Functions Reference

23-66 Floating Point Math Functions

computing Log(1.0 + x) would suffer from the mere addition of x to 1.
Log1p raises inexact for all finite arguments greater than –1 except 0. It raises
invalid for any x less than –1 and raises underflow for x near zero.
Log1p(-1.0) returns -INF and raises divide by zero. Log1p(+INF)
returns +INF.

x An integer or real number.

Log10 23

Log10(x)

Returns the logarithm base 10 of x. Because of the mathematical relationship

, Log10 shares the computational properties of Log.

x An integer or real number.

NearbyInt 23

NearbyInt(x)

Returns x rounded to the nearest integral value. NearbyInt differs from
Rint only in that it does not raise the inexact exception.

x An integer or real number.

NextAfterD 23

NextAfterD(x,y)

Returns the next representable number after x in the direction of y.

If x and y are equal, the result is x. If either argument is a NaN, NextAfterD
returns one of the NaN arguments. When x is finite but the result is infinite,
NextAfterD raises overflow. When the result is zero or subnormal,
NextAfterD raises underflow.

x An integer or real number.

y An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-67

Pow 23

Pow(x,y)

Returns xy. When x < 0, Pow raises invalid unless y is an integral value. It can
raise inexact, overflow, underflow, and invalid.

x An integer or real number.

y An integer or real number.

RandomX 23

RandomX(x)

Returns a two-element array, based on the random seed x. The first element
of the result is a pseudo-random number that is the result of the SANE
randomx function. The second element is the new seed returned by the
randomx function. The result is an integral value between 0 and 231 – 1.

x An integer or real number.

Remainder 23

Remainder(x,y)

Returns the exact difference x – n*y, where n is a mathematical integer (as
opposed to a NewtonScript integer—n may be thousands of bits wide)
nearest to x/y in the sense of rounding to nearest integral value. The
magnitude of the result is no greater than half the magnitude of y. When the
result is zero, it has the sign of x. Remainder raises invalid when y is zero or
x is infinite. It never raises overflow, underflow, or inexact.

x An integer or real number.

y An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

23-68 Floating Point Math Functions

RemQuo 23

RemQuo(x,y)

Returns a two-element array. The first element is Remainder(x, y). The
second element is the seven low-order bits of the quotient x/y rounded to
the nearest integer and given the sign of the quotient.

x An integer or real number.

y An integer or real number.

Rint 23

Rint(x)

Is identical to Nearbyint except that it raises inexact when its result differs
from x.

x An integer or real number.

RintToL 23

RintToL(x)

Returns an integer obtained by rounding x to an integral (real) value and
then converting that value to an integer. RintToL raises inexact when its
result differs in value from x. It raises invalid and returns an unspecified
value when the rounded value of x cannot be represented exactly as an
integer object.

x An integer or real number.

Note

RintToL always rounds to nearest integral value. ◆

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-69

Round 23

Round(x)

Returns the integral real number obtained from x by adding 1/2 to x and
truncating the result to the nearest integer toward 0. It raises inexact when
the result differs from x.

x An integer or real number.

Scalb 23

Scalb(x, k)

Returns x * 2k. Scalb avoids explicit computation of 2k and so avoids the
complications of overflow or underflow when 2k is out of range but the result
isn’t. Scalb can raise overflow, underflow, and inexact. Scalb and Logb are
related by the formula 1 ≤ Scalb(x, RintToL(-Logb(x))) < 2 for finite,
nonzero x.

x An integer or real number.

y An integer.

SignBit 23

SignBit(x)

Returns a nonzero integer if the sign of x is negative; otherwise (the sign of x
is positive), returns the integer 0.

x An integer or real number.

Signum 23

Signum(x)

Returns the integer value –1 if x < 0, 0 if x = 0, or 1 if x > 0. If x is an integer,
Signum returns an integer; otherwise, if x is a real number, Signum returns a
real number. If x is neither an integer nor a real, Signum throws the
exception kFramesErrNotANumber.

x An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

23-70 Floating Point Math Functions

Sin 23

Sin(x)

Returns the sine of the radian value x. Sin raises inexact for all finite values
except zero. It is periodic with period 2π. Sin raises invalid for infinite x and
raises underflow for x near zero.

x An integer or real number.

Sinh 23

Sinh(x)

Returns the hyperbolic sine of x. Sinh raises inexact for all finite arguments
except zero. Sinh(-INF) returns -INF and Sinh(+INF) returns +INF.
Sinh raises overflow for large finite values and raises underflow near zero.

x An integer or real number.

Sqrt 23

Sqrt(x)

Returns the square root of x. It raises invalid for x < 0, and can raise inexact
for positive x.

x An integer or real number.

Tan 23

Tan(x)

Returns the tangent of the radian value x. Tan raises inexact for all finite
values except zero. It is periodic with period π. Tan raises invalid for infinite
x and raises underflow for x near zero.

x An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-71

Tanh 23

Tanh(x)

Returns the hyperbolic tangent of x. Tanh raises inexact for all finite
arguments except zero. Tanh(-INF) returns –1 and Tanh(+INF) returns
+1. Tanh raises overflow for large finite values and raises underflow near
zero.

x An integer or real number.

Trunc 23

Trunc(x)

Returns the integral real number nearest to but no larger in magnitude than x.

x An integer or real number.

Unordered 23

Unordered(x, y)

Returns true if x and y satisfy none of x < y, x = y, or x > y (because one or
both of x and y are NaNs); if neither x nor y is a NaN, they satisfy one of the
three order relations and Unordered returns nil.

x An integer or real number.

y An integer or real number.

UnorderedGreaterOrEqual 23

UnorderedGreaterOrEqual(x, y)

Returns true if x and y satisfy x ≥ y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

23-72 Floating Point Math Functions

UnorderedLessOrEqual 23

UnorderedLessOrEqual(x, y)

Returns true if x and y satisfy x ≤ y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

UnorderedOrEqual 23

UnorderedOrEqual(x, y)

Returns true if x and y satisfy x = y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

UnorderedOrGreater 23

UnorderedOrGreater(x, y)

Returns true if x and y satisfy x > y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

UnorderedOrLess 23

UnorderedOrLess(x, y)

Returns true if x and y satisfy x < y or are unordered (because one or both of
x and y are NaNs); otherwise, returns nil.

x An integer or real number.

y An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-73

Managing the Floating Point Environment 23
The floating point environment is a set of state variables maintained by the
Newton system and the underlying processor. The environment contains
information about which floating point exceptions have occurred. Floating
point exceptions are distinct from NewtonScript exceptions. When floating
point exceptions arise (for example, overflow arises when the sum of two
huge numbers is too large to represent in the number system), the system
raises an exception flag in the environment. Exception flags can be tested,
cleared, or raised by functions in this section. Once raised, an exception flag
remains raised until you clear it using calls from this section. The predefined
constants used to select the floating point exception flags are shown in
Table 23-2.

You can refer to multiple exceptions in a single function invocation by
forming the bitwise-OR of the predefined constants, using expressions like
Bor(Bor(fe_Invalid, fe_DivByZero), fe_Overflow).

Table 23-2 Floating point exceptions

Constant Value Meaning

fe_Inexact 0x010 inexact

fe_DivByZero 0x002 divide by zero

fe_Underflow 0x008 underflow

fe_Overflow 0x004 overflow

fe_Invalid 0x001 invalid

fe_All_Except 0x01F all exceptions

C H A P T E R 2 3

Utility Functions Reference

23-74 Floating Point Math Functions

Note

The representation of the floating point environment is
implementation dependent. Functions that manipulate the
environment and its components do so without exposing
their implementation. In particular, the floating point
exception flags may or may not be implemented as
single bits. ◆

The functions that manage the floating point environment are based on
recommended numerical extensions to the ANSI C language. The
recommendations for C include functions to test and alter the direction of
rounding. Although the direction of rounding is determined by the
environment on most systems, Newton systems based on the ARM family of
processors determine the rounding direction on an instruction-by-instruction
basis, so rounding is not determined by the environment.

You can pass the predefined constant fe_Dfl_Env to the functions
FeSetEnv and FeUpdateEnv, which take an environment object as a
parameter. Fe_Dfl_Env indicates the default environment, in which all
exception flags are clear.

FeClearExcept 23

FeClearExcept(excepts)

Clears the floating point exception flags indicated by excepts.

excepts The integer bitwise-OR of one or more floating point
exceptions.

FeGetEnv 23

FeGetEnv()

Returns a data object representing the current floating point environment.

C H A P T E R 2 3

Utility Functions Reference

Floating Point Math Functions 23-75

FeGetExcept 23

FeGetExcept(excepts)

Returns a data object representing the current state of the exception flags
indicated by excepts.

excepts The integer bitwise-OR of one or more floating point
exceptions.

Note

The representation of the exception flags is unspecified. ◆

FeHoldExcept 23

FeHoldExcept()

Returns a data object representing the current floating point environment,
and clears the exception flags.

FeRaiseExcept 23

FeRaiseExcept(excepts)

Raises the floating point exception flags indicated by excepts.

excepts The integer bitwise-OR of one or more floating point
exceptions.

Note

Because floating point exceptions are not tied to the general
NewtonScript exception-handling mechanism, raising a flag
merely sets an internal variable; raising a flag does not alter
the flow of control. ◆

C H A P T E R 2 3

Utility Functions Reference

23-76 Floating Point Math Functions

FeSetEnv 23

FeSetEnv(envObj)

Installs the floating point environment represented by the object envObj.

envObj Either the predefined constant fe_Dfl_Env or an
object returned by a call to FeGetEnv or
FeHoldExcept.

FeSetExcept 23

FeSetExcept(flagObj, excepts)

The parameter flagObj is an object containing an implementation-dependent
representation of one or more floating point exception flags; flagObj must be
set by a previous call to FeGetExcept. FeSetExcept alters the current
environment so that those floating point exception flags indicated by excepts
match the corresponding values in flagObj.

flagObj An object (returned by a previous call to FeGetExcept)
containing a representation of one or more floating
point exception flags.

excepts The integer bitwise-OR of one or more floating point
exceptions.

This function does not raise exceptions; it just alters the state of the flags.

FeTestExcept 23

FeTestExcept(excepts)

Returns the bitwise-OR of the floating point exceptions indicated by excepts
whose flags are raised in the current environment.

excepts The integer bitwise-OR of one or more floating point
exceptions.

C H A P T E R 2 3

Utility Functions Reference

Financial Functions 23-77

FeUpdateEnv 23

FeUpdateEnv(envObj)

Saves the state of the current exception flags, installs the environment
represented by envObj, and then re-raises the saved exceptions.

envObj Either the predefined constant fe_Dfl_Env or an
object returned by a call to FeGetEnv or
FeHoldExcept.

You can use FeUpdateEnv in conjunction with FeHoldExcept to write
functions that hide spurious exceptions from their callers:

func() begin

savedEnv := FeHoldExcept(); // clears flags

result := ...; // ecomputation in which underflow and

// divide by zero are benign

FeClearExcept(BOR(fe_Underflow, fe_DivByZero));

FeUpdateEnv(savedEnv); // merge old flags with new

return result

end

Financial Functions 23

These functions perform financial calculations.

Annuity 23

Annuity(r, n)

Returns the value of the financial formula . When r is the
periodic interest rate and n the number of periods, p*Annuity(r, n) is the
present value of a series of n periodic payments of size p. Annuity is robust
over the entire range of r and n, whether financially meaningful or not.

C H A P T E R 2 3

Utility Functions Reference

23-78 Financial Functions

Annuity raises invalid for r < –1. When r = –1:

■ Annuity(-1, n) returns –1 for n < 0.

■ Annuity(-1, 0) returns 0.

■ Annuity(-1, n) returns +INF and raises divide by zero for n > 0.

Otherwise, r > –1. When r is nonzero, Annuity(r, 0) returns r; otherwise,
Annuity(0, n) returns n. Annuity raises inexact in all other cases, and
can raise overflow or underflow.

r An integer or real number.

n An integer or real number.

Compound 23

Compound(r, n)

Returns the value of the financial formula . When r is the
periodic interest rate and n the number of periods, P*Compound(r, n) is
the future value of a principal amount P. Compound is robust over the entire
range of r and n, whether financially meaningful or not.

Compound raises invalid for r < –1. When r = –1:

■ Compound(-1, n) returns +INF and raises divide by zero for n < 0.

■ Compound(-1, 0) returns 1.

■ Compound(-1, n) returns +0 for n > 0.

Otherwise, r > 0. Compound(r, 0) returns 1; Compound(0, n) raises
invalid when n is infinite. Compound can raise inexact, overflow, or
underflow.

r An integer or real number.

n An integer or real number.

C H A P T E R 2 3

Utility Functions Reference

Financial Functions 23-79

GetExchangeRate 23

GetExchangeRate(country1, country2)

Returns the currency exchange rate between two countries as a floating point
number. This function first checks for an updated rate stored in the system
soup and then checks for the rate stored in ROM. This function returns nil if
it can’t find the rate in either place.

country1 A symbol identifying a country.

country2 A symbol identifying a country.

Here is an example:

rate := GetExchangeRate('USA, 'Japan);

Note

country1 and country2 can be any country name (with the
spaces dropped) for example; SouthKorea. ◆

SetExchangeRate 23

SetExchangeRate(country1, country2, rate)

Saves the currency exchange rate between any two countries as a floating
point number in the system soup. Subsequent calls to GetExchangeRate
return this value instead of the original value stored in ROM.

country1 A symbol identifying a country.

country2 A symbol identifying a country.

rate The currency exchange rate between country1 and
country2.

Here is an example:

SetExchangeRate('USA, 'Japan, 87.5);

Note

country1 and country2 can be any country name (with the
spaces dropped) for example; SouthKorea. ◆

C H A P T E R 2 3

Utility Functions Reference

23-80 Exception Functions

GetUpdatedExchangeRates 23

GetUpdatedExchangeRates()

Returns a frame containing the updated currency exchange rates that have
been stored in the system soup by use of the SetExchangeRate function.
The GetUpdatedExchangeRates function is called by both
GetExchangeRate and SetExchangeRate. Normally, you do not need to
call this function unless you want to retrieve all of the updated exchange
rates together.

Exception Functions 23

These functions raise and handle NewtonScript exceptions in an application.
For more information about exception handling and how to use these
functions, refer to the chapter “Flow of Control” in The NewtonScript
Programming Language. For a list of system exceptions, see Appendix A,
“Error Codes.”

The section “Managing the Floating Point Environment” (page 23-73)
describes some functions that deal with floating-point exceptions, which are
not related to NewtonScript exceptions.

Throw 23

Throw(name, data)

Raises an exception and creates an exception frame with the specified name
and data.

name An exception symbol that names the exception being
raised.

data The data for the exception. The possible values for this
parameter depend on the composition of name and are
shown in Table 23-3.

C H A P T E R 2 3

Utility Functions Reference

Exception Functions 23-81

See the chapter “Flow of Control” in The NewtonScript Programming Language
for more information on Throw.

Rethrow 23

Rethrow()

Reraises the current exception to allow the next enclosing Try statement an
opportunity to handle it. Rethrow throws the current exception again,
passing along the same parameters that were passed with the original call to
the Throw function. This functionality lets you pass control from within an
exception handler to the next enclosing Try statement.

IMPORTANT

You can call the Rethrow function only from within the
dynamic extent of an onexception clause. ▲

CurrentException 23

CurrentException()

During exception processing (that is, inside the dynamic extent of an
onexception block), returns the frame associated with the current
exception. You can examine the frame returned by CurrentException to
determine what kind of exception you are handling. For example, you can
call the HasSlot function to determine if the frame contains a slot named
error, and take appropriate action thereafter. (The format of the frame

Table 23-3 Exception frame data slot name and contents

Exception symbol Slot name Slot contents

Contains part with
prefix type.ref

data A data object, which can be
any NewtonScript object

Contains part with
prefix evt.ex.ms|

message A message string

Any other error An integer error code

C H A P T E R 2 3

Utility Functions Reference

23-82 Exception Functions

depends on the exception, but it always contains a name slot with the
exception symbol.)

CurrentException gives a meaningful response only from within the
dynamic extent of an onexception clause. Outside the extent of
onexception, it returns nil.

RethrowWithUserMessage 23

RethrowWithUserMessage(userTitle,userMessage,override)

Unhandled exceptions currently end up displaying a Notify dialog whose
contents are sometimes not very informative to the user. This function allows
you to catch an exception, specify a more descriptive message, and then
rethrow the exception. If it remains unhandled, the system uses the userTitle
and userMessage in the Notify dialog.

userTitle A string used as the title of the Notify dialog.

userMessage A string used as the body text of the Notify dialog.

override If the exception has already been annotated with a title
and a message, this flag controls whether or not to
override the existing annotations. Set this slot to
non-nil to override any existing annotations, or nil to
preserve them.

This function does not return.

If the exception has a type.ref part, the userTitle and userMessage are
added to the existing data. Otherwise, the exception that is rethrown is
changed to have a type.ref part. For example, an exception named
|evt.ex.bozo| becomes |evt.ex.bozo;type.ref|, and the error is
put into the error slot of the data frame. Because this change adds an
exception part—leaving the existing ones intact—it shouldn’t interfere with
other try blocks looking for the exception (unless they make dangerous
assumptions about the format of the exception frame).

C H A P T E R 2 3

Utility Functions Reference

Message-Sending Functions 23-83

Note

Exceptions of the type |evt.ex.msg| are changed to
|evt.ex;type.ref|. You shouldn’t use exceptions of the
type |evt.ex.msg| in final code anyway—they’re only for
debugging. ◆

Message-Sending Functions 23

These functions send messages or execute other functions.

Apply 23

Apply(function, parameterArray)

Calls a function, passing the supplied parameters. The Apply function
returns the return value of the function it called.

function The function to call.

parameterArray An array of parameters to pass to the function. You can
specify nil if there are no parameters to pass (this saves
allocating an empty array).

Apply respects the environment of the function object it is passed. Using
Apply is similar to using the NewtonScript call statement.

Apply is useful when you want to call a function, but don’t know until run
time the number of parameters it takes. If you know the number of
parameters the function takes ahead of time, you can use the NewtonScript
call statement to call the function.

Here’s an example of using this function in the Inspector:

f:=func(x,y) x*y;

Apply(f, [10,2]);

#50 20

C H A P T E R 2 3

Utility Functions Reference

23-84 Message-Sending Functions

The Apply call is equivalent to:

f(10,2);

IsHalting 23

IsHalting(functionObject, args)

Returns non-nil if the function object returns. IsHalting can test a
function object before calling it with the specified arguments. It does not
actually call the function object; instead, it determines if it will ever return a
value (as opposed to getting into an infinite loop). If the function will throw
an exception, it returns the symbol 'throws.

functionObject The function object you want to test.

args Array of arguments for the function object.

Perform 23

Perform(frame, message, parameterArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Both parent and proto inheritance search for the
method if it does not exist in the frame. If the method is not found, an
exception is thrown.

frame The frame to which to send the message.

message A symbol naming the message to send.

parameterArray An array of parameters to pass along with the message.
You can specify nil if there are no parameters to pass
(this saves allocating an empty array).

The Perform function returns the return value of the message it sent.

Note that the method named by message is executed in the context of frame,
not in the context of the frame from within which Perform is called.

The Perform function is useful when you want to send a message, but don’t
know until run time the name of the message or the number of parameters it

C H A P T E R 2 3

Utility Functions Reference

Message-Sending Functions 23-85

takes. If you do know these things ahead of time, you can use the standard
NewtonScript message sending syntax.

For variations of the Perform function, see PerformIfDefined,
ProtoPerform, and ProtoPerformIfDefined.

Here’s an example of using this function in the Inspector:

f:={multiply: func(x,y) x*y};

perform(f, 'multiply, [10,2]);

#50 20

Note that

f:multiply(10,2)

is equivalent to

Perform(f, 'multiply,[10,2])

PerformIfDefined 23

PerformIfDefined(receiver,message,paramArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Both parent and proto inheritance search for the
method if it does not exist in the frame. If the method is not found, an
exception is not thrown.

receiver The frame to which you want to send the message.

message A symbol that is the name of the message to send to
receiver.

paramArray An array of parameters to pass with the message. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

This function returns the return value of the message it sent. If the method is
not found, this function returns nil.

C H A P T E R 2 3

Utility Functions Reference

23-86 Message-Sending Functions

Contrast this function with Perform (page 23-84), which is exactly the
same, except that Perform throws an exception if the method is not found.

Also, contrast this function with ProtoPerform and
ProtoPerformIfDefined (page 23-86), which search only the proto chain
for the method.

ProtoPerform 23

ProtoPerform(receiver,message,paramArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Only proto inheritance searches for the method if it
does not exist in the frame. If the method is not found, an exception is
thrown.

receiver The frame to which you want to send the message.

message A symbol that is the name of the message to send to
receiver.

paramArray An array of parameters to pass with the message. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

This function returns the return value of the message it sent.

Contrast this function with Perform, which is exactly the same, except that
Perform searches both the parent and proto chains for the method.

Also, contrast this function with PerformIfDefined and
ProtoPerformIfDefined , which do not throw exceptions if the method
is not found.

ProtoPerformIfDefined 23

ProtoPerformIfDefined(receiver,message,paramArray)

Sends a message to a frame; that is, a method with the name of the message
is executed in the frame. Only proto inheritance searches for the method if it
does not exist in the frame. If the method is not found, an exception is not
thrown.

C H A P T E R 2 3

Utility Functions Reference

Deferred Message Sending Functions 23-87

receiver The frame to which you want the message sent.

message A symbol that is the name of the message to send to
receiver.

paramArray An array of parameters to pass with the message. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

This function returns the return value of the message it sent. If the method is
not found, this function returns nil.

Contrast this function with PerformIfDefined (page 23-85), which is
exactly the same, except that PerformIfDefined searches both the parent
and proto chains for the method.

Also, contrast this function with Perform (page 23-84) and ProtoPerform
(page 23-86), which search both the parent and proto chains for the method.

Deferred Message Sending Functions 23

This section describes utility functions for delayed and deferred actions.

AddDeferredCall 23

AddDeferredCall(functionObject,paramArray)

Queues a function object to execute the next time the system main event loop
is executed.

functionObject The function object to execute.

paramArray An array of parameters to pass to the functionObject. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

This function always returns non-nil.

Use this function so that the currently executing method (within which this
function is called) has a chance to finish its execution and return up the call

C H A P T E R 2 3

Utility Functions Reference

23-88 Deferred Message Sending Functions

chain before the deferred function object is called. The function object is
called before the next event is handled.

The AddDeferredCall function puts a type of event in a first-in-first-out
queue that also contains user actions. Normally, this means that if you call
AddDeferredCall and then the user taps, the deferred function call occurs
first. However, just because the user takes an action does not mean that it is
processed immediately. Different components of the Newton operating
system are processed in separate threads and thus, you cannot rely on events
being processed in a predictable order.

Note also that ViewIdleScript methods can be called several times before
deferred function calls are executed. Suppose you have, for example, some
networking code that initializes a view. Since this is networking code, you
have a ViewIdleScript method that’s called every 200 milliseconds to
look for new names on the network. You then have the view initialized by a
deferred function call. The ViewIdleScript method may be called two or
three times before the deferred function call is made.

AddDelayedCall 23

AddDelayedCall(functionObject,paramArray,delay)

Schedules a function object to execute after a specific delay.

functionObject The function object to execute.

paramArray An array of parameters to pass to the functionObject. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

delay The time in milliseconds after which the functionObject
is executed

This function always returns non-nil.

C H A P T E R 2 3

Utility Functions Reference

Deferred Message Sending Functions 23-89

AddDeferredSend 23

AddDeferredSend(receiver,message,paramArray)

Queues a message to be send the next time the system main event loop
executes.

receiver The frame to which to send the message.

message A symbol that is the name of the message to send to
receiver.

paramArray An array of parameters to pass with the message. Specify
nil if there are no parameters to pass (this saves
allocating an empty array).

This function always returns non-nil.

Use this function so that the currently executing method (within which this
function is called) has a chance to finish its execution and return up the call
chain before the deferred message is sent. The message is sent before the next
event is handled.

The AddDeferredSend function puts a type of event in a first-in-first-out
queue that also contains user actions. Normally, this means that if you call
AddDeferredSend and then the user taps, the deferred message send
occurs first. However, just because the user takes an action does not mean
that it is processed immediately. Different components of the Newton
operating system are processed in separate threads and thus, you cannot rely
on events being processed in a predictable order.

Note also that ViewIdleScript methods can be called several times before
deferred message sends are executed. Suppose you have, for example, some
networking code that initializes a view. Since this is networking code, you
have a ViewIdleScript method that’s called every 200 milliseconds to
look for new names on the network. You then have the view initialized by a
deferred message send. The ViewIdleScript method may be called two or
three times before the deferred message send is made.

C H A P T E R 2 3

Utility Functions Reference

23-90 Deferred Message Sending Functions

AddDelayedSend 23

AddDelayedSend(receiver,message,paramArray,delay)

Schedules a message to send after a specific delay.

receiver The frame to which to send the message.

message A symbol that is the name of the message to send to
receiver.

paramArray An array of parameters to pass with the message. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

delay The time in milliseconds after which the message is sent.

This function always returns non-nil.

AddProcrastinatedCall 23

AddProcrastinatedCall(funcSymbol,functionObject,paramArray,delay)

Queues a function object to execute at a later time.

funcSymbol A unique symbol identifying the function object to
execute. Append your developer signature to form this
symbol to ensure that it is unique in the system.

functionObject The function object to execute at a later time.

paramArray An array of parameters to pass to the functionObject. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

delay The approximate time in milliseconds after which the
functionObject is executed. Specify zero to cause the
function to execute the next time the system main event
loop executes. Zero does not cause immediate execution
of the function.

The return value of this function is undefined.

If, prior to executing functionObject, another function object with the same
identifying funcSymbol is queued, the originally queued function is cancelled.

C H A P T E R 2 3

Utility Functions Reference

Deferred Message Sending Functions 23-91

Similarly, the execution of this second function can be preempted by yet
another queued function with the same funcSymbol, and so on.

This function is useful for preventing lengthy operations from occurring
multiple times in a row when a single operation would suffice. For example,
you might call EntryChange in several places in your code, to flush an
entry to a soup. However, you really need to call EntryChange only once,
after the last slot changes. You could use a function call like this to help
prevent multiple calls to EntryChange from occurring one after another:

AddProcrastinatedCall('|flush:mySignature|,

functions.EntryChange, [entry], 0);

AddProcrastinatedSend 23

AddProcrastinatedSend(msgSymbol,receiver,message,paramArray,delay)

Queues a message to send at a later time.

msgSymbol A unique symbol identifying the message to send.
Append your developer signature to form this symbol
to ensure that it is unique in the system.

receiver The frame to which you want to send the message.

message A symbol that is the name of the message to send to
receiver.

paramArray An array of parameters to pass with the message. You
can specify nil if there are no parameters to pass (this
saves allocating an empty array).

delay The approximate time in milliseconds after which the
message is sent. Specify zero to cause the function to
execute the next time the system main event loop
executes. Zero does not cause immediate execution of
the function.

The return value of this function is undefined.

If, prior to sending message, another message with the same identifying
msgSymbol is queued, the originally queued message is cancelled. Similarly,

C H A P T E R 2 3

Utility Functions Reference

23-92 Data Extraction Functions

sending the second message can be preempted by yet another queued
message with the same msgSymbol, and so on.

This function is useful for preventing lengthy operations from occurring
multiple times in a row when a single operation would suffice. Here is an
example of calling this function:

AddProcrastinatedSend('|update:mySignature|, base,

'updateViews, nil, 0);

Data Extraction Functions 23

These functions extract chunks of data from other objects of various types.

All integers are stuffed and extracted in 2’s-complement big-endian form. In
this form, byte 0 is the most significant byte, as found on the Newton and
Macintosh. The opposite of this is little-endian, where byte 0 is least-
significant byte, as found on Intel-based computers. For example, the
number 0x12345678 is stored as:

big-endian 12 34 56 78

little-endian 78 56 34 12

All Unicode conversions use the Macintosh extended character set for codes
greater than or equal to 128.

ExtractByte 23

ExtractByte(data, offset)

Returns one signed byte from the given offset.

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

C H A P T E R 2 3

Utility Functions Reference

Data Extraction Functions 23-93

For example:

ExtractByte("\u12345678",0);

#3FC 255

ExtractBytes 23

ExtractBytes(data, offset, length, class)

Returns a binary object of class class containing length bytes of data starting
at offset within data.

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

length An integer giving the number of bytes to extract.

class A symbol specifying the class of the return value.

ExtractChar 23

ExtractChar(data, offset)

Returns a character object of the character at the given offset in the data.

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

Gets one byte at the specified offset, converts it to Unicode, and returns the
character it makes from it.

For example:

ExtractChar("\uFFFFFFFF",0);

//$\u02C results from a ASCII to UNICODE conversion.

#2C76 $\u02C7

//Note $a is at offset 1 in a Unicode string

ExtractChar("abc",0);

#6 $\00

C H A P T E R 2 3

Utility Functions Reference

23-94 Data Extraction Functions

ExtractChar("abc",1);

#616 $a

ExtractLong 23

ExtractLong(data, offset)

Returns an integer object of the low 29 bits of an unsigned long int at the
given offset, right-justified (that is, the low 29 bits of a 4-byte value).

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

Reads four bytes at the specified offset, but ignores the high-order bits (first
two). Returns a 30-bit signed value.

ExtractLong("\uFFFFFFFF",0);

#FFFFFFFC -1

ExtractLong("\uC0000007",0);

#1C 7

ExtractXLong 23

ExtractXLong(data, offset)

Returns an integer object of the high 29 bits of an unsigned long int at the
given offset, right-justified (that is, the high 29 bits of a 4-byte value).

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

For example:

ExtractXLong("\u0000000F",0);

#4 1

C H A P T E R 2 3

Utility Functions Reference

Data Extraction Functions 23-95

ExtractWord 23

ExtractWord(data, offset)

Returns a 2-byte signed integer object from the given offset.

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

For example:

ExtractWord("\uFFFFFFFF",0);

#FFFFFFFC -1

//if you want unsigned use:

band(ExtractWord(-),0xFFFF);

#40004 65535

ExtractCString 23

ExtractCString(data, offset)

Returns a Unicode string object derived from the null-terminated C-style
string at the given offset.

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

ExtractPString 23

ExtractPString(data, offset)

Returns a Unicode string object derived from the Pascal-style string (a length
byte followed by text) at the given offset.

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

C H A P T E R 2 3

Utility Functions Reference

23-96 Data Stuffing Functions

ExtractUniChar 23

ExtractUniChar(data, offset)

Gets two bytes at the specified offset and returns the Unicode character
represented by those bytes.

data The data from which to extract the return value.

offset An integer giving the position in data from which to
extract the return value.

For example:

ExtractUniChar("abc",0);

#616 $a

Data Stuffing Functions 23

These functions are used to stuff chunks of data into objects of various types.

All integers are stuffed in 2’s-complement big-endian form. For a discussion
of this, see “Data Extraction Functions” (page 23-92).

StuffByte 23

StuffByte(obj, offset, toInsert)

Writes the low-order byte of toInsert, at the specified offset in obj.

obj A binary object into which to stuff the data.

offset The position, in bytes, in obj at which to begin stuffing.

toInsert The data to stuffed into obj.

For example:

x := "\u00000000";

StuffByte(x,0,-1);

x[0]

C H A P T E R 2 3

Utility Functions Reference

Data Stuffing Functions 23-97

#FF006 $\uFF00

x := "\u00000000";

StuffByte(x,0,0xFF);

x[0]

#FF006 $\uFF00

StuffChar 23

StuffChar(obj, offset, toInsert)

Stuffs one byte into obj at the specified offset.

obj A binary object into which to stuff the data.

offset The position, in bytes, in obj at which to begin stuffing.

toInsert A character or integer to stuff into obj. You pass it a
two-byte Unicode value as toInsert. The function makes
a one-byte character from that value and stuffs the
one-byte character.

This accepts a character or integer as its third parameter, toInsert:

■ If toInsert: is an integer: writes the low byte of toInsert.

■ If toInsert: is a character: converts from Unicode and writes a byte.

For example:

x := "\u00000000";

StuffChar(x,1,Ord($Z));

x[0]

#5A6 $Z

x := "\u00000000";

StuffChar(x,1,-1);

x[0]

#1A6 $\1A

C H A P T E R 2 3

Utility Functions Reference

23-98 Data Stuffing Functions

ExtractByte(x,1)

#68 26

ExtractByte(x,0)

#0 0

StuffCString 23

StuffCString(obj, offset, aString)

Converts a Newton Unicode string into a null-terminated C-style string and
stuffs it at the given offset into a binary object.

obj A binary object into which to stuff the data.

offset The position, in bytes, in obj at which to begin stuffing.

aString A Unicode string to stuff into obj.

The string aString is converted into ASCII format using Macintosh roman
string encoding. It is then stuffed into obj, beginning at the byte offset offset. It
is followed by a null-byte terminator.

This function throws an exception if aString does not fit into obj beginning at
the given offset, or if the offset is negative. The length of obj is not altered.

StuffLong 23

StuffLong(obj, offset, toInsert)

Writes four bytes at the specified offset using the 30 bit signed value you
pass it as the third parameter, and sign extends it to 32 bytes.

obj A binary object into which to stuff the data.

offset The position, in bytes, in obj at which to begin stuffing.

toInsert The data to stuff into obj.

For example:

x := "\u00000000";

StuffLong(x,0,-1);

x[0]

C H A P T E R 2 3

Utility Functions Reference

Data Stuffing Functions 23-99

#FFFF6 $\uFFFF

x[1]

#FFFF6 $\uFFFF

x := "\u00000000";

StuffLong(x,0,0x3FFFFFFA);

x[0]

#FFFF6 $\uFFFF

x[1]

#FFFA6 $\uFFFA

StuffPString 23

StuffPString(obj, offset, aString)

Converts a Newton Unicode string into a Pascal-style string (a length byte
followed by text) and stuffs it at the given offset into a binary object.

object A binary object into which to stuff the data.

offset The position, in bytes, in obj at which to begin stuffing.

aString A Unicode string to stuff into obj. This string must be no
longer than 255 characters.

The string aString is converted into ASCII format using Macintosh roman
string encoding. Then a length byte followed by the string is stuffed into obj,
beginning at the byte offset offset. The length byte indicates the number of
characters in the string.

This function throws an exception if aString does not fit into obj beginning at
the given offset, or if the offset is negative. The length of obj is not altered.

StuffUniChar 23

StuffUniChar(obj, offset, toInsert)

Stuffs the two-byte Unicode encoding for the character indicated by toInsert
into obj at the specified offset.

obj A binary object into which to stuff the data.

offset The position, in bytes, in obj at which to begin stuffing.

C H A P T E R 2 3

Utility Functions Reference

23-100 Data Stuffing Functions

toInsert A character or integer to stuff into obj.

For example:

x := "\u00000000";

StuffUniChar(x,0,"\uF00F"[0]);

x[0]

#F00F6 $\uF00F

x := "\u00000000";

StuffUniChar(x,0,0x0AA0);

x[0]

#AA06 $\u0AA0

StuffWord 23

StuffWord(obj, offset, toInsert)

Writes the low-order two bytes of toInsert at the specified offset.

obj A binary object into which to stuff the data.

offset The position, in bytes, in obj at which to begin stuffing.

toInsert The data to stuff into obj.

For example:

x := "\u00000000";
StuffWord(x,0,0x3FFF1234);
x[0]
#12346 $\u1234

x := "\u00000000";
StuffWord(x,0,-1);
x[0]
#FFFF6 $\uFFFF

C H A P T E R 2 3

Utility Functions Reference

Getting and Setting Global Variables and Functions 23-101

Getting and Setting Global Variables and Functions 23

These functions get, set, and test for the existence of global variables and
functions.

GetGlobalFn 23

GetGlobalFn(symbol)

Returns a global function. If the function is not found, nil is returned.

symbol A symbol naming the global function to get.

GetGlobalVar 23

GetGlobalVar(symbol)

Returns the value of a slot in the system globals frame. If the slot is not
found, nil is returned.

symbol A symbol naming the global variable whose value to get.

GlobalFnExists 23

GlobalFnExists(symbol)

Returns non-nil if the global function identified by symbol exists, otherwise
returns nil.

symbol A symbol naming the global function’s existence to
check.

C H A P T E R 2 3

Utility Functions Reference

23-102 Getting and Setting Global Variables and Functions

GlobalVarExists 23

GlobalVarExists(symbol)

Returns non-nil if the global variable identified by symbol exists, otherwise
returns nil.

symbol A symbol naming the global variable’s existence to
check.

DefGlobalFn 23

DefGlobalFn(symbol, function)

Defines a global function. The symbol identifying the function is returned.

symbol A symbol naming the global function to define. To
avoid naming conflicts with other global functions,
choose a name that includes your appSymbol, which
includes the developer signature you have registered
with Newton DTS.

function A function object.

Note that the global function is destroyed if the system is reset.

You must remove any global functions created by your application when
your application is removed. You can do this with UnDefGlobalFn in the
application RemoveScript function.

IMPORTANT

Do not create global functions unless it is absolutely
necessary. Global functions occupy NewtonScript heap
space. They can conflict with system global functions and
other applications’ global functions. In most cases, you can
use methods in your application base view instead of global
functions. ▲

C H A P T E R 2 3

Utility Functions Reference

Getting and Setting Global Variables and Functions 23-103

DefGlobalVar 23

DefGlobalVar(symbol, value)

Defines a global variable—that is, a slot in the system globals frame. The
value of the variable is returned.

symbol A symbol naming the global variable to define. To avoid
naming conflicts with other globals, choose a name that
includes your appSymbol, which includes the
developer signature you have registered with Newton
DTS.

value The value to assign to the global variable.

The system ensures that the object created exists entirely in internal RAM (it
calls EnsureInternal on the object identified by symbol. Note that the
global variable is destroyed if the system is reset.

You must remove any globals created by your application when your
application is removed. You can do this with UnDefGlobalVar in the
application RemoveScript function.

IMPORTANT

Do not create global variables unless it is absolutely
necessary. Global variables occupy NewtonScript heap
space. They can conflict with system globals and other
applications’ globals. In most cases, you can put any global
data that you need in your application base view or in a
soup. ▲

UnDefGlobalFn 23

UnDefGlobalFn(symbol)

Removes a global function you previously defined. This function returns nil.

symbol A symbol naming the global function to remove.

C H A P T E R 2 3

Utility Functions Reference

23-104 Debugging Functions

UnDefGlobalVar 23

UnDefGlobalVar(symbol)

Removes a previously defined global variable. This function returns nil.

symbol A symbol naming the global variable to remove.

Debugging Functions 23

These functions are used to debug Newton applications. See the Newton
Toolkit User�s Guide for complete details on debugging an application.

▲ W A R N I N G

Do not use these functions in release applications. ▲

BreakLoop 23

BreakLoop()

Halts execution and allows you to examine the state of your application on
the Newton. You can also execute any valid NewtonScript code, including
the functions built into the Newton, while in a break loop.

If the Newton executes the BreakLoop function when it’s already in a break
loop, it enters a subsidiary breakloop.

To exit a break loop, click the Exit Break Loop button or execute the
ExitBreakLoop function.

DV 23

DV(view)

Displays a view and its children in the Inspector window.

view The view object that you want to display.

The DV function always returns nil.

C H A P T E R 2 3

Utility Functions Reference

Debugging Functions 23-105

A quick way to display the contents of a view is to use the Debug function.
To display the view made from a template named helloBase, for example,
you would enter this text:

DV(Debug("helloBase"));

If a view is visible on the screen, DV produces a display of the view contents
in the Inspector window and, if the application was built with Compile for
Debugging in effect, flashes the view on the Newton screen. If the view is not
visible, DV returns nil.

You can also specify one of three special symbols for the view argument:

■ The 'viewFrontMost symbol returns the frontmost view on the screen
that has the vApplication flag set in its viewFlags slot

■ The 'viewFrontMostApp symbol returns the frontmost view on the
screen that has the vApplication flag set in its viewFlags slot, but not
including floating views (those with vFloating set in their viewFlags
slot)

■ The 'viewFrontKey symbol returns the view on the screen that
currently accepts keystrokes

GC 23

GC()

Forces a garbage collection in the NewtonScript frames heap, a reserved area
of system memory from which the system allocates space for all
NewtonScript objects.

The GC function frees all allocated objects that are no longer referenced. The
Newton system software automatically performs a garbage collection when
memory is needed. You can call GC to ensure that unallocated space is
consolidated before you call the Stats or TrueSize functions.

The GC function always returns nil.

C H A P T E R 2 3

Utility Functions Reference

23-106 Debugging Functions

ExitBreakLoop 23

ExitBreakLoop()

Exits a break loop.

When an Inspector connection is open, the Newton enters a break loop if

■ it executes the BreakLoop function or

■ an exception occurs while BreakOnThrows is non-nil.

If one of these conditions arises when the Newton is already in a break loop,
it enters a subsidiary break loop. Execution of the ExitBreakLoop function
exits only the current-level break loop. Program execution resumes when
you exit the first-level break loop.

The ExitBreakLoop function always returns nil.

StackTrace 23

StackTrace()

Prints a stack trace in the Inspector window.

The StackTrace function always returns nil.

Stats 23

Stats()

Returns the amount of free memory in the NewtonScript heap and displays
the amount of free memory and the size of the largest area of free memory.

The Stats function returns the amount of free memory in bytes. You can call
GC first to ensure that any space occupied by unreferenced objects has been
reclaimed.

C H A P T E R 2 3

Utility Functions Reference

Debugging Functions 23-107

StrHexDump 23

StrHexDump(object, spaceInterval)

Returns a hexadecimal string representing the value of the object.

object The binary object you want to examine.

spaceInterval An integer specifying where to put spaces in the
hexadecimal string output. To put spaces after every
four bytes, for example, specify 4. For no spaces at all,
specify 0.

You can use StrHexDump to examine the contents of a binary object.

Note

This function can return an extremely large string object,
depending on the length of the binary object you specify.
Use it carefully. ◆

TrueSize 23

TrueSize(object, filter)

Measures the total RAM requirements of an object by adding together its size
and the sizes of all objects it points to. The total does not include read-only
objects, such as objects in ROM or in the package.

object A reference to the object to be measured.

If you pass a value of nil, TrueSize looks at the root
frame, the global variables, and the undo-buffer frame.
You use this option when looking for references to an
object, as described in the description of the filter
parameter.

filter A filter that controls what data is collected and
displayed.

nil Displays the summary of objects by type
and the frame in which the data was
collected.

C H A P T E R 2 3

Utility Functions Reference

23-108 Debugging Functions

'all Displays the summary and a list of all
objects measured, sorted by the size of the
objects exclusive of the objects they point
to.

'allKids Displays the summary and a list of all
objects measured, sorted by the size of the
objects inclusive of the objects they point
to.

classSymbol
Displays the summary and all objects of
the specified class.

reference Displays the summary and all paths
within the specified object that point to
the specified reference.
To look for the reference throughout most
of memory, pass a value of nil for the
object parameter.

The TrueSize function summarizes the number and kinds of objects
measured and collects specific data about some or all of them.

ViewAutopsy 23

ViewAutopsy(functionSpec)

Provides two ways to examine how views are drawn. Supply a value of nil
to turn on and off the outlining of views, in which the boundary of each view
is marked by a gray line. Supply an integer to specify a pause (in ticks) after
each view is drawn.

functionSpec A value that specifies which drawing option you’re
manipulating:

nil Toggles view outlining.
This option affects both the Newton
screen and printed output. Use it for
debugging justification and view-layering
problems.

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-109

integer Forces a pause for the specified number of
ticks after each view is drawn.
This option allows you to examine the
drawing of views, so you can eliminate
unnecessary redrawing.
A value of 0 turns off the delay option
with no effect on outlining.

Miscellaneous Functions 23

These functions send messages or execute functions.

AddMemoryItem 23

AddMemoryItem(memSymbol, value)

Adds a memorized value that can be any string you want to pass as the
second parameter to this function. Unlike AddMemoryItemUnique
(page 23-110), this function does not test for uniqueness.

memSymbol An identifier symbol that names the memorized value
that can be retrieved later with GetMemoryItems
(page 23-119). Use a symbol that has your developer
signature appended to ensure that the symbol is unique
to the system.

value The string to add to the memorized items.

For example, if you call

AddMemoryItem('|widget:MYSIG|, "Frazzle Wrench") ;

you can later call

GetMemoryItems('|widget:MYSIG|) ;

to get

[{item:"Frazzle Wrench"}]

C H A P T E R 2 3

Utility Functions Reference

23-110 Miscellaneous Functions

This function returns an array of memory items that have been added under
that memSymbol.

AddMemoryItemUnique 23

AddMemoryItemUnique(memorySlot, value, testFunc)

Adds a memorized value that can be any object you want to pass as the
second parameter to this function. For example, when used with a picker, the
second parameter is usually an object from the picker.

memSymbol An identifier symbol that names the memorized value
to retrieve later with GetMemoryItems. You must use a
symbol that has your developer signature appended to
ensure that the symbol is unique to the system. See
AddMemoryItem (page 23-109) for an example.

value The object to add to the memorized items.

testFunc A function object that must accept two parameters,
which are two memorized values. The system calls this
function object and compares the memorized values
returning non-nil if the values are equivalent and nil
otherwise.

If you pass nil for the testFunc parameter, this function
behaves like AddMemoryItem; that is, the item is added
even if it’s not unique.

BackLight 23

BackLight(state)

Turns the backlight on or off. The return value is unspecified.

state A Boolean value. If nil, the backlight is turned off; if
non-nil, the backlight is turned on.

Note

Use the Gestalt function to determine if the Newton has
backlighting hardware before using this function. ◆

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-111

BackLightStatus 23

BackLightStatus()

Returns nil if the backlight is off and non-nil if the backlight is on.

Note

Use the Gestalt function to determine if the Newton has
backlighting hardware before using this function. ◆

BinEqual 23

BinEqual(a, b)

Compares two binary objects’ data as raw bytes. Returns non-nil if they are
identical.

a A binary object.

b A binary object.

BinaryMunger 23

BinaryMunger(dst, dstStart, dstCount, src, srcStart, srcCount)

Replaces bytes in dst using bytes from src and returns dst after munging is
complete. This function is destructive to dst.

dst A value to change.

dstStart The starting position in dst.

dstCount The number of bytes to replace in dst. You can specify
nil for dstCount to go to the end of dst.

src A value. Can be nil to simply delete the contents of dst.

srcStart The starting position in the source binary from which to
begin taking elements to place into the destination
binary.

srcCount The number of bytes to use from the source binary. You
can specify nil to go to the end of the source binary.

Bytes are numbered counting from zero.

C H A P T E R 2 3

Utility Functions Reference

23-112 Miscellaneous Functions

Chr 23

Chr(integer)

Converts a decimal integer to its Unicode character equivalent.

integer An integer.

Here is an example:

chr(65)

$A

Compile 23

Compile(string)

Compiles an expression sequence and returns a function that evaluates it.

string The expression to compile.

Here are two examples; in the first example, x is a local variable:

compile("x:= {a:self.b, b:1234}")

#440F711 <CodeBlock, 0 args #440F711>

f:=compile("2+2")

f();

#440F712 4

Note

All characters used in NewtonScript code must be 7-bit
ASCII. While this usually is no problem, it may create
problems with Compile in certain situations. Suppose you
tried this call:

Compile ("blah, blah, blah, \u0F0F\u")

The Unicode character is not a 7-bit character; it is 16 bits.
Therefore, you get an error. (The \u switch turns on Unicode
character mode.) You should do this instead:

Compile ("blah, blah, blah, \\u0F0F\\u")

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-113

The backslash escape character preceding the \u prevents
Unicode mode from being turned on for the compile. (The
\u is read simply as the string "\u" instead of the Unicode
switch.)

Note, also, that

compile("func()...")

returns a function that constructs the function. The
environment is captured when the function constructor is
executed:

f := compile("func()b");

x := {a:f, b:0};

g:=x:a();

#440F713 <CodeBlock, 0 args #440F711>

Executing the function construction captures the message
environment with x as receiver.

g();

#440F714 0

Now it can find b. ◆

Gestalt 23

Gestalt(selector)

Returns information about the Newton System depending on the value of
the selector parameter.

selector A constant that specifies the type of information that is
returned on the system. kGestalt_SystemInfo and
kGestalt_Backlight are the only constants
currently supported.

C H A P T E R 2 3

Utility Functions Reference

23-114 Miscellaneous Functions

The kGestalt_Backlight constant can be passed to
Gestalt to determine if the unit supports backlighting.
Gestalt will return either

 – nil, indicating the unit does not have backlight
hardware.

 – a one element array where the value of the element
(nil/ non-nil) indicates if backlight hardware is
present.

The following code correctly tests if a unit has a
backlight:

local result:=Gestalt(kGestalt_Backlight);

if result and result[0] then

 // unit has backlighting

else

 // unit does not have backlighting

kGestalt_SystemInfo, which has a value of
0x1000003, returns a frame with the following slots:
manufacturer

A decimal integer indicating the
manufacturer of the Newton Device.

machineType
A decimal integer indicating the
hardware type this ROM was built for.

ROMStage
A decimal integer indicating the language
(English, German, French) and the stage
of the ROM (alpha, beta, final).

ROMVersion
A decimal integer indicating the major
and minor ROM version numbers. The
major number is in front of the decimal
place; the minor number follows.

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-115

Note

The Machinetype, ROMStage and ROMVersion
slots provide internal configuration information
and should not be relied on. ◆

screenWidth
An integer representing the width of the
screen in pixels. The width takes into
account the current screen orientation.
For example, on the MessagePad 120,
because the screen width is 240 and the
screen height is 320, in portrait orientation
Gestalt returns a width of 240. If the
screen is rotated, Gestalt returns a
width of 320.

screenHeight
An integer representing the height of the
screen in pixels.

screenResolutionx
An integer representing the number of
horizontal pixels per inch. For screens
with square pixels,
screenResolutionx equals
screenResolutiony. On the
MessagePad 120, for example, both
screenResolutionx and
screenResolutiony equal 85.

screenResolutiony
An integer representing the number of
vertical pixels per inch.

screenDepth
The bit depth of the LCD screen. For the
MessagePad 120, the LCD supports a
monochrome screen depth of 1.

patchVersion
Returns 0 on an unpatched Newton and
nonzero on a patched Newton.

C H A P T E R 2 3

Utility Functions Reference

23-116 Miscellaneous Functions

ROMVersionString
The user-visible string that identifies the
version of the installed ROM and the
installed patch, if any.
The first part of the string is a
“functionality level” indicating whether
the ROM has 1.x or 2.x functionality. All
pre-2.x units, except the original
MessagePads, have “1.3” as their
functionality level. 2.x and later units
have “2.0.”

 The second part of the string is a six-digit
number in parentheses that is an encoded
representation of ROM and Update
information.

Here is an example of code to use to decode the value of the ROMVersion
slot in the returned frame:

global VersionDecode(ROMVersion)

begin

 local minor := BAND(ROMVersion, 0xFFFF);

 local major := BAND(ROMVersion>>16, 0xFFFF);

 [Floor(StringToNumber(BAND(major>>12, 0xF)

 & BAND(major>>8, 0xF)

 & BAND(major>>4, 0xF)

 & BAND(major, 0xF))),

 Floor(StringToNumber(BAND(minor>>12, 0xF)

 & BAND(minor>>8, 0xF)

 & BAND(minor>>4, 0xF)

 & BAND(minor, 0xF)))];

end;

VersionDecode(Gestalt(0x1000003).ROMVersion);

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-117

Here is another example of code to test if your Newton is running 2.0. It
returns non-nil if the major version is 2:

global VersionTwo() BAND((Gestalt(0x1000003).ROMVersion)

>>16, 0xFFFF) = 0x0002;

IMPORTANT

Do not assume that if the Newton is running version 2.0 or
later that a particular feature exists. You still need to test the
Newton to make sure the feature exists. ▲

GetAppName 23

GetAppName(appSymbol)

Retrieves a user-visible application name for another application.
GetAppName returns a string that is the name of the application.

appSymbol A symbol identifying the application whose name you
want.

This function looks in several places to find a string that is the application
name. Here is how it searches:

1. First, GetAppName checks in the application base view for a slot named
appName, and if found, returns the string found therein.

2. Next, the function looks in the application base view for a title slot, and
if found, returns the string found therein.

3. Then, the function returns the string used for the application name below
its icon in the Extras Drawer.

4. If none of the above attempts succeeds in finding a name, the appSymbol is
converted to a string and returned.

C H A P T E R 2 3

Utility Functions Reference

23-118 Miscellaneous Functions

GetAppParams 23

GetAppParams()

Returns a frame containing information about the screen size and other
system configuration items. The frame returned contains these slots:

appAreaTop The y coordinate of the top-left corner of the screen.
appAreaLeft The x coordinate of the top-left corner of the screen.
appAreaWidth The width of the screen in pixels.
appAreaHeight The height of the screen in pixels.
buttonBarPosition

A symbol ('top, 'left, 'bottom, or 'right) indicating
where the button bar is. This is useful if you want to
locate your application flush against the button bar.
(The button bar contains the Newton application/
scroller icons.)

In order to make your applications compatible with future Newton systems,
you must compute the size and location of your application based on the
values in this frame.

This frame may be expanded to include additional slots as other system
parameters become relevant on future Newton systems.

GetAppPrefs 23

GetAppPrefs(appSymbol, defaultFrame)

Retrieves the preferences for an application from the system soup.

appSymbol A symbol identifying the application whose preferences
you want.

defaultFrame The default frame to use for the application preferences.

This function returns a system soup entry that is the application preferences
entry.

The appSymbol is stored in the tag slot of the entry. If no entry exists for the
specified appSymbol, a new entry is created, filled in with the contents of the
defaultFrame, entered into the system soup, and the entry is returned. If

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-119

defaultFrame does not have a tag slot, the appSymbol is turned into a string
and entered into the tag slot. The tag slot must contain the symbol name of
the appSymbol; otherwise the function will not work.

GetMemoryItems 23

GetMemoryItems(memSymbol)

Returns an array of the memory items, suitable for use in a picker, that have
been added under memSymbol.

memSymbol A symbol used in your memory slot.

For example:

self.currentMem := GetMemoryItems('|wiggys:Wiggy:PIEDTS|) ;

if currentMem AND Length(currentMem) > 0 then

:PopupMenu(currentMem, nil);

GetMemorySlot 23

GetMemorySlot(memorySlot, op)

Removes the storage used for the memorized items. You should call this
function from the DeletionScript function for your application.

memorySlot A symbol that identifies a group of memorized items.

op The symbol, 'remove.

For example:

GetMemorySlot('|wiggys:Wiggy:PIEDTS|, 'remove);

Note

Other values of op and the return value for this function are
undefined and subject to change. ◆

C H A P T E R 2 3

Utility Functions Reference

23-120 Miscellaneous Functions

GetPrinterName 23

GetPrinterName(printerFrame) //platform file function

Retrieves the name of the printer, given a printer frame object.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetPrinterNameFunc with (printerFrame);

▲

printerFrame A printer frame object. The only valid way to obtain a
printer frame object is to retrieve it from the system user
configuration variables with the GetUserConfig
function. Do not try to construct the slots of this frame
yourself because different types of printer drivers
require different slots.

This function returns a string representing the name of the printer associated
with printerFrame.

Here is an example of some code that retrieves the name of the current
printer:

printerFrame := GetUserConfig('currentPrinter);

thePrinterName := call kGetPrinterNameFunc with

(printerFrame);

MakePhone 23

MakePhone (phoneFrame)

Takes a phone frame and creates a phone string with the different parts
encoded. These phone strings are used in Names and in the rest of the
system. To display one of these real phone strings, call MakeDisplayPhone.

phoneFrame A frame with optional slots: areacode, phone,
extension.

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-121

For example, if you call

ParsePhone(MakePhone({areacode: "617", phone:

"965-4322"}))

you get

back {areacode: "617", phone: "965-4322"}

MakeDisplayPhone 23

MakeDisplayPhone(phoneStr)

Takes a phone string or phone frame (a frame with slots areaCode, phone,
and extension), and formats it using the current phoneFormat to return
another string that is suitable for displaying to the user. The current
phoneFormat can be accessed by GetUserConfig('phoneFormat) and is
a formatting string. For example, ^0/^1x^2, displays your phone number
as 408/555-1212x111. The default is to display numbers as
408/555-1212x111.

phoneStr A phone string or phone frame (a frame with slots
areacode, phone, and extension).

MungePhone 23

rootView:MungePhone(inNum, country)

Finds the correct dialing sequence to use in your current location. It is a
method of the root view which builds from inNum, a dialing string based on
current user-configuration settings. The returned string prefixes inNum with
an international access code, country code, and area code as appropriate.

inNum The phone number to convert. It should generally be of
the form <area-code> <phone-number>. For example:

415 555 1212 —a phone number in San Francisco, USA

81 555 1212— phone number in London, UK

C H A P T E R 2 3

Utility Functions Reference

23-122 Miscellaneous Functions

country A string that is the name of the country in which to dial
inNum. For example:

"USA" for "415 555 1212"

 "UK" for "81 555 1212"

Note that the country must be one from the
ROM_countries frame, discussed below.

If you give nil instead of a string, MungePhone
assumes that the call is within the country specified in
the Country setting in the user’s personal preferences.

If the user stores a calling card number with inNum in the calling options in
the Names application, the calling card number is appended to the phone
dialing string.

ROM_countries is a frame with a slot for each country for which Newton
can convert phone numbers. Each slot is a frame, though the only slot you
care about is the name slot.

You can get an array of the names of all known countries as follows:

local countryNames := foreach item in ROM_countries

collect item.name ;

CallOptionsSlip is the system slip for getting and setting the user call
options. This includes the current area code, dialing prefix, long distance
access code, and user calling card numbers.

MungePhone automatically checks these user configuration items, so they
will be figured into the return string.

ParsePhone 23

ParsePhone(phoneStr)

Takes a phone string and parses it into a frame with the slots 'areacode,
'phone, and 'extension. The slots may be nil if there’s no corresponding
string. You should call ParsePhone if you want to get the component parts

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-123

of the phone number. (If you just want to display the phone number, call
MakeDisplayPhone instead.)

phoneStr Phone string to parse into a frame.

PowerOff 23

PowerOff(reason)

Causes the Newton device to power off. Before powering off, the system calls
each function registered with the RegPowerOff global function.

reason The reason for the power off operation, as indicated by
one of the following symbols:

'user Used if the user chooses to power off the
device through some user interface
element.

'idle Used if the Newton has been idle for a
period of time.

'because Used when the power-off occurs for any
other reason

Ord 23

Ord (char)

Converts a character to its Unicode decimal integer equivalent.

char A character.

Here is an example:

ord($A)

65

RegEmailSystem 23

RegEmailSystem(classSymbol, name, internet) // platform file
function

Registers a new type of e-mail system.

C H A P T E R 2 3

Utility Functions Reference

23-124 Miscellaneous Functions

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kRegEmailSystemFunc with (classSymbol,
name, internet);

▲

classSymbol A symbol identifying the class of the e-mail system. This
symbol must be a subclass of '|string.email| and
should include your registered signature. For example:

'|string.email.prolocommsMailSystem|.

name A string that is the name of the e-mail system. This
name shows up in pickers listing e-mail systems
throughout the system (in routing slips, the In/Out Box,
and the Names application), so it should be short.

internet Either a string or a function object that converts an
e-mail address from this system into an Internet
address. If you specify a string, it is appended to the
e-mail address to make an Internet address. For
example, you might specify “@bobsmail.com”.

If you specify a function object, it is used to convert an
e-mail address on this system to an Internet address.
The function is passed one parameter, a string holding
an e-mail address. It should return another string, the
Internet address for that e-mail address. For example,
for CompuServe, commas in the address are changed to
periods and “@compuserve.com” is appended.

The transport method NormalizeAddress uses the information registered
by the internet parameter to create Internet e-mail addresses from
system-specific addresses.

Note that none of the arguments to this function is copied into memory by
EnsureInternal, so take care to ensure that the application that registers
the e-mail service can be removed without causing errors.

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-125

To unregister an e-mail system registered by RegEmailSystem, use the
function UnRegEmailSystem.

RegPagerType 23

RegPagerType(classSymbol, name) // platform file function

Registers a new pager type.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kRegPagerTypeFunc with (classSymbol, name);

▲

classSymbol A symbol identifying the class of the pager type. This
symbol must be a subclass of '|string.pager| and
should include your registered signature. For
example: '|string.pager.prolocomm:SIG|.

pagerText A string that is the name of the pager system; for
example, “ProLo’s Paging System.” This name shows
up in the pickers listing pager types throughout the
system, so it should be short.

Note that none of the arguments to this function is copied into memory by
EnsureInternal, so take care to ensure that the application that registers
the pager types can be removed without causing errors.

To unregister a pager type registered by RegPagerType, use the function
UnRegPagerType.

RegPhoneType 23

RegPhoneType(classSymbol, name, char) // platform file
function

Registers a new phone type.

C H A P T E R 2 3

Utility Functions Reference

23-126 Miscellaneous Functions

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kRegPhoneTypeFunc with (classSymbol, name,
char);

▲

classSymbol A symbol identifying the class of the phone type. This
symbol must be a subclass of '|string.phone|, and
should include your registered signature. For example:
'|string.phone.prololine:SIG|.

name A string that is the name of the phone type. This name
shows up in the pickers listing phone types throughout
the system, so it should be short.

char A single character that the application will use to
display with the phone number in overview or card
views. An example of a valid character is $C.

Note that none of the arguments to this function is copied into memory by
EnsureInternal, so take care to ensure that the application that registers
the phone types can be removed without causing errors.

To unregister a phone type registered by RegPhoneType, use the function
UnRegPhoneType.

ShowManual 23

ShowManual()

Opens the system-supplied help browser; this has the same effect as tapping
“How Do I” in the Assist Drawer.

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-127

Sleep 23

Sleep(ticks)

Puts the Newton to sleep (suspends processing) for the number of ticks given.

ticks An integer giving the number of ticks to sleep. A tick is
one-sixtieth of a second.

For example:

for i:= 5 to 1 by -1 do

begin

SetValue(infoView, 'text,

"Will restart in " & i & " seconds!");

RefreshViews();

Sleep(60);

end;

If you leave out the RefreshViews call, the view is not updated until after
the last iteration, because calling sleep postpones the view event handling.

Notice that the screen is not updated during sleep, even if there is a
pending update.

IMPORTANT

Do not use the Sleep function to put the Newton to sleep
for very long. The Sleep function suspends the Application
task, in which all NewtonScript code runs, so the user can do
nothing else during a sleep. Occasionally, particularly
during communications, you may need to sleep for several
seconds, even half a minute, but, in general, sleeping for
more than a fraction of a second is too much. If you need a
longer delay, consider AddDeferredCall (or a related
function) or a ViewIdleScript method as alternatives.
Those methods return control to the main event loop. ▲

C H A P T E R 2 3

Utility Functions Reference

23-128 Miscellaneous Functions

SysBeep 23

rootView:SysBeep()

Plays the system beep sound. This message must be sent to the root view. For
example:

:SysBeep();

UnRegEmailSystem 23

UnRegEmailSystem(classSymbol) // platform file function

Unregisters an e-mail system registered by RegEmailSystem.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kUnRegEmailSystemFunc with (classSymbol);

▲

classSymbol A symbol identifying the class of the e-mail system to
unregister. This is the same symbol you passed to
RegEmailSystem to register the system.

Note that this function can’t be used to unregister e-mail systems that are
built-in.

UnRegPagerType 23

UnRegPagerType(classSymbol) // platform file function

Removes the registration of a pager class added with RegPagerType.

C H A P T E R 2 3

Utility Functions Reference

Miscellaneous Functions 23-129

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kUnRegPagerTypeFunc with (classSymbol);

▲

classSymbol A symbol identifying the class of the pager type. This
symbol must be a subclass of '|string.pager| and
should include your registered signature. For
example: '|string.pager.prolocomm:PIEDTS|.

Note that this function can’t be used to unregister pager types that are
built-in.

UnRegPhoneType 23

UnRegPhoneType(classSymbol) // platform file function

Unregisters a phone type added with RegPhoneType.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kUnRegPhoneTypeFunc with (classSymbol);

▲

classSymbol A symbol identifying the class of the phone type. This
symbol must be a subclass of '|string.phone|, and
should include your registered signature. For example:
'|string.phone.prololine:SIG|.

System Exceptions A-1

A P P E N D I X

Error Codes A

This appendix lists the exceptions and error codes that the Newton system
software generates. These are grouped into the following categories:

■ system exceptions

■ system errors

■ hardware errors

■ communications errors

■ system services errors

■ NewtonScript environment errors

■ device driver errors

■ other errors

Each of the categories is subdivided into several tables of related error codes
to make it easier to find an error. All errors in this appendix are listed in
ascending numeric order.

System Exceptions 23
These are the two main types of exceptions that can be raised by the Newton
system software.

Exception symbol Description
|evt.ex.fr| NewtonScript environment exception
|evt.ex.comm| Communications toolbox exception

Figure A-0
Table A-0

A P P E N D I X

Error Codes

A-2 System Errors

System Errors 23
This section lists the different kinds of Newton system software errors.

Common Errors 23

These are errors that can occur at almost any time.

Application Errors 23

These are the application errors.

Error code Description

0 No error

–7000 Not enough memory available

Error code Description

–8001 PCMCIA card battery must be replaced

–8002 PCMCIA card battery is running low

–8003 Nothing to undo

–8004 The routing slip is already open

–8005 Close box must be tapped to hang up the modem

–8006 Nothing to print

–8007 Exception not handled

–8008 The length of a styles slot had to be extended

–8009 A length in the read-only styles slot is too short to display the
text

–8010 Communications card has been inserted

–8011 Note has too many items

–8012 Note is too large

–8013 Note is too long

–8100 Blank note could not be created

–8101 Item could not be moved

A P P E N D I X

Error Codes

System Errors A-3

I/O Box Errors 23

These are the I/O Box errors.

View System Errors 23

These are the view system errors.

–8102 Changes could not be saved

–8103 A problem has occurred

–8104 Problem with the PCMCIA card

–8105 Note could not be changed

Error code Description

–8301 Missing transport

–8302 Missing slip

–8303 Cannot convert

Error code Description

–8501 Could not create view

–8502 Missing class slot

–8503 Unknown view stationery

–8504 Missing view flags

–8505 Missing view bounds

Error code Description

A P P E N D I X

Error Codes

A-4 System Errors

State Machine Errors 23

These are the state machine errors.

Operating System Errors 23

These are the operating system errors.

Error code Description

–8601 Invalid state

–8602 No state

–8603 No wait state

–8604 No polling routine

–8605 Polling timed out

–8606 Aborted

–8607 No reentrance

–8608 Invalid mode

Error code Description

–10000 Bad domain object ID

–10001 Bad physical page object ID

–10002 Unexpected object type

–10003 No page table

–10004 Allocation on an uninitialized heap

–10005 Call not implemented

–10006 Bad parameters

–10007 Not enough memory

–10008 Item not found

–10009 Could not create object

–10010 Must use a remote procedure call

–10011 Bad object

–10012 Not a user call

A P P E N D I X

Error Codes

System Errors A-5

–10013 Task does not exist

–10014 Unexpected end of message

–10015 Bad object ID

–10016 Bad message object ID

–10017 Message already posted

–10018 Cannot cash token

–10019 Port no longer exists

–10020 No message waiting

–10021 Communications problem (message timed out)

–10022 Bad semaphore group ID

–10023 Bad semaphore operation list ID

–10024 Semaphore group no longer exists

–10025 Semaphore would cause blocking

–10026 Task no longer exists

–10027 Task aborted

–10028 Cannot suspend blocked task

–10029 Bad register number

–10030 Bad monitor function

–10031 No such monitor

–10032 Not a monitor

–10033 Size too large in shared memory call

–10034 Shared memory mode violation

–10035 Object not owned by task

–10036 Object not assigned to task

–10037 Total confusion

–10038 Another task already blocking

–10039 Cancelled

Error code Description

A P P E N D I X

Error Codes

A-6 System Errors

–10040 Object already initialized

–10041 Nested collection

–10042 Shared memory message no longer exists

–10043 Receiver did not perform remote procedure call

–10044 Copy aborted

–10045 Bad signature

–10046 Call not in progress

–10047 Token expected

–10048 Receiver object no longer exists

–10049 Monitor is not suspended

–10050 Not a fault monitor

–10051 No available page

–10052 Interrupt not enabled

–10053 Interrupt not implemented

–10054 Tric interrupt not enabled

–10055 Tric interrupt not implemented

–10056 Unresolved fault

–10057 Call already in progress

–10058 Offset beyond data

–10059 Bus access

–10060 Access permission

–10061 Permission violation

–10062 Duplicate object

–10063 Ill formed domain

–10064 Out of domains

–10065 Write protected

–10066 Timer expired

Error code Description

A P P E N D I X

Error Codes

System Errors A-7

Stack Errors 23

These are the stack errors.

–10067 Not registered

–10068 Already registered

–10069 System restarted due to a power fault

–10070 System restarted because the battery was dead

–10072 System restarted because a PCMCIA card was removed while
in use.

–10073 RAM table is full

–10074 Unable to satisfy request

–10075 System error

–10076 System failure

–10077 New system software

–10078 Resource is claimed

–10079 Resource is unclaimed

Error code Description

–10200 Stack too small

–10201 No room for heap

–10202 Stack is corrupted

–10203 Stack overflow

–10204 Stack underflow

–10205 Address out of range

–10206 Bad domain

Error code Description

A P P E N D I X

Error Codes

A-8 Newton Hardware Errors

Package Errors 23

These are the package errors.

Newton Hardware Errors 23
This section lists the different kinds of Newton hardware errors.

PCMCIA Card Errors 23

These are the PCMCIA card errors.

Error code Description

–10401 Bad package

–10402 Package already exists

–10403 Bad package version

–10404 Unexpected end of package

–10405 Unexpected end of package part

–10406 Part type is already registered

–10407 Part type is not registered

–10408 No such package exists

–10409 Newer package already exists

–10410 Newer version of application already installed

Error code Description

–10501 Unrecognized card

–10502 Card not ready

–10503 Bad power on card

–10504 Unexpected card error

–10505 Card reset

–10506 Card is not initialized

–10507 Card service is not installed

A P P E N D I X

Error Codes

Newton Hardware Errors A-9

–10508 Card service is not suspended

–10509 Card service has not been resumed

–10510 No usable configurations on card

–10511 Card could not be formatted

–10512 Card could not be formatted because it is write-protected

–10520 Bad CIS parser procedure pointer

–10521 Unknown tuple in CIS

–10522 Unknown subtuple in CIS

–10523 CIS tuple order is bad

–10524 CIS tuple size is bad

–10525 CIS tuple specified as no link has a link

–10526 CIS tuple specified with a link has no link

–10527 CIS tuple link target is bad

–10528 Bad CIS tuple version 1

–10529 Bad CIS tuple version 2

–10530 Bad CIS JEDEC tuple

–10531 Bad CIS checksum

–10532 Missing CIS

–10533 Blank CIS

–10534 Bad CIS

–10535 Bad link target

Error code Description

A P P E N D I X

Error Codes

A-10 Newton Hardware Errors

Flash Card Errors 23

These are the flash card errors.

Card Store Errors 23

These are the card store errors.

Error code Description

–10551 Flash card is busy

–10552 Flash card is not erasing

–10553 Flash card erase is not suspended

–10554 Flash card suspend erase error

–10555 Flash card erase failed

–10556 Flash card write failed

–10557 Flash card Vpp is low

–10558 Flash card error in sleep

–10559 Flash card does not have enough power

Error code Description

–10600 Attempt to read or write outside of object bounds

–10601 Bad buffer pointer

–10602 Bad card access

–10603 Bad storage type

–10604 Store not found

–10605 The store has been write-protected by the user

–10606 Object not found

–10607 Flash card block is full

–10608 Flash card is not virgin

–10609 Write error (one or more bits failed to assert)

–10610 No more objects

–10611 Flash card erase in progress

A P P E N D I X

Error Codes

Newton Hardware Errors A-11

DMA Errors 23

These are the DMA errors.

–10612 Card is full

–10613 No more blocks left in search on flash card

–10614 Flash card log is full

–10615 Card needs to be formatted

–10616 Bad or unknown PSSID

–10617 Card memory is full

–10618 Missing or low battery on SRAM card

–10619 Attempt to modify store without a transaction in effect

–10620 Transaction aborted

–10621 Card needs recovery, but it is write-protected

–10622 Object too large for store

Error code Description

–10800 DMA mode

–10801 DMA bus access

–10802 DMA buffer doesn’t exist

–10803 DMA address word alignment

–10804 DMA count word alignment

–10805 DMA count size

–10806 DMA offset size

–10820 DMA PCMCIA ready

–10821 DMA PCMCIA input acknowledgment

–10822 DMA PCMCIA write protect

–10823 DMA PCMCIA time out

Error code Description

A P P E N D I X

Error Codes

A-12 Communications Errors

Heap Errors 23

These are the heap errors.

Communications Errors 23
This section lists the different kinds of Newton communications errors.

Generic AppleTalk Errors 23

These are the generic AppleTalk errors.

Error code Description

–10900 Heap odd block size

–10901 Heap block out of range

–10902 Heap preferred free not found

–10903 Heap free accounting error

–10904 Heap accounting error

–10905 Heap block too big

–10906 Heap bad prior pointer

–10907 Heap bad last pointer in prior

–10908 Heap bad last pointer in last

Error code Description

–12001 Buffer too small or corrupted

–12002 Event is pending

–12003 Cancelled

–12004 Attempt to cancel failed

–12005 No handler for cancel

–12006 Unknown message receiver

–12007 Cannot create AppleTalk port

–12008 Cannot create AppleTalk task

A P P E N D I X

Error Codes

Communications Errors A-13

LAP Protocol Errors 23

These are the LAP protocol errors.

DDP Protocol Errors 23

These are the DDP protocol errors.

–12009 Not implemented

–12010 Data length error

–12011 No such subject available to open

–12012 Not opened

–12014 AppleTalk is already open

–12015 Duration is too small

–12016 Duration is too large

Error code Description

–12100 LAP read link failed

–12101 LAP all protocols in use

–12102 No protocol handler

–12103 No such command

–12104 Bad link

Error code Description

–12200 No such DDP command

–12201 Invalid socket

–12202 Not in static socket range

–12203 Not in dynamic socket range

–12204 Socket is already open

–12205 Socket not open

Error code Description

A P P E N D I X

Error Codes

A-14 Communications Errors

NBP Protocol Errors 23

These are the NBP protocol errors.

–12206 Socket internal socket

–12207 Socket is in use

–12208 Unknown LAP type

–12209 DDP back check sum

–12210 Bad packet size

–12211 No listener for socket

–12212 No such protocol type known

–12213 External client timed out

Error code Description

–12300 Bad form

–12301 Name is already registered

–12302 Too many names

–12303 Name is not registered

–12304 Too many names requested

–12305 Too many lookups are pending

–12306 Not a NBP packet DDP type

–12307 Unknown NBP function

–12308 Unknown NBP lookup reply

–12309 Too many tuples in lookup request

–12311 NBP index out of range

–12312 NBP lookup aborted

–12313 No such command

–12314 No names found

Error code Description

A P P E N D I X

Error Codes

Communications Errors A-15

AEP Protocol Errors 23

These are the AEP protocol errors.

RTMP Protocol Errors 23

These are the RTMP protocol errors.

ATP Protocol Errors 23

These are the ATP protocol errors.

Error code Description

–12400 No such command

–12401 Not an echo packet DDP type

–12402 AEP packet size is zero

–12403 AEP function not requested

Error code Description

–12500 No such command

–12502 Packet size is zero

–12503 RTMP routed

–12504 RTMP address unresolved

–12505 RTMP no router available

Error code Description

–12600 No such command

–12601 No ATP packet DDP type

–12602 Unknown ATP function

–12603 ATP request data length is zero

–12604 Expected responses are out of range

–12605 Response buffer is too small

–12606 ATP retry duration too small

A P P E N D I X

Error Codes

A-16 Communications Errors

PAP Protocol Errors 23

These are the PAP protocol errors.

–12607 ATP transaction timed out

–12608 Responding socket already open

–12609 Responding socket not open

–12610 Response packet length bad

–12611 Bad number of response packets

–12612 Socket already has a request on autorequest

Error code Description

–12700 No such command

–12701 Unexpected connection ID

–12702 Invalid connection ID

–12703 Invalid responder socket

–12704 Unexpected function

–12705 Printer is busy

–12706 Unexpected connection open result

–12707 Bad flow quantum requested

–12708 Connection timed out

–12709 EOF sent

–12710 PAP flushed

–12711 Printer terminated connection

–12712 Printer not found

–12713 No status available

–12714 No data available

–12715 The buffer that was passed is too small

–12716 Put data operation timed out

Error code Description

A P P E N D I X

Error Codes

Communications Errors A-17

ZIP Protocol Errors 23

These are the ZIP protocol errors.

ADSP Protocol Errors 23

These are the ADSP protocol errors.

Utility Class Errors 23

These are the utility class errors.

Error code Description

–12800 No zones

Error code Description

–12900 Too many ADSP connections

–12901 ADSP mode invalid

–12902 ADSP packet size bad

–12903 ADSP control type bad

–12904 Remote end disconnected

Error code Description

–14001 Not implemented

–14002 Out of memory

–14003 Bad position

–14004 Already initialized

–14005 Invalid size

–14006 Overflow

–14007 Underflow

–14008 Range check failed

–14009 Element sizes do not match

–14010 Not initialized

–14011 Pointer is nil

A P P E N D I X

Error Codes

A-18 Communications Errors

Communications Tool Errors 23

These are the communications tool errors.

Error code Description

–16001 Command in progress

–16002 Bad communication tool command

–16003 Tool already has maximum requests pending

–16004 Buffer overflow

–16005 Request canceled or connection disconnected

–16006 Bad parameter in request

–16007 Connection end has not been created yet

–16008 Invalid call when connected

–16009 Phone connection was cut off, or invalid call when not
connected

–16010 Connection negotiation failed because remote end is not
compatible with local end configuration

–16011 Connection terminated or failed due to retransmission limit of
data or connect packet

–16012 No data available for TCommToolGetRequest when
fNonBlocking is true.

–16013 Request canceled or connection disconnected

–16014 Call not supported by tool

–16015 Request not pending

–16016 Event not pending

–16017 Time-out waiting for connection

–16018 Connection end is already bound

–16019 Connection end was not bound before use

–16020 Connection end is being released

–16021 No phone number was provided

A P P E N D I X

Error Codes

Communications Errors A-19

Serial Tool Errors 23

These are the serial tool errors.

–16022 Operation failed because a resource was not available

–16023 Call failed because the option passed is not supported

–16024 The method is not implemented

Error code Description

–18000 Serial channel is in use

–18001 Memory error

–18002 Not current owner of the serial port

–18003 Framing or parity overrun, or bad connection

–18004 CRC error on input framing

–18005 An internal error has occurred

–18006 Packet size too large or too small in an output request

–18007 Unexpected packet length

–18008 EOF not found

–18009 Overrun bit was set

–18010 Too many collisions when sending packet

–18011 Too many deferrals when sending packet

–18012 Timed out waiting for an event

–18013 Serial tool is not active or ready

Error code Description

A P P E N D I X

Error Codes

A-20 Communications Errors

MNP Tool Errors 23

These are the MNP tool errors.

FAX Tool Errors 23

These are the FAX tool errors.

Error code Description

–20001 Connection parameter negotiation failed

–20002 Acceptor of connect request timed out

–20003 Not connected

–20004 Request aborted by disconnect request

–20005 Link attention service is not enabled

–20006 Request retry limit of connect initiator reached

–20007 Command already in progress

–20008 Connection already established

–20009 Connection failed due to incompatible protocol levels

–20010 Connection handshake failed

–20011 Memory for MNP not allocated

Error code Description

–22001 Lost connection while sending or receiving FAX

–22002 FAX machine is not compatible

–22003 Transmission error

–22005 FAX machine had a problem sending some pages

–22006 Transmission error

–22007 Transmission error

A P P E N D I X

Error Codes

Communications Errors A-21

Modem Tool Errors 23

These are the modem tool errors.

Communications Manager Errors 23

These are the Communications Manager errors.

Error code Description

–24000 No modem is connected

–24001 There is no dial tone

–24002 There is no answer

–24003 The phone number is busy

–24004 There is no answer

–24005 The modem is not responding properly

–24006 FAX carrier error

–24007 The modem is not responding properly

–24008 The modem connected to the serial port does not support
cellular connection

–24009 The AT+FRH command timed out when receiving flags

Error code Description

–26000 Service already initialized

–26001 Unknown command

–26002 Unknown service

–26003 Service already exists

–26004 No service specified in the options array

–26005 There is no registered service matching the type specified in
the options array

–26006 No endpoint exists; this is usually because CMStartService
has not been called

–26007 No public port exists; this is usually because
CMGetEndPoint has not been called

A P P E N D I X

Error Codes

A-22 Communications Errors

Docker Errors 23

These are the docker errors.

–26008 No known last connected device

–26009 A tuple has been received, but no the device ID tuple

–26010 A service information response tuple was expected

–26011 Unsupported service; can only load packages

–26012 An SCP load is in progress and another cannot be issued

–26013 The SCP load call is not supported on this machine

–26014 Cannot process this speed

–26015 The SCP loader did not previously load a package

Error code Description

–28001 Invalid store signature

–28002 Invalid entry

–28003 Aborted

–28004 Invalid query

–28005 Read entry error

–28006 Invalid current soup

–28007 Invalid command length

–28008 Entry not found

–28009 Bad connection

–28010 File not found

–28011 Incompatible protocol

–28012 Protocol error

–28013 Docking canceled

–28014 Store not found

–28015 Soup not found

Error code Description

A P P E N D I X

Error Codes

Communications Errors A-23

–28016 Invalid header

–28017 Out of memory

–28018 Newton version too new

–28019 Package cannot load

–28020 Protocol already registered

–28021 Remote import error

–28022 Bad password error

–28023 Password retry

–28024 Idle too long

–28025 Out of power

–28026 Invalid cursor

–28027 Already busy

–28028 Desktop error

–28029 Cannot connect to modem

–28030 Disconnected

–28031 Access denied

–28100 Disconnect during read

–28101 Read failed

–28102 Communications tool not found

–28103 Invalid modem tool version

–28104 Card not installed

–28105 Browser File Not Found

–28106 Browser Volume Not Found

–28107 Browser Path Not Found

Error code Description

A P P E N D I X

Error Codes

A-24 Communications Errors

Docker Import and Export Errors 23

These are the docker import and export errors.

Docker Disk Errors 23

These are the docker disk errors.

Error code Description

–28200 Syntax error

–28201 Invalid version

–28202 Could not open temporary store

–28203 Could not convert

–28204 Invalid criteria

–28205 Error applying script

–28206 Missing meta data

–28207 Unknown error

–28208 Scanner overflow error

–28209 Data Viz translator error

–28210 Invalid type

Error code Description

–28300 Disk full

–28301 File not found

–28302 File is write protected

–28303 Duplicate file name

–28304 Too many files open

A P P E N D I X

Error Codes

System Services Errors A-25

Docker Desktop DIL Errors 23

These are the docker desktop DIL errors.

System Services Errors A
This section lists the different kinds of Newton system services errors.

Sound Errors 23

These are the sound errors.

Error code Description

–28700 No Error

–28701 Out of memory

–28702 Invalid pipe state

–28703 Exception error

–28704 Queue full

–28705 Pipe not initialized

–28706 Invalid parameter

–28707 Pipe not ready

–28800 No Error

–28801 Out of object heap memory

–28802 Out of temporary memory

–28803 Unknown slot

–28804 Slot size exceeded

–28805 Slot size required

Error code Description

–30000 Generic sound error

–30001 Not enough memory available

–30002 Invalid message

A P P E N D I X

Error Codes

A-26 System Services Errors

Compression Errors 23

These are the compression errors.

–30003 Sound was not played

–30004 No channel decompressor

–30005 Destination buffer too small

–30006 Sound player busy

–30007 Sound recorder busy

–30008 No samples provided

–30009 Unsupported sound configuration

–30010 Sound channel closed

–30011 Sound cancelled

–30012 The sound volume is set to zero

Error code Description

–32001 Cannot compress in place

–32002 Parsing error

–32003 Invalid type

–32004 Compression not achieved

–32005 Key not found

–32006 Compression index error

–32007 Cannot decompress in place

–32008 Decompression not achieved

–32009 Unexpected end of source

–32100 Buffer overflow

–32101 Buffer underflow

Error code Description

A P P E N D I X

Error Codes

System Services Errors A-27

Memory Errors 23

These are the memory errors.

Error code Description

-34000 Not free, direct or indirect

-34001 Pointer not aligned to 4-byte boundary

-34002 Pointer to outside of heap

-34003 Unknown infrastructure type

-34004 Free block where there shouldn't be one

-34005 Free list pointer points outside of heap

-34006 Free-list pointer doesn’t point at a free block

-34007 Invalid block size

-34008 Forbidden bits set in block size

-34009 Less than minimum size for heap block

-34010 Heap block tool large

-34011 Total free space is more than space for entire heap

-34012 Nil pointer where not allowed

-34013 Actual free space does not match tracked free space

-34014 Linked free space does not match tracked free space

-34015 Master pointer doesn’t point back to a handle block

-34016 Invalid block size adjustment

-34017 Internal block may be mangled

-34018 The heap is invalid

-34019 Caught an exception while checking the heap

-34020 Invalid heap header

A P P E N D I X

Error Codes

A-28 System Services Errors

Communications Transport Errors 23

These are the communications transport errors.

Sharp IR Errors 23

These are the Sharp infrared errors.

Error code Description

–36001 Incorrect address format

–36002 Incorrect option format

–36003 Cancel is in progress

–36005 Could not allocated address

–36006 Operation not supported in the current tool state

–36008 System error

–36012 Flow control problem

–36018 Unsupported primitive

–36019 State change is in process

–36030 There’s already a synchronous call pending

Error code Description

–38001 No response - protocol time out

–38002 Cancelled - remote side cancelled operation

–38003 Protocol error

–38004 Data checksum failed

–38005 Remote side receive failed

–38006 Bad connection - allowed number of retries exceeded

–38007 SCC data errors on receive

–38008 Unspecified beaming error

A P P E N D I X

Error Codes

System Services Errors A-29

Online Service Errors 23

These are the online service errors.

Printing Errors 23

These are the printing errors.

Error code Description

–40102 Lost connection to host

–40103 Lost connection to host

–40104 The host is not responding

–40105 There is a problem reading from the host

–40106 Failed to connect to local access number

Error code Description

–44000 Printer problem

–44001 Newton is unable to print

–44002 No printer is connected

–44003 Printer busy

–44004 Printing stopped

–44005 Lost contact with the printer

–44006 Image too complex for printer

–44100 The next sheet of paper must be inserted

–44101 The phone number must be dialed now

–44102 There is no paper tray

–44103 The wrong paper tray is attached

–44104 The printer has no paper

–44105 The printer has no ink

–44106 The printer is jammed

–44107 The printer door is open

–44108 The printer is off-line

A P P E N D I X

Error Codes

A-30 NewtonScript Environment Errors

Newton Connection Errors 23

These are the Newton connection errors.

NewtonScript Environment Errors 23
This section lists the different kinds of NewtonScript error codes.

Store and Soup Errors 23

These errors are related to stores and soups.

Error code Description

–46001 Connection initialization failed

–46002 Timer error

–46003 Connection request was denied by the remote

–46004 Unable to connect because there are no endpoints available

–46005 A connect request was received but no service name was
given

Error code Description

–48001 The PCMCIA card is not a data storage card

–48002 Store format is too old to understand

–48003 Store format is too new to understand

–48004 Store is corrupted, can't recover

–48005 Single object is corrupted, can't recover

–48006 Object stream has unknown format version

–48007 Fault block is invalid

–48008 Not a fault block

–48009 Not a soup entry

–48010 Tried to remove a store that was not registered

–48011 Soup index has an unknown type

–48012 Soup index has an unknown key structure

A P P E N D I X

Error Codes

NewtonScript Environment Errors A-31

–48013 Soup index does not exist

–48014 A soup with this name already exists

–48015 Tried to CopyEntries to a union soup

–48016 Soup is invalid (probably from a removed store)

–48017 Soup is invalid (probably from a removed store)

–48018 Entry is invalid (probably from a removed store)

–48019 Key does not have the type specified in the index

–48020 Store is in ROM

–48021 Soup already has an index with this path

–48022 Internal error–something unexpected happened

–48023 Tried to call RemoveIndex on the _uniqueID index

–48024 Query type missing or unknown

–48025 Discovered index inconsistency

–48026 Maximum number of soup tags reached

–48027 Soup does not have a tags index

–48028 Invalid tags specification in the query

–48029 Store cannot handle the feature (for example, large objects)

–48030 Unknown sorting table

–48031 Cannot do union soup because of different sorting tables

–48032 Invalid index description

–48033 Cannot use virtual objects for soup entry keys

Error code Description

A P P E N D I X

Error Codes

A-32 NewtonScript Environment Errors

Object System Errors 23

These errors are related to the object system.

Error code Description

–48200 Expected a frame, array, or binary object

–48201 Invalid magic pointer

–48202 Empty path

–48203 Invalid segment in path expression

–48204 Path failed

–48205 Index out of bounds (string or array)

–48206 Source and destination must be different objects

–48207 Long out of range

–48210 Bad arguments

–48211 String too big

–48212 Expected a frame, array, or binary object

–48213 Expected a frame, array, or binary object

–48214 Object is read-only

–48216 Out of heap memory

–48217 Invalid attempted use of magic pointer

–48218 Cannot create or change an object to negative size

–48219 Value out of range

–48220 Could not resize locked object

–48221 Reference to deactivated package

–48222 Exception is not a subexception of |evt.ex|

A P P E N D I X

Error Codes

NewtonScript Environment Errors A-33

Bad Type Errors 23

These errors are caused by data of the wrong type.

Error code Description

–48400 Expected a frame

–48401 Expected an array

–48402 Expected a string

–48403 Expected a frame, array, or binary object

–48404 Expected a number

–48405 Expected a real

–48406 Expected an integer

–48407 Expected a character

–48408 Expected a binary object

–48409 Expected a path expression (or a symbol or integer)

–48410 Expected a symbol

–48411 Expected a function

–48412 Expected a frame or an array

–48413 Expected an array or nil

–48414 Expected a string or nil

–48415 Expected a binary object or nil

–48416 Unexpected frame

–48417 Unexpected binary object

–48418 Unexpected immediate

–48419 Expected an array or string

–48420 Expected a virtual binary object

–48421 Expected a package

–48422 Expected nil

–48423 Expected nil or a symbol

–48424 Expected nil or true

–48425 Expected an integer or an array

A P P E N D I X

Error Codes

A-34 NewtonScript Environment Errors

Compiler Errors 23

These errors are generated by the compiler.

Error code Description

–48600 Could not open a listener window

–48601 Syntax error

–48603 Cannot assign to a constant

–48604 Cannot test for subscript existence; use length

–48605 Global variables not allowed in applications

–48606 Cannot have a global variable and a global constant with the
same name

–48607 Cannot redefine a constant

–48608 Cannot have a variable and a constant with the same name in
the same scope

–48609 Non-literal expression for constant initializer

–48610 End of input inside a string

–48611 Odd number of digits between \\u’s

–48612 No escapes but \\u are allowed after \\u

–48613 Invalid hex character in \\u string

–48617 Two-digit hex number required after $\\ escape

–48618 Four-digit hex number required after $\\u

–48619 Illegal character '%c'

–48620 Invalid hexadecimal integer: %s (out of range)

–48621 Invalid real number (out of range)

–48622 Invalid decimal integer: %s (out of range)

–48626 #xxxx not allowed from NTK

–48627 Not a constant

–48628 Decimal digit required after @

A P P E N D I X

Error Codes

NewtonScript Environment Errors A-35

Interpreter Errors 23

These are interpreter errors.

Communications Endpoint Errors 23

These are the communications endpoint errors.

Error code Description

–48800 Not in a break loop

–48803 Wrong number of arguments

–48804 FOR loop BY expression has value zero

–48806 No current exception

–48807 Undefined variable

–48808 Undefined global function

–48809 Undefined method

–48810 No _proto for inherited send

–48811 Tried to access slot of nil

–48814 Local variables and FOR/WITH loops not allowed at top
level

–48815 The operation would make the rich string invalid

Error code Description

–54000 An active input spec is required

–54001 Error in the form slot of an input spec

–54002 Trying to send zero-length data

–54003 An input spec is required

–54004 The option you tried to set was missing

–54005 Error in the endSequence slot of an input spec

–54006 Used the Partial method with a bad input spec, or unable
to do a partial input

–54007 Error in termination slot of input spec

A P P E N D I X

Error Codes

A-36 NewtonScript Environment Errors

–54008 Error in target slot of input spec

–54009 Error in filter slot of input spec

–54010 Attempted to receive binary data with no target object
specified

–54011 Attempted to send or receive template data without a
template specified

–54012 Tried to set an input spec when one was already active

–54013 Invalid value in filter proxy of input spec

–54014 Endpoint object is missing

–54015 Method not supported, or called inappropriately

–54016 The character specified in the filter proxy of the input spec is
more than a single byte

–54021 Option failed

–54022 Option set, but set value is different from requested value

–54023 Set attempted on read-only option

–54024 Option not supported

–54025 Invalid option opcode

–54026 Option not found

–54027 One or more requested options missing

Error code Description

A P P E N D I X

Error Codes

Device Driver Errors A-37

Device Driver Errors A
This section lists the device driver error codes.

Tablet Driver Errors 23

These are the tablet errors.

Battery Driver Errors 23

These are the battery driver errors

Error code Description

–56001 Attempted to call the tablet driver before it was loaded

–56002 Attempted to create a tablet driver a second time

–56003 Creation of tablet driver failed

–56004 Unable to enter bypass mode

–56005 Not in bypass mode

–56006 Cannot add sample to buffer

–56007 No new data since last polling time

–56008 Unsupported function

–56101 Timeout when calibrating

–56102 Calibration aborted

Error code Description

–56201 Could not find battery driver

–56202 Battery error

–56203 Invalid battery selector

A P P E N D I X

Error Codes

A-38 Other Services Errors

Other Services Errors A
This section lists the error codes for other services.

Alien Store Errors 23

These are the alien store errors

Error code Description

–58001 Oversize page

–58002 No such page

–58003 Cannot repage ID

–58004 No more for that page

–58005 Store is damaged

IN-1

Index

A

Abs 23-53
Accept 20-21
Acos 23-58
Acosh 23-58
Action button

bypassing 18-24
default placement of 18-8
protoActionButton 18-7

action template 15-4
structure of 15-3

AddAction 14-30
AddAlarm 14-8
AddAlarmInSeconds 14-9
AddAppointment 16-30
AddArraySlot 23-31
AddAuxButtons 16-99
AddCard 16-6
AddCardData 16-6
AddDeferredCall 23-87
AddDeferredSend 23-89
AddDelayedCall 23-88
AddDelayedSound 23-90
AddEntry 3-4
AddEvent 16-32
AddExtraIcon 16-88
AddFolder 12-13
adding views dynamically 2-27
AddInk 7-25
AddLayout 16-8
AddLocale 17-18
AddMemoryCall 23-109
AddMemoryItemUnique 23-110
AddProcrastinatedCall 23-90

AddProcrastinatedSend 23-91
address, user configuration variable 16-101
AddStepView 2-27
AddText 19-38
AddToDefaultStoreXmit 9-38
AddUndoAction 14-2
AddUndoCall 14-1
AddUndoSend 14-2
AddView 2-29
AddWordToDictionary 8-93
AddXmit 9-40
AdoptEntry 3-5
ADSP protocol errors A-17
AEP protocol errors A-15
AlarmsEnabled 14-5
AlarmUser 14-10
alerting user 14-7
AliasFromObj 5-129
alien store errors A-38
alignment of view

viewJustify slot 2-6
allDataDefs 3-12
allSoups slot 3-3, 3-10
allViewDefs 3-12
animating views 2-38
AnnualEvent 16-26
Annuity 23-77
AppClosed 19-8
appearance of view

view fill color 2-11
viewFormat slot 2-11
view frame color 2-11
view frame inset 2-12
view frame roundedness 2-12
view frame thickness 2-12

I N D E X

IN-2

appearance of view (continued)
view line style 2-12
view shadow style 2-12

AppFindTargets 13-15
AppInFront 19-9
AppInstalled 18-27
AppleTalk address option 21-72
AppleTalk buffer size option 21-73
AppleTalk bytes available option 21-74
AppleTalk endpoint name option 21-76
AppleTalk errors A-12
AppleTalk functions and methods 21-76, 21-81

AppleTalkOpenCount 21-77
CloseAppleTalk 21-77
GetMyZone 21-78
GetNames 21-79
GetZoneFromName 21-79
GetZoneList 21-78
HaveZones 21-78
NBPGetCount 21-80, 21-81
NBPGetNames 21-81
NBPStart 21-79
NetChooser 21-81
NetworkChooserDone 21-82
OpenAppleTalk 21-77

AppleTalkOpenCount 21-77
AppleTalk tool 21-71

address option 21-72
buffer size option 21-73
bytes available option 21-74
endpoint name option 21-76
tool type option 21-75

AppleTalk tool type option 21-75
application

DeletionScript function 1-6
DoNotInstallScript function 1-6
InstallScript function 1-5
RemoveScript function 1-6
testing whether open 2-19

application errors A-2
Apply 23-83
AppOpened 19-10

Array 23-31
array functions and methods 23-31

AddArraySlot 23-31
Array 23-31
ArrayInsert 23-32
ArrayMunger 23-32
ArrayRemoveCount 23-33
InsertionSort 23-34
Length 23-34
LFetch 23-35
LSearch 23-36
NewWeakArray 23-37
SetAdd 23-38
SetContains 23-38
SetDifference 23-39
SetLength 23-39
SetOverlaps 23-40
SetRemove 23-40
SetUnion 23-41
Sort 23-41

ArrayInsert 23-32
ArrayMunger 23-32
ArrayRemoveCount 23-33
ArrayToPoints 10-45
Asin 23-58
Asinh 23-58
assistant

frames 15-1
functions 15-1
intelligent 15-1
methods 15-1
slots 15-1
templates 15-1

AsyncConfirm 2-32
Atan 23-59
Atan2 23-59
Atanh 23-59
ATP protocol errors A-15
AutoPutAway 18-32
auto-transmit methods

AddXmit 9-40
auxiliary buttons 16-99

I N D E X

IN-3

B

BackLight 23-110
BackLightStatus 23-111
bad type errors A-33
Band 23-30
basic endpoint 20-1
BatteryCount 14-31
battery driver errors A-37
BatteryStatus 14-31
BcCreditCards 16-9
BcCustomFields 16-9
BcEmailAddress 16-10
BcEmailNetwork 16-10
BcPhoneNumber 16-11
BDelete 23-44
BDifference 23-45
BeginsWith 23-13
behavior of view 2-4
BFetch 23-45
BFetchRight 23-46
BFind 23-46
BFindRight 23-47
BinaryMunger 23-111
Bind 20-19
BinEqual 23-111
BInsert 23-48
BInsertRight 23-49
BIntersect 23-50
bitmap functions and methods

DrawIntoBitmap 10-21
MakeBitmap 10-19
MungeBitmap 10-22
ViewIntoBitmap 10-23

bitwise functions and methods
Band 23-30
Bxor 23-30

BMerge 23-51
BottomOfSlip 19-40
bounds functions and methods

ButtonBounds 2-37
PictBounds 2-38

RelBounds 2-34
SetBounds 2-34

BreakLoop 23-104
BSearchLeft 23-52
BSearchRight 23-52
BuildContext 2-31
BuildText 19-37
built-in communications tools

option labels 21-2
built-in fonts 7-4
ButtonBounds 2-37
ButtonClickScript method in

protoFilingButton 12-4
button protos 6-6
ButtonToggleScript 2-65
Bxor 23-30

C

callback spec 20-9
Cancel 20-26
CancelRequest 14-24, 19-10
CanPutAway 19-11
Capitalize 23-13
CapitalizeWords 23-14
card store errors A-10
caret insertion writing mode

functions and methods 7-47
Ceiling 23-53
ChangePopup 3-65
CheckOutbox 19-12
CheckWriteProtect 9-29
ChildViewFrames 2-19
child views

laying out 2-59
Chr 23-112
cityZip, user configuration variable 16-101
class

viewClass constants 2-2
ClassAppByClass 18-27

I N D E X

IN-4

class constants
clEditView 2-2
clGaugeView 2-4
clKeyboardView 2-3
clMonthView 2-3
clOutline 2-4
clParagraphView 2-2
clPickView 2-3
clPictureView 2-2
clPolygonView 2-3
clRemoteView 2-3
clView 2-2

ClassOf 23-2
ClearUndoStacks 14-3
clEditView 7-12
clGaugeView 6-30
Clicker 11-10
clKeyboardView 7-35
clMonthView 5-123
Clone 9-60, 23-3
Close 2-21, 11-4
CloseAppleTalk 21-77
CloseStatusDialog 19-13
clOutline 5-121
clParagraphView 7-15
clPictureView 10-4
clPolygonView 10-4
clRemoteView 10-5
clView 1-1
common system errors A-2
communications endpoint errors A-35
communications errors A-12 to A-25
Communications Manager errors A-21
communications tool errors A-18
communications transport errors A-28
communication tools

built-in 21-1
company, user configuration variable 16-101
Compile 23-112
compiler errors A-34
CompletionScript 20-9, 20-15
Compound 23-78

compression errors A-26
CompressStrokes 8-84
Connect 20-20
ConnectionDetect 19-13
constants

fax profile option 22-10
general information 22-2
modem setup preferences 22-3
modem setup profile 22-4

ContinueSend 19-42
ConvertToSoupEntry method

(ROM_CompatibleFinder) 13-9
CopyBits 10-41
copy protecting a view 7-16
copy protection constants 7-17
copyProtection slot 7-16
CopySign 23-59
Cos 23-60
Cosh 23-60
Count method (ROM_CompatibleFinder) 13-9
Count method (ROM_SoupFinder) 13-2
CountPages 18-18
CountPoints 8-84
country, user configuration variable 16-101
countrySlot, user configuration variable 16-102
CountStrokes 8-84
CreateBlankEntry 3-5
CreateTargetCursor 18-24
CreateToDoItem 16-70
CreateToDoItemAll 16-71
currentAreaCode, user configuration

variable 16-102
currentCountry, user configuration

variable 16-102
currentEmporium, user configuration

variable 16-102
CurrentException 23-81
currentPersona, user configuration

variable 16-102
currentPrinter, user configuration variable 16-102
current time and date 17-21

I N D E X

IN-5

cursor functions and methods
Clone 9-60
Entry 9-61
EntryKey 9-61
Goto 9-62
GotoKey 9-62
MapCursor 9-63
Move 9-63
Next 9-63
Prev 9-64
Query 9-37
Reset 9-64
ResetToEnd 9-64

CustomFind 13-20

D

dataDef
FillNewEntry 4-4
MakeNewEntry 4-5
newtStationery 4-3
StringExtract 4-5
TextScript 4-5

data extraction functions and methods 23-92
ExtractByte 23-92
ExtractBytes 23-93
ExtractChar 23-93
ExtractCString 23-95
ExtractLong 23-94
ExtractPString 23-95
ExtractUniChar 23-96
ExtractWord 23-95
ExtractXLong 23-94

data structures
sound frame 11-1
sound result frame 11-3

data stuffing functions and methods 23-96
StuffByte 23-96
StuffChar 23-97
StuffCString 23-98

StuffLong 23-98
StuffPString 23-99
StuffUniChar 23-99
StuffWord 23-100

Date 17-28
date, getting current 17-21
date and time protos 6-38
DateFind 13-15
DateFindTargeted 13-16
DateFrameSeconds 17-28
date functions 17-18
DateNTime 17-23
dates 16-23

functions and methods
AddAppointment 16-30
AddEvent 16-32
DeleteAppointment 16-34
DeleteEvent 16-36
DeleteRepeatingEntry 16-35
DisplayDate 16-37
FindAppointment 16-37
FindExactlyOneAppointment 16-39
FindNextMeeting 16-41
GetCalendarMeetingType 16-42
GetCalendarMeetingTypeInfo 16-42
GetMeetingIconType 16-41
GetMeetingInvitees 16-43
GetMeetingLocation 16-44
GetMeetingNotes 16-44
GetSelectedDates 16-44
MoveAppointment 16-45
MoveOnlyOneAppointment 16-46
NewMeeting 16-49
OpenMeeting 16-50
OpenMeetingSlip 16-47
RegInfoItem 16-47
RegMeetingType 16-48
RememberedClose 16-50
RememberedOpen 16-51
SetEntryAlarm 16-51
SetMeetingIconType 16-52
SetMeetingInvitees 16-52

I N D E X

IN-6

dates, functions and methods (continued)
SetMeetingLocation 16-53
SetMeetingNotes 16-54
SetRepeatingEntryStopDate 16-55
UnRegInfoItem 16-56
UnRegMeetingType 16-56

Dates constants 16-24
Dates protos 16-26

protoRepeatPicker 16-27
protoRepeatView 16-28

Dates soups 16-56
meeting frames 16-57
notes frames 16-62

Dates variables
firstDayOfWeek 16-24
useWeekNumber 16-24

DDP protocol errors A-13
debugging functions 23-104
debugging functions and methods

BreakLoop 23-104
DV 23-104
ExitBreakLoop 23-106
GC 23-105
StackTrace 23-106
Stats 23-106
StrHexDump 23-107
TrueSize 23-107

DecodeRichString 7-32
DeepClone 23-3
deferred message sending functions and

methods 23-87
AddDeferredCall 23-87
AddDeferredSend 23-89
AddDelayedCall 23-88
AddDelayedSound 23-90
AddProcrastinatedCall 23-90
AddProcrastinatedSend 23-91

DefGlobalFn 23-102
DefGlobalVar 23-103
Delete 2-44
DeleteAppointment 16-34
DeleteEntry 3-6

DeleteEvent 16-36
Delete method (ROM_CompatibleFinder) 13-9
Delete method (ROM_SoupFinder) 13-3
DeleteRepeatingEntry 16-35
DeleteTransport 19-49
DeleteWordFromDictionary 8-92
DeletionScript function 1-6
dependent views 2-55
determining view ink types 7-25
device driver errors A-37
Dial 11-6
dialingPrefix, user configuration variable 16-102
dialog view

creating 2-31
dictionary functions

AddWordToDictionary 8-93
DeleteWordFromDictionary 8-92
DisposeDictionary 8-93
GetDictionaryData 8-94
GetRandomWord 8-91
LookupWordInDictionary 8-91
NewDictionary 8-92
SaveUserDictionary 8-96
SetDictionaryData 8-94

Dirty 2-24
DirtyBox 2-36
dirtying views 2-20
Disconnect 20-22
DisplayDate 16-37
displaying views 2-20
Dispose 20-20
DisposeDictionary 8-93
DMA errors A-11
doAutoAdd, user configuration variable 16-103
docker desktop DIL errors A-25
docker disk errors A-24
docker errors A-22
docker import and export errors A-24
DoDrawing 10-40
doInkWordRecognition, user configuration

variable 16-103
DoneWithSoup 3-6

I N D E X

IN-7

DoNotInstallScript function 1-6
DoProgress 14-25
doShapeRecognition, user configuration

variable 16-103
doTextRecognition, user configuration

variable 16-103
Downcase 23-14
Drag 2-45
DragAndDrop 2-46
drawing functions and methods

ArrayToPoints 10-45
CopyBits 10-41
DoDrawing 10-40
DrawShape 10-35
DrawXBitmap 10-42
IsPrimShape 10-43
PointsToArray 10-44

DrawIntoBitmap 10-21
DrawShape 10-35
DrawXBitmap 10-42
DuplicateEntry 3-6
DV 23-104
dynamically adding views 2-27

E

Effect 2-38
emailPassword, user configuration

variable 16-103
endpoint

callback spec 20-9
data structures 20-7
data translators 20-34
encoding slot 20-18
error codes 20-4
functions and methods 20-32
option frame 20-7
protos 20-18

endpoint errors A-35

endpoint functions and methods
Accept 20-21
Bind 20-19
Cancel 20-26
CompletionScript 20-9, 20-15
Connect 20-20
Disconnect 20-22
Dispose 20-20
EventHandler 20-28
ExceptionHandler 20-28
FlushInput 20-26
FlushPartial 20-26
Input 20-25
InputScript 20-13
Instantiate 20-18
Listen 20-21
MakeAppleTalkOption 20-33
MakeModemOption 20-33
MakePhoneOption 20-33
Option 20-27
Output 20-23
Partial 20-25
PartialScript 20-14
ProgressScript 20-32
SetInputSpec 20-24
State 20-29
StreamIn 20-30
StreamOut 20-31
Translate 20-33
UnBind 20-19

EndsWith 23-14
EnsureInternal 23-4
EnsureVisibleTopic 16-72
entries 9-65
Entry 9-61
EntryFromObj 5-129
entry functions and methods

EntryModTime 9-71
EntrySize 9-69
EntrySoup 9-69
EntryStore 9-69
EntryTextSize 9-69

I N D E X

IN-8

entry functions and methods (continued)
EntryUndoChanges 9-66
EntryUnique 9-72
FrameDirty 9-69

EntryKey 9-61
EntryModTime 9-71
EntrySize 9-69
EntrySoup 9-69
EntryStore 9-69
EntryTextSize 9-69
EntryUndoChanges 9-66
EntryUniqueId 9-72
Erase 9-31
Erf 23-60
Erfc 23-61
error codes A-1 to A-38
error control type

modem option 21-45
errors

ADSP protocol A-17
AEP protocol A-15
alien store A-38
AppleTalk A-12
application A-2
ATP protocol A-15
bad type A-33
battery driver A-37
card store A-10
common system A-2
communications A-12 to A-25
communications endpoint A-35
Communications Manager A-21
communications tool A-18
communications transport A-28
compiler A-34
compression A-26
DDP protocol A-13
device driver A-37
DMA errors A-11
docker A-22
docker desktop DIL A-25
docker disk A-24

docker import and export A-24
FAX tool A-20
flash card A-10
hardware A-8 to A-12
heap A-12
interpreter A-35
I/O Box errors A-3
LAP protocol A-13
memory A-27
MNP tool A-20
modem tool A-21
NBP protocol A-14
NewtonScript A-30 to A-36
object system A-32
online service A-29
operating system A-4
package A-8
PAP protocol A-16
PCMCIA card A-8
printing A-29
RTMP protocol A-15
serial tool A-19
Sharp IR A-28
sound A-25
soup A-30
stack A-7
store A-30
system A-2 to A-8
system services A-25 to A-30
tablet driver A-37
TSI A-30
view errors A-3, A-4
view warning messages 2-86
ZIP protocol A-17

EvalStringer 23-15
Event 16-26
EventHandler 20-28
exception functions

CurrentException 23-81
Rethrow 23-81
RethrowWithUserMessage 23-82
Throw 23-80

I N D E X

IN-9

ExceptionHandler 20-28
exceptions

raised by Newton system software A-1
ExitBreakLoop 23-106
Exp 23-61
ExpandInk 8-83
ExpandUnit 8-83
Expm1 23-61
extending the intelligent assistant 15-1
ExtractByte 23-92
ExtractBytes 23-93
ExtractChar 23-93
ExtractCString 23-95
ExtractLong 23-94
ExtractPString 23-95
ExtractRangeAsRichString 7-32
ExtractUniChar 23-96
ExtractWord 23-95
ExtractXLong 23-94
Extras Drawer 16-85

functions and methods
AddExtraIcon 16-88
GetExtraIcons 16-90
GetPartCursor 16-90
GetPartEntryData 16-91
LaunchPartEntry 16-92
RemoveExtraIcon 16-92
SetExtrasInfo 16-92

F

Fabs 23-61
faxPhone, user configuration variable 16-103
fax profile option 22-10
Fax Soup Entries 16-94
FAX tool errors A-20
FDim 23-62
FeClearExcept 23-74
FeGetEnv 23-74
FeGetExcept 23-75

FeHoldExcept 23-75
FeRaiseExcept 23-75
FeSetEnv 23-76
FeSetExcept 23-76
FeTestExcept 23-76
FeUpdateEnv 23-77
FileAndMove method

(ROM_CompatibleFinder) 13-9
FileAndMove method (ROM_SoupFinder) 13-3
FileEntry 16-87
FileSoup 16-86
FileThis method 12-3, 12-16
filing services 12-1
fill color 2-11
FillNewEntry 4-4
FillNewSoup 3-6
FilterDialog 2-33
filters

NewtApp 3-60
filter slot in endpoint

details of 20-17
financial functions and methods 23-77

Annuity 23-77
Compound 23-78
GetExchangeRate 23-79
GetUpdatedExchangeRates 23-80
SetExchangeRate 23-79

Find 13-17
Application-Defined Methods 13-14

FindAppointment 16-37
finders

ROM_CompatibleFinder proto 13-7
ROM_SoupFinder proto 13-1

FindExactlyOneAppointment 16-39
FindLocale 17-18
FindNextMeeting 16-41
FindSoupExcerpt 13-19
FindStringInArray 23-15
FindStringInFrame 23-15
FindTargeted 13-18
firstDayOfWeek, Dates variable 16-24
FitToBox 10-38

I N D E X

IN-10

flash card errors A-10
flavor slot 3-60
floating point math functions and methods

Abs 23-53
Acos 23-58
Acosh 23-58, 23-60
Asin 23-58
Asinh 23-58
Atan 23-59
Atan2 23-59
Atanh 23-59
CopySign 23-59
Cos 23-60
Cosh 23-60
Erfc 23-61
Exp 23-61
Expm1 23-61
Fabs 23-61
FDim 23-62
FeClearExcept 23-74
FeGetEnv 23-74
FeGetExcept 23-75
FeHoldExcept 23-75
FeRaiseExcept 23-75
FeSetEnv 23-76
FeSetExcept 23-76
FeTestExcept 23-76
FeUpdateEnv 23-77
FMax 23-62
FMin 23-62
Fmod 23-63
Gamma 23-63
Hypot 23-63
IsFinite 23-64
IsNan 23-64
IsNormal 23-64
LessEqualOrGreater 23-64
LessOrGreater 23-65
LGamma 23-65
Log 23-65
Log10 23-66

Log1p 23-65
Logb 23-65
NearbyInt 23-66
NextAfterD 23-66
Pow 23-67
RandomX 23-67
Remainder 23-67
RemQuo 23-68
Rint 23-68
RintToL 23-68
Round 23-69
Scalb 23-69
Sign 23-69
SignBit 23-69
Sin 23-70
Sinh 23-70
Sqrt 23-70
Tan 23-70
Tanh 23-71
Trunc 23-71
Unordered 23-71
UnorderedGreaterOrEqual 23-71
UnorderedLessOrEqual 23-72
UnorderedOrEqual 23-72
UnorderedOrGreater 23-72
UnorderedOrLess 23-72

Floor 23-53
FlushInput 20-26
FlushPartial 20-26
FMax 23-62
FMin 23-62
Fmod 23-63
Folder symbols 16-85
FontAscent 7-26
font attribute functions and methods 7-26
font constants 7-4
FontDescent 7-26
font face constants 7-3, 7-7
font family constants 7-7
FontHeight 7-27
FontLeading 7-27

I N D E X

IN-11

fonts
built-in 7-4
face constants 7-3, 7-7
family constants 7-7
functions and methods for 7-26

ForEachSelected method
(ROM_CompatibleFinder) 13-10

ForEachSelected method
(ROM_SoupFinder) 13-4

FormatChanged 19-41
FormatInitScript 18-18
format specifications

stroke bundles 8-28
FormattedNumberStr 23-17
Formulas roll 16-96
frame

color 2-11
inset 2-12
roundedness 2-12
shadow 2-12
thickness 2-12

framed asynchronous serial tool 21-29
FrameDirty 9-69
frame functions and methods 23-2
functions and methods 17-23, 23-20

Abs 23-53
Accept 20-21
Acos 23-58
Acosh 23-58, 23-60
AddAction 14-30
AddAlarm 14-8
AddAlarmInSeconds 14-9
AddAppointment 16-30
AddArraySlot 23-31
AddAuxButtons 16-99
AddCard 16-6
AddCardData 16-6
AddDeferredCall 23-87
AddDeferredSend 23-89
AddDelayedCall 23-88
AddDelayedSound 23-90
AddEvent 16-32

AddExtraIcon 16-88
AddFolder 12-13
AddInk 7-25
AddLayout 16-8
AddLocale 17-18
AddMemoryCall 23-109
AddMemoryItemUnique 23-110
AddProcrastinatedCall 23-90
AddProcrastinatedSend 23-91
AddStepView 2-27
AddText 19-38
AddToDefaultStoreXmit 9-38
AddUndoAction 14-2
AddUndoCall 14-1
AddUndoSend 14-2
AddView 2-29
AddWordToDictionary 8-93
AddXmit 9-40
AlarmsEnabled 14-5
AlarmUser 14-10
AliasFromObj 5-129
Annuity 23-77
AppClosed 19-8
AppFindTargets 13-15
AppInFront 19-9
AppInstalled 18-27
AppleTalkOpenCount 21-77
Apply 23-83
AppOpened 19-10
Array 23-31
ArrayInsert 23-32
ArrayMunger 23-32
ArrayRemoveCount 23-33
ArrayToPoints 10-45
Asin 23-58
Asinh 23-58
AsyncConfirm 2-32
Atan 23-59
Atan2 23-59
Atanh 23-59
AutoPutAway 18-32
BackLight 23-110

I N D E X

IN-12

functions and methods (continued)
BackLightStatus 23-111
Band 23-30
BatteryCount 14-31
BatteryStatus 14-31
BcCreditCards 16-9
BcCustomFields 16-9
BcEmailAddress 16-10
BcEmailNetwork 16-10
BcPhoneNumber 16-11
BDelete 23-44
BDifference 23-45
BeginsWith 23-13
BFetch 23-45
BFetchRight 23-46
BFind 23-46
BFindRight 23-47
BinaryMunger 23-111
Bind 20-19
BinEqual 23-111
BInsert 23-48
BInsertRight 23-49
BIntersect 23-50
BMerge 23-51
BottomOfSlip 19-40
BreakLoop 23-104
BSearchLeft 23-52
BSearchRight 23-52
BuildContext 2-31
BuildText 19-37
ButtonBounds 2-37
ButtonToggleScript 2-65
Bxor 23-30
Cancel 20-26
CancelRequest 14-24, 19-10
CanPutAway 19-11
Capitalize 23-13
CapitalizeWords 23-14
Ceiling 23-53
CheckOutbox 19-12
CheckWriteProtect 9-29
ChildViewFrames 2-19

Chr 23-112
ClassAppByClass 18-27
ClassOf 23-2
ClearUndoStacks 14-3
Clicker 11-10
Clone 9-60, 23-3
Close 2-21, 11-4
CloseStatusDialog 19-13
Compile 23-112
CompletionScript 20-9, 20-15
Compound 23-78
CompressStrokes 8-84
Connect 20-20
ConnectionDetect 19-13
ContinueSend 19-42
CopyBits 10-41
CopySign 23-59
Cos 23-60
Cosh 23-60
CountPages 18-18
CountPoints 8-84
CountStrokes 8-84
CreateTargetCursor 18-24
CreateToDoItem 16-70
CreateToDoItemAll 16-71
CurrentException 23-81
CustomFind 13-20
Date 17-28
DateFind 13-15
DateFindTargeted 13-16
DateFrameSeconds 17-28
DecodeRichString 7-32
DeepClone 23-3
DefGlobalFn 23-102
DefGlobalVar 23-103
Delete 2-44
DeleteAppointment 16-34
DeleteEvent 16-36
DeleteRepeatingEntry 16-35
DeleteTransport 19-49
DeleteWordFromDictionary 8-92
Dial 11-6

I N D E X

IN-13

functions and methods (continued)
Dirty 2-24
DirtyBox 2-36
Disconnect 20-22
DisplayDate 16-37
Dispose 20-20
DisposeDictionary 8-93
DoDrawing 10-40
DoProgress 14-25
Downcase 23-14
Drag 2-45
DragAndDrop 2-46
DrawIntoBitmap 10-21
DrawShape 10-35
DrawXBitmap 10-42
DV 23-104
Effect 2-38
EndsWith 23-14
EnsureInternal 23-4
EnsureVisibleTopic 16-72
Entry 9-61
EntryFromObj 5-129
EntryKey 9-61
EntryModTime 9-71
EntrySize 9-69
EntrySoup 9-69
EntryStore 9-69
EntryTextSize 9-69
EntryUndoChanges 9-66
EntryUnique 9-72
Erase 9-31
Erfc 23-61
EvalStringer 23-15
EventHandler 20-28
ExceptionHandler 20-28
ExitBreakLoop 23-106
Exp 23-61
ExpandInk 8-83
ExpandUnit 8-83
Expm1 23-61
ExtractByte 23-92
ExtractBytes 23-93

ExtractChar 23-93
ExtractCString 23-95
ExtractLong 23-94
ExtractPString 23-95
ExtractRangeAsRichString 7-32
ExtractUniChar 23-96
ExtractWord 23-95
ExtractXLong 23-94
Fabs 23-61
FDim 23-62
FeClearExcept 23-74
FeGetEnv 23-74
FeGetExcept 23-75
FeHoldExcept 23-75
FeRaiseExcept 23-75
FeSetEnv 23-76
FeSetExcept 23-76
FeTestExcept 23-76
FeUpdateEnv 23-77
FileEntry 16-87
FileSoup 16-86
FillNewEntry 4-4
FilterDialog 2-33
Find 13-17
FindAppointment 16-37
FindExactlyOneAppointment 16-39
FindLocale 17-18
FindNextMeeting 16-41
FindSoupExcerpt 13-19
FindStringInArray 23-15
FindStringInFrame 23-15
FindTargeted 13-18
FitToBox 10-38
Floor 23-53
FlushInput 20-26
FlushPartial 20-26
FMax 23-62
FMin 23-62
Fmod 23-63
FontAscent 7-26
FontDescent 7-26
FontHeight 7-27

I N D E X

IN-14

functions and methods (continued)
FontLeading 7-27
FormatChanged 19-41
FormatInitScript 18-18
FormattedNumberStr 23-17
FrameDirty 9-69
Gamma 23-63
GC 23-105
Gestalt 23-113
GetActiveView 18-27
GetAlarm 14-11
GetAllInfo 9-31, 9-43
GetAppAlarmKeys 14-12
GetAppDataDefs 4-16
GetAppParams 23-118
GetAppPrefs 23-118
GetAuxButtons 16-99
GetCalendarMeetingType 16-42
GetCalendarMeetingTypeInfo 16-42
GetCaretBox 7-42
GetCaretInfo 7-48
GetCityEntry 16-79
GetConfig 19-14
GetCountryEntry 16-80
GetCurrentFormat 19-49
GetCursorFormat 18-17
GetDataDefs 4-15
GetDataView 4-17
GetDateStringSpec 17-29
GetDefaultFormat 18-22
GetDefaultOwnerStore 19-14
GetDefaultStore 9-32
GetDefs 4-14
GetDictionaryData 8-94
GetDrawBox 2-36
GetEntryDataDef 4-16
GetEntryDataView 4-16
GetExchangeRate 23-79
GetExtraIcons 16-90
GetFolderName 19-14
GetFontFace 7-27
GetFontFamilyNum 7-27

GetFontFamilySym 7-28
GetFontSize 7-28
GetFormatTransports 18-21
GetFromText 19-15
GetFunctionArgCount 23-4
GetGlobalFn 23-101
GetGlobalVar 23-101
GetGroupTransport 19-49
GetHiliteOffsets 2-54
GetIndexes 9-44
GetInfo 9-31, 9-44
GetInkAt 7-34
GetItemInfo 19-15
GetItemStateString 19-16
GetItemTime 19-16
GetItemTitle 19-17
GetItemTransport 18-28
GetKeyView 7-49
GetLanguageEnvironment 17-30
GetLocale 17-19
GetMeetingIconType 16-41
GetMeetingInvitees 16-43
GetMeetingLocation 16-44
GetMeetingNotes 16-44
GetMemoryItems 23-119
GetMemorySlot 23-119
GetName 9-32, 9-44
GetNameText 19-17
GetNextUid 9-44
GetPackages 9-20
GetPartCursor 16-90
GetPartEntryData 16-91
GetPoint 8-79
GetPointsArray 8-81
GetRandomState 23-54
GetRandomWord 8-91
GetRemoteWriting 7-47
GetRepeatSpec 16-29
GetRichString 7-32
GetRoot 2-19
GetRouteFormats 18-21
GetRouteScripts 18-28

I N D E X

IN-15

functions and methods (continued)
GetScoreArray 8-82
GetSelectedDates 16-44
GetShapeInfo 10-34
GetSignature 9-32, 9-44
GetSlot 23-4
GetSoup 9-32
GetSoupNames 9-33
GetStatusString 19-17
GetStore 9-45
GetStores 9-33
GetStroke 8-85
GetStrokeBounds 8-85
GetStrokePoint 8-85
GetStrokePointsArray 8-86
GetSysEntryData 16-107
GetTargetCursor 18-25
GetTaskShapes 16-74
GetTitle 18-7, 19-20
GetTitleInfoShape 19-18
GetToDoEntry 16-72
GetToDoItemsForRange 16-73
GetToDoItemsForThisDate 16-73
GetToDoShapes 16-74
GetToText 19-19
GetTransportScripts 19-19
GetUnionSoupAlways 9-37
GetUpdatedExchangeRates 23-80
GetUserConfig 16-107
GetVariable 23-5
GetView 2-20
GetViewDefs 4-16
GetViewFlags 2-64
GetVolume 11-7
GetWordArray 8-82
GetZoneFromName 21-79
GlobalBox 2-35
GlobalFnExists 23-101
GlobalOuterBox 2-35
GlobalVarExists 23-102
Goto 9-62
GotoKey 9-62

HandleError 19-21
HandleInkWord 7-55
HandleInsertItems 7-54
HandleRawInk 7-56
HandleThrow 19-21
HasSlot 23-5
HasSoup 9-33
HasVariable 23-5
HaveZones 21-78
Hide 2-23
Hilite 2-52
HiliteOwner 2-54
HiliteUnique 2-52
HitShape 10-24
HourMinute 17-23
Hypot 23-63
IgnoreError 19-22
IncrementMonth 17-20
InfoChanged 19-38
InkConvert 8-86
InkOff 8-76
InkOffUnHobbled 8-77
Input 20-25
InputScript 20-13
InsertionSort 23-34
InsertItemsAtCaret 7-54
InsetRect 10-38
InstallScript 19-22
Instantiate 20-18
Intern 23-6, 23-23
InvertRect 10-37
IOBoxExtensions 19-22
IsActive 11-5
IsAlphaNumeric 23-18
IsArray 23-6
IsBinary 23-6
IsCharacter 23-6
IsFinite 23-64
IsFrame 23-6
IsFunction 23-7
IsHalting 23-84
IsImmediate 23-7

I N D E X

IN-16

functions and methods (continued)
IsInItem 19-23
IsInstance 23-7
IsInteger 23-7
IsLogItem 19-23
IsNameRef 5-129
IsNan 23-64
IsNormal 23-64
IsNumber 23-8
IsPaused 11-5
IsPrimShape 10-43
IsPtInRect 10-38
IsReadOnly 9-33, 23-8
IsReal 23-8
IsRichString 7-33
IsSoupEntry 9-45
IsString 23-8
IsSubclass 23-9
IsSymbol 23-9
IsValidDate 17-30
IsWhiteSpace 23-18
ItemCompleted 19-23
ItemCompletionScript 18-33
ItemDeleted 19-25
ItemDuplicated 19-25
ItemPutAway 19-26
ItemRequest 19-26
JamIt 16-4, 16-5
KeyboardConnected 7-44
KeyboardInput 7-42
KeyIn 7-43
KillAction 14-31
LastVisibleTopic 16-75
LatitudeToString 23-18
LaunchPartEntry 16-92
LayoutColumn 2-63
LayoutTable 2-59
Length 23-34
LessEqualOrGreater 23-64
LessOrGreater 23-65
LFetch 23-35
LGamma 23-65

Listen 20-21
LocalBox 2-36
LocObj 17-16
Log 23-65
Log10 23-66
Log1p 23-65
Logb 23-65
LongDateStr 17-23
LongitudeToString 23-18
LookupWordInDictionary 8-91
LSearch 23-36
MakeAppleTalkOption 20-33
MakeBinary 23-9
MakeBitmap 10-19
MakeBodyAlias 18-15
MakeCompactFont 7-28
MakeDisplayPhone 23-121
MakeLine 10-26
MakeLogEntry 19-27
MakeModemOption 20-33
MakeNewEntry 4-5
MakeOval 10-27
MakePhone 23-120
MakePhoneOption 20-33
MakePict 10-30
MakePolygon 10-29
MakeRect 10-26
MakeRegion 10-30
MakeRichString 7-33
MakeRoundRect 10-27
MakeShape 10-29
MakeStrokeBundle 8-86
MakeText 10-31
MakeTextLines 10-32
MakeTextNote 16-82
MakeWedge 10-28
Map 23-9
MapCursor 9-63
Max 23-54
MeasureString 17-17
MergeInk 8-87
Min 23-54

I N D E X

IN-17

functions and methods (continued)
MinimalBounds 4-2
MissingTarget 19-27
ModalConfirm 2-32
ModalDialog 2-33
Move 9-63
MoveAppointment 16-45
MoveBehind 2-26
MoveEntry 16-87
MoveOnlyOneAppointment 16-46
MungeBitmap 10-22
MungePhone 23-121
NBPGetCount 21-80, 21-81
NBPGetNames 21-81
NBPStart 21-79
NearbyInt 23-66
NetChooser 21-81
NetworkChooserDone 21-82
NewCity 16-81
NewDictionary 8-92
NewFromItem 19-28
NewItem 19-28
NewMeeting 16-49
NewNote 16-82
NewWeakArray 23-37
Next 9-63
NextAfterD 23-66
NextInkIndex 7-34
NextToDoDate 16-75
NormalizeAddress 19-29
Notify 14-7
NumberStr 23-18
ObjEntryClass 5-130
OffsetRect 10-39
OffsetShape 10-36
OffsetView 2-24
Open 2-20, 11-3
OpenKeyPadFor 7-44
OpenMeeting 16-50
OpenMeetingSlip 16-47
OpenRoutingSlip 18-23
OpenTo 16-11

Option 20-27
Ord 23-123
Output 20-23
OwnerInfoChanged 19-41
ParaContainsInk 7-35
ParamStr 23-19
Parent 2-19
ParsePhone 23-122
Partial 20-25
PartialScript 20-14
Pause 11-5
Perform 23-84
PerformIfDefined 23-85
PeriodicAlarm 14-6
PictBounds 2-38
PlaySoundIrregardless 11-9
PlaySoundSync 11-7
PointsArrayToStroke 8-87
PointsToArray 10-44
PointToCharOffset 7-51
PointToWord 7-52
PolyContainsInk 7-35
PopupMenu 5-126
PositionCaret 7-49
Pow 23-67
PowerOff 23-123
PowerOffCheck 19-31
PowerOffResume 14-35
PrepareToSend 19-42
Prev 9-64
PrimClassOf 23-10
PrintNextPageScript 18-16
ProgressScript 20-32
ProtoPerform 23-86
ProtoPerformIfDefined 23-86
PtInPicture 10-25
PutAwayScript 18-32
Query 9-37
QueueRequest 19-31
QuietSendAll 19-50
Random 23-54
RandomX 23-67

I N D E X

IN-18

functions and methods (continued)
RawDial 11-7
Real 23-54
ReceiveRequest 19-32
RectsOverlap 10-40
RedoChildren 2-57
Refresh 19-50
RefreshViews 2-25
RegAppClasses 18-29
RegAuxButton 16-100
RegDataDef 4-12
RegEmailSystem 23-123
RegFindApps 13-12
RegFormulas 16-97
RegGlobalKeyboard 7-45
RegInboxApp 18-29
RegInfoItem 16-47
RegisterOpenKeyboard 7-46
RegisterViewDef 4-13
RegLogin 14-37
RegMeetingType 16-48
RegNamesRouteScript 16-12
RegPagerType 23-125
RegPhoneType 23-125
RegPowerOff 14-33
RegPowerOn 14-36
RegPrefs 16-98
RegTransport 19-48
RegUnionSoup 9-36
RegUserConfigChange 16-107
RelBounds 2-34
Remainder 23-67
RememberedClose 16-50
RememberedOpen 16-51
RemoveAlarm 14-10
RemoveAppAlarms 14-12
RemoveAuxButton 16-100
RemoveExtraIcon 16-92
RemoveLocale 17-19
RemoveOldToDoItems 16-75
RemoveSlot 23-10
RemoveStepView 2-28

RemoveTempItems 19-51
RemoveView 2-30
RemQuo 23-68
ReorientToScreen 2-73
ReplaceInkData 16-11
ReplaceObject 23-11
Reset 9-64
ResetToEnd 9-64
ResolveBody 18-15
Rethrow 23-81
RethrowWithUserMessage 23-82
RevealEffect 2-42
Rint 23-68
RintToL 23-68
Round 23-69
RouteScript 18-6
SafeRemoveLayout 16-13
SaveUserDictionary 8-96
Scalb 23-69
ScaleShape 10-36
SectRect 10-39
Send 18-19
SendRequest 19-33
SetAdd 23-38
SetBounds 2-34
SetCaretInfo 7-50
SetClass 23-11
SetConfig 19-34
SetContains 23-38
SetCountryClass 17-31
SetDefaultFormat 18-23
SetDefaultStore 9-34
SetDictionaryData 8-94
SetDifference 23-39
SetDone 16-76
SetEntryAlarm 16-51
SetExchangeRate 23-79
SetExtrasInfo 16-92
SetFontFace 7-29
SetFontFamily 7-29
SetFontParms 7-30
SetFontSize 7-31

I N D E X

IN-19

functions and methods (continued)
SetHilite 2-55
SetInfo 9-34
SetInkerPenSize 8-78
SetInputSpec 20-24
SetKeyView 7-43
SetLength 23-39
SetLocale 17-19
SetLocalizationFrame 17-17
SetLocation 16-81
SetMeetingIconType 16-52
SetMeetingInvitees 16-52
SetMeetingLocation 16-53
SetMeetingNotes 16-54
SetMessage 13-13
SetName 9-35, 9-50
SetOrigin 2-48
SetOverlaps 23-40
SetPopup 2-63
SetPriority 16-76
SetRandomSeed 23-55
SetRandomState 23-55
SetRemoteWriting 7-47
SetRemove 23-40
SetRepeatingEntryStopDate 16-55
SetStatus 14-28
SetStatusDialog 19-34
SetSysEntryData 16-108
SetTime 17-21
SetTimeInSeconds 17-21
SetUnion 23-41
SetupForm 4-2
SetupIdle 14-3
SetupItem 18-13
SetUpStatArray 4-8
SetupText 16-4, 16-5
SetUserConfig 16-108
SetValue 2-25
SetVariable 23-12
SetVolume 11-8
Shedule 11-4
ShortDate 17-24

ShortDateStr 17-24
Show 2-23
ShowBusyBox 14-29
ShowFoundItem 13-20, 16-14
ShowManual 23-126
Sign 23-69
SignBit 23-69
Sin 23-70
Sinh 23-70
Sleep 23-127
SlideEffect 2-40
Sort 23-41
SplitInkAt 8-88
Sqrt 23-70
StackTrace 23-106
StandardFind 13-13
Start 11-4
State 20-29
Stats 23-106
StatScript 4-8
StdButtonWidth 2-37
Stop 11-5
StrCompare 23-21
StrConcat 23-21
StreamIn 20-30
StreamOut 20-31
StrEqual 23-21
StrExactCompare 23-22
StrFilled 23-22
StrFontWidth 23-22
StrHexDump 23-107
Stringer 23-23
StringExtract 4-5
StringFilter 23-23
StringToDate 17-25
StringToNumber 23-24
StringToTime 17-26
StripInk 7-33
StrLen 23-24
StrMunger 23-25
StrokeBounds 8-81
StrokeBundleToInkWord 8-89

I N D E X

IN-20

functions and methods (continued)
StrokeDone 8-80
StrPos 23-26
StrReplace 23-26
StrTokenize 23-27
StuffByte 23-96
StuffChar 23-97
StuffCString 23-98
StuffLong 23-98
StuffPString 23-99
StuffUniChar 23-99
StuffWord 23-100
StyledStrTruncate 23-27
SubstituteChars 23-28
SubStr 23-29
SymbolCompareLex 23-12
SyncChildren 2-58, 23-2
SyncScroll 2-50
SyncView 2-26
SysBeep 23-128
Tan 23-70
Tanh 23-71
TargetIsCursor 18-26
TargetSize 18-15
TextBounds 7-23
TextScript 4-5, 18-14
Throw 23-80
Ticks 17-21
TieViews 2-55
Time 17-21
TimeInSeconds 17-22
TimeInSecondsToTime 17-22
TimeStr 17-27
TimeToTimeInSeconds 17-22
Toggle 2-22
TotalClone 23-13
TotalMinutes 17-28
TotalSeconds 17-28
TotalSize 9-35
TotalTextBounds 7-24
TrackButton 2-53
TrackHilite 2-53

Translate 20-33
TranslateError 19-35
TransportChanged 19-43
TransportNotify 18-30
TrimString 23-29
TrueSize 23-107
Trunc 23-71
UnBind 20-19
UnDefGlobalFn 23-103
UnDefGlobalVar 23-104
UnionRect 10-40
Unordered 23-71
UnorderedGreaterOrEqual 23-71
UnorderedLessOrEqual 23-72
UnorderedOrEqual 23-72
UnorderedOrGreater 23-72
UnorderedOrLess 23-72
UnRegAppClasses 18-31
UnRegAuxButton 16-101
UnRegDataDef 4-12
UnRegEmailSystem 23-128
UnRegFindApps 13-12
UnRegFormulas 16-97
UnRegGlobalKeyboard 7-46
UnRegInboxApp 18-31
UnRegInfoItem 16-56
UnregisterOpenKeyboard 7-46
UnRegisterViewDef 4-13
UnRegLogin 14-38
UnRegMeetingType 16-56
UnRegNamesRouteScript 16-14
UnRegPagerType 23-128
UnRegPhoneType 23-129
UnRegPowerOff 14-35
UnRegPowerOn 14-37
UnRegPrefs 16-98
UnRegTheseAppClasses 18-31
UnRegTransport 19-48
UnRegUnionSoup 9-37
UnRegUserConfigChange 16-109
Upcase 23-29
UpdateIndicator 14-24

I N D E X

IN-21

functions and methods (continued)
UseCurrentEmporium 16-109
UseCurrentPersona 16-110
UsedSize 9-35
VerifyRoutingInfo 18-33, 19-36
ViewAddChildScript 2-76
ViewAllowsInk 7-25
ViewAllowsInkWords 7-26
ViewCaretChangedScript 7-50
ViewChangedScript 2-77
ViewDragFeedbackScript 2-82
ViewDrawDragBackgroundScript 2-80
ViewDrawDragDataScript 2-80
ViewDrawScript 2-71
ViewDropApproveScript 2-81
ViewDropChildScript 2-77
ViewDropDoneScript 2-85
ViewDropMoveScript 2-84
ViewDropRemoveScript 2-85
ViewDropScript 2-84
ViewFindTargetScript 2-81
ViewGetDropDataScript 2-83
ViewGetDropTypesScript 2-81
ViewHideScript 2-70
ViewHiliteScript 2-72
ViewIdleScript 2-78
ViewInkWordScript 7-56
ViewIntoBitmap 10-23
ViewIsOpen 2-65
ViewOverviewScript 2-75
ViewPostQuitScript 2-69
ViewQuitScript 2-68
ViewRawInkScript 7-57
ViewScrollDownScript 2-74
ViewScrollUpScript 2-74
ViewSet 14-22
ViewSetupChildrenScript 2-67, 18-16
ViewSetupDoneScript 2-67
ViewSetupFormScript 2-66
ViewShowScript 2-70
Visible 2-64

G

Gamma 23-63
GC 23-105
Gestalt 23-113
gesture units 8-29
GetActiveView 18-27
GetAlarm 14-11
GetAllInfo 9-31, 9-43
GetAppAlarmKeys 14-12
GetAppDataDefs 4-16
GetAppParams 23-118
GetAppPrefs 23-118
GetAuxButtons 16-99
GetCalendarMeetingType 16-42
GetCalendarMeetingTypeInfo 16-42
GetCaretBox 7-42
GetCaretInfo 7-48
GetCityEntry 16-79
GetConfig 19-14
GetCountryEntry 16-80
GetCurrentFormat 19-49
GetCursor 3-7
GetCursorFormat 18-17
GetDataDefs 4-15
GetDataView 4-17
GetDateStringSpec 17-29
GetDefaultFormat 18-22
GetDefaultOwnerStore 19-14
GetDefaultStore 9-32
GetDefs 4-14
GetDictionaryData 8-94
GetDrawBox 2-36
GetEntryDataDef 4-16
GetEntryDataView 4-16
GetExchangeRate 23-79
GetExtraIcons 16-90
GetFolderList method 12-15
GetFolderName 19-14
GetFolderStr method 12-14
GetFontFace 7-27
GetFontFamilyNum 7-27

I N D E X

IN-22

GetFontFamilySym 7-28
GetFontSize 7-28
GetFormatTransports 18-21
GetFromText 19-15
GetFunctionArgCount 23-4
GetGlobalFn 23-101
GetGlobalVar 23-101
GetGroupTransport 19-49
GetHiliteOffsets 2-54
GetIndexes 9-44
GetInfo 9-31, 9-44
GetInkAt 7-34
GetItemInfo 19-15
GetItemStateString 19-16
GetItemTime 19-16
GetItemTitle 19-17
GetItemTransport 18-28
GetKeyView 7-49
GetLanguageEnvironment 17-30
GetLocale 17-19
GetMeetingIconType 16-41
GetMeetingInvitees 16-43
GetMeetingLocation 16-44
GetMeetingNotes 16-44
GetMemoryItems 23-119
GetMemorySlot 23-119
GetMyZone 21-78
GetName 9-32, 9-44
GetNames 21-79
GetNameText 19-17
GetNextUid 9-44
GetPackages 9-20
GetPartCursor 16-90
GetPartEntryData 16-91
GetPoint 8-79
GetPointsArray 8-81
GetRandomState 23-54
GetRandomWord 8-91
GetRemoteWriting 7-47
GetRepeatSpec 16-29
GetRepeatSpec, protoRepeatView method 16-29
GetRichString 7-32

GetRoot 2-19
GetRouteFormats 18-21
GetRouteScripts 18-28
GetScoreArray 8-82
GetSelectedDates 16-44
GetShapeInfo 10-34
GetSignature 9-32, 9-44
GetSlot 23-4
GetSoup 9-32
GetSoupNames 9-33
GetStatusString 19-17
GetStore 9-45
GetStores 9-33
GetStroke 8-85
GetStrokeBounds 8-85
GetStrokePoint 8-85
GetStrokePointsArray 8-86
GetSysEntryData 16-107
GetTargetCursor 18-25
GetTargetInfo method 12-1, 12-11
GetTarget method

(ROM_CompatibleFinder) 13-10
GetTarget method (ROM_SoupFinder) 13-4
GetTaskShapes 16-74
getting the current time and date 17-21
GetTitle 18-7, 19-20
GetTitleInfoShape 19-18
GetToDoEntry 16-72
GetToDoItemsForRange 16-73
GetToDoItemsForThisDate 16-73
GetToDoShapes 16-74
GetToText 19-19
GetTransportScripts 19-19
GetUnionSoupAlways 9-37
GetUpdatedExchangeRates 23-80
GetUserConfig 16-107
GetVariable 23-5
GetView 2-20
GetViewDefs 4-16
GetViewFlags 2-64
GetVolume 11-7
GetWordArray 8-82

I N D E X

IN-23

GetZoneFromName 21-79
GetZoneList 21-78
GlobalBox 2-35
global finds

registering for 13-12
unregistering 13-12

GlobalFnExists 23-101
global functions and methods

DefGlobalFn 23-102
DefGlobalVar 23-103
GetGlobalFn 23-101
GetGlobalVar 23-101
GlobalFnExists 23-101
GlobalVarExists 23-102
UnDefGlobalFn 23-103
UnDefGlobalVar 23-104

GlobalOuterBox 2-35
GlobalVarExists 23-102
Goto 9-62
GotoKey 9-62
graphics and drawing protos

protoImageView 10-6
protoThumbnail 10-14
protoThumbnailFloater 10-18

H

HandleError 19-21
HandleInkWord 7-55
HandleInsertItems 7-54
HandleRawInk 7-56
HandleThrow 19-21
hardware errors A-8 to A-12
HasSlot 23-5
HasSoup 9-33
HasVariable 23-5
HaveZones 21-78
heap errors A-12
Hide 2-23
hiding views 2-20

Highlighting 2-52
Hilite 2-52
HiliteOwner 2-54
HiliteUnique 2-52
HitShape 10-24
hit-testing functions and methods

HitShape 10-24
PointToCharOffset 7-51
PointToWord 7-52
PtInPicture 10-25

homePhone, user configuration variable 16-103
HourMinute 17-23
Hypot 23-63

I

IgnoreError 19-22
IncrementMonth function 17-20
InfoChanged 19-38
infoFrame 16-3
infrared connection option 21-66
infrared protocol type option 21-67
infrared statistics option 21-69
infrared statistics option fields 21-70
infrared tool 21-65

infrared connection option 21-66
infrared protocol type option 21-67
infrared statistics option 21-69
infrared statistics option fields 21-70

ink
application-defined methods for 7-56
display functions and methods 7-22
methods for accessing 7-34

InkConvert 8-86
ink display functions and methods 7-22
InkOff 8-76
InkOffUnHobbled 8-77
ink words

functions and methods 7-54
Input 20-25

I N D E X

IN-24

input events
functions and methods 7-51

InputScript 20-13
input spec 20-11

filter slot 20-17
target slot 20-15
termination slot 20-16

insertion caret
functions and methods 7-48

insertions of text
functions and methods 7-52

InsertionSort 23-34
InsertItemsAtCaret 7-54
insert specification frame 7-52
InsetRect 10-38
InstallScript function 1-5
InstallScript transport method 19-22
Instantiate 20-18
integer math functions and methods 23-53

Ceiling 23-53
Floor 23-53
GetRandomState 23-54
Max 23-54
Min 23-54
Random 23-54
Real 23-54
SetRandomSeed 23-55
SetRandomState 23-55

intelligent assistant 15-1
Intern 23-6, 23-23
interpreter errors A-35
InvertRect 10-37
I/O Box errors A-3
IOBoxExtensions 19-22
IsActive 11-5
IsAlphaNumeric 23-18
IsArray 23-6
IsBinary 23-6
IsCharacter 23-6
IsFinite 23-64
IsFrame 23-6
IsFunction 23-7

IsHalting 23-84
IsImmediate 23-7
IsInItem 19-23
IsInstance 23-7
IsInteger 23-7
IsLogItem 19-23
IsNameRef 5-129
IsNan 23-64
IsNormal 23-64
IsNumber 23-8
IsPaused 11-5
IsPrimShape 10-43
IsPtInRect 10-38
IsReadOnly 9-33, 23-8
IsReal 23-8
IsRichString 7-33
IsSelected method

(ROM_CompatibleFinder) 13-11
IsSelected method (ROM_SoupFinder) 13-4
IsSoupEntry 9-45
IsString 23-8
IsSubclass 23-9
IsSymbol 23-9
IsValidDate 17-30
IsWhiteSpace 23-18
ItemCompleted 19-23
ItemCompletionScript 18-33
ItemDeleted 19-25
ItemDuplicated 19-25
item frame for routing 18-1
ItemPutAway 19-26
ItemRequest 19-26

J

JamFromEntry 3-50
JamIt, protoEmporiumPopup method 16-5
JamIt, protoPersonaPopup method 16-4

I N D E X

IN-25

K

kCMARouteLabel 21-73
kCommandTimeout 22-5
kConfigStrDirectConnect 22-6
kConfigStrECAnd Fallback 22-6
kConfigStrECOnly 22-6
kConfigStrNoEC 22-6
kConnectSpeeds 22-5
kDateInMonth 16-25
kDateInYear 16-25
kDayOfWeek 16-25
kDirectConnectOnly 22-5
kEveryday 16-24
kEveryWeek 16-26
keyboard

context sensitive 7-44
double-tap 7-44

KeyboardConnected 7-44
KeyboardInput 7-42
keyboard modifier keys 7-11
keyboard protos 7-37
keyboard registration constants 7-8
keyboard registry

functions and methods 7-44
keyboards

application-defined methods for 7-50
functions and methods for 7-40

keyboard views 7-35
key descriptor constants 7-9
KeyIn 7-43
keypad proto 7-38
keyPressScript 7-36, 7-38
kFirstWeek 16-26
kForever 16-25
kFourthWeek 16-26
kFriday 16-24
khangUpAtDisconnect 22-4
kidModem 22-3
KillAction 14-31
kInterCmdDelay 22-5
kLastWeek 16-26

kMaxCharsPerLine 22-5
kMaxyear 16-25
kModemIDString 22-6
kModemName 22-2
kMonday 16-24
kNever 16-25
kOrganization 22-2
kPeriod 16-25
kReceiveDataMod 22-10
kSaturday 16-24
kSecondWeek 16-26
kServiceClass 22-11
kSunday 16-24
kSupportsEC 22-5
kSupportsLCS 22-5
kThirdWeek 16-26
kThursday 16-24
kTransmitDataMod 22-10
kTuesday 16-24
kuseConfigString 22-3
kuseDialOptions 22-4
kuseHardwareCD 22-3
kVersion 22-2
kWednesday 16-24
kWeekInMonth 16-25
kWeekInYear 16-25
kYearMissing 16-25

L

LAP protocol errors A-13
LastVisibleTopic 16-75
LatitudeToString 23-18
LaunchPartEntry 16-92
laying out multiple child views 2-59
LayoutColumn 2-63
LayoutTable 2-59
learningEnabledOption, user configuration

variable 16-103
leftHanded, user configuration variable 16-103

I N D E X

IN-26

Length 23-34
LessEqualOrGreater 23-64
LessOrGreater 23-65
letterInFieldsOption, user configuration

variable 16-104
lettersCursiveOption, user configuration

variable 16-104
letterSetSelection, user configuration

variable 16-104
letterSpaceCursiveOption, user configuration

variable 16-104
LFetch 23-35
LGamma 23-65
line patterns 7-11
lines

in views 2-12
Link Request 21-60, 21-64
Listen 20-21
LocalBox 2-36
locale functions and methods

AddLocale 17-18
FindLocale 17-18
RemoveLocale 17-19

location, user configuration variable 16-105
LocObj function 17-16
Log 23-65
Log10 23-66
Log1p 23-65
Logb 23-65
LongDateStr 17-23
LongitudeToString 23-18
LookupWordInDictionary 8-91
LR (Link Request) 21-60
LSearch 23-36

M

mailAccount, user configuration variable 16-105
mailNetwork, user configuration variable 16-105
mailPhone, user configuration variable 16-105

MakeAppleTalkOption 20-33
MakeBinary 23-9
MakeBitmap 10-19
MakeBodyAlias 18-15
MakeCompactFont 7-28
MakeDisplayPhone 23-121
MakeLine 10-26
MakeLogEntry 19-27
MakeModemOption 20-33
MakeNewEntry 4-5
MakeOval 10-27
MakePhone 23-120
MakePhoneOption 20-33
MakePict 10-30
MakePolygon 10-29
MakeRect 10-26
MakeRegion 10-30
MakeRichString 7-33
MakeRoundRect 10-27
MakeShape 10-29
MakeSoup 3-8
MakeStrokeBundle 8-86
MakeText 10-31
MakeTextLines 10-32
MakeTextNote 16-82
MakeWedge 10-28
Map 23-9
MapCursor 9-63
masterSoupSlot 3-32
math functions and methods

Annuity 23-77
Compound 23-78
GetExchangeRate 23-79
GetUpdatedExchangeRates 23-80
SetExchangeRate 23-79

Max 23-54
meals 15-5
MeasureString function 17-17
measuring text views 7-23
measuring time durations 17-21
Meeting 16-26
meeting frames 16-57

I N D E X

IN-27

Meeting types
AnnualEvent 16-26
Event 16-26
Meeting 16-26
MultiDayEvent 16-26
WeeklyMeeting 16-26

memory errors A-27
menuLeftButtons 3-29
menuRightButtons 3-30
MergeInk 8-87
message sending functions and methods 23-83

Apply 23-83
IsHalting 23-84
Perform 23-84
PerformIfDefined 23-85
ProtoPerform 23-86
ProtoPerformIfDefined 23-86

Min 23-54
MinimalBounds 4-2
miscellaneous functions and methods 23-109

AddMemoryCall 23-109
AddMemoryItemUnique 23-110
BackLight 23-110
BackLightStatus 23-111
BinaryMunger 23-111
BinEqual 23-111
Chr 23-112
Compile 23-112
FindStringInFrame 23-15
Gestalt 23-113
GetAppParams 23-118
GetAppPrefs 23-118
GetMemoryItems 23-119
GetMemorySlot 23-119
Intern 23-23
IsWhiteSpace 23-18
LatitudeToString 23-18
LongitudeToString 23-18
MakeDisplayPhone 23-121
MakePhone 23-120
MungePhone 23-121

Ord 23-123
ParsePhone 23-122
PowerOff 23-123
RegEmailSystem 23-123
RegPagerType 23-125
RegPhoneType 23-125
ShowManual 23-126
Sleep 23-127
StringFilter 23-23
SysBeep 23-128
UnRegEmailSystem 23-128
UnRegPagerType 23-128
UnRegPhoneType 23-129

miscellaneous protos 6-56
MissingTarget 19-27
MNP class 5 compression 21-62
MNP compression

modem tool 21-61
MNP tool errors A-20
ModalConfirm 2-32
ModalDialog 2-33
modal views 2-31
modem address option 21-33
modem connection speed option 21-53
modem connection type option 21-51
modem connection type option fields 21-52
modem dialing option 21-47
modem dialing option fields 21-49
modem error control type option 21-45
modem fax capabilities option 21-53, 21-56
modem fax capabilities option fields 21-55
modem fax modulation return values 21-56
modem MNP data statistics option 21-62
modem MNP data statistics option fields 21-64
modem MNP compression option 21-61
modem MNP speed negotiation option 21-59
modem preferences option 21-34
modem preferences option fields 21-36
modem profile option 21-38
modem profile option fields 21-41

I N D E X

IN-28

modem setup
general information constants 22-2
preferences 22-3
preferences constants 22-3
profile constants 22-4, 22-5

modem tool
address option 21-33
connection speed option 21-53
connection type option 21-51
connection type option fields 21-52
dialing option 21-47
dialing option fields 21-49
error control type option 21-45
fax capabilities option 21-53, 21-56
fax capabilities option fields 21-55
fax modulation return values 21-56
MNP data statistics option 21-62
MNP data statistics option fields 21-64
MNP compression option 21-61
MNP speed negotiation option 21-59
preferences option 21-34
preferences option fields 21-36
profile option 21-38
profile option fields 21-41
voice support option 21-58

modem tool errors A-21
modem voice support option 21-58
modulation return values

modem tool 21-56
Move 9-63
MoveAppointment 16-45
MoveBehind 2-26
MoveEntry 16-87
MoveOnlyOneAppointment 16-46
MoveTarget method 12-12
MultiDayEvent 16-26
MungeBitmap 10-22
MungePhone 23-121

N

name, user configuration variable 16-105
name reference

description 5-1
functions 5-129

Names 16-1
date definitions 16-2
functions and methods

AddCard 16-6
AddCardData 16-6
AddLayout 16-8
BcCreditCards 16-9
BcCustomFields 16-9
BcEmailAddress 16-10
BcEmailNetwork 16-10
BcPhoneNumber 16-11
OpenTo 16-11
RegNamesRouteScript 16-12
ReplaceInkData 16-11
SafeRemoveLayout 16-13
ShowFoundItem 16-14
UnRegNamesRouteScript 16-14

view definitions 16-3
names card layouts 16-2
names soup 16-15

company entries 16-21
group entries 16-20
owner entries 16-18
person entries 16-15
worksite entries 16-22

NBPGetCount 21-80, 21-81
NBPGetNames 21-81
NBP protocol errors A-14
NBPStart 21-79
NearbyInt 23-66
NetChooser 21-81
NetChooser functions and methods 21-81
NetworkChooserDone 21-82
NewCity 16-81
NewDictionary 8-92
NewFilingFilter method 12-6, 12-9, 12-17

I N D E X

IN-29

NewFromItem 19-28
NewItem 19-28
NewMeeting 16-49
NewNote 16-82
newtAboutView 3-24
newtActionButton 3-26
NewtApp

allDataDefs 3-12
allSoups slot 3-3, 3-10
allViewDefs 3-12
application base view 3-8
filters 3-60
InstallScript 3-2
JamFromEntry 3-50
masterSoupSlot 3-32
newtAboutView 3-24
newtActionButton 3-26
newtAZTabs 3-27
newtAZTabs, PickLetterScript 3-28
newtCheckBox 3-58
newtClockShowBar 3-28
newtEditView 3-57
newtEntryLockedIcon 3-59
newtEntryPageHeader 3-46
newtEntryRollHeader 3-46
newtEntryShowStationeryButton 4-11
newtEntryView 3-42
newtEntryViewActionButton 3-47
newtEntryViewFilingButton 3-47
newtFalseEntryView 3-44
newtFilingButton 3-26
newtFloatingBar 3-31
newtFolderTab 3-28
newtInfoBox 3-47
newtInfoButton 3-23
newtLabelDateInputLine 3-69
newtLabelInputLine 3-65
newtLabelNumInputLine 3-68
newtLabelPhoneInputLine 3-76
newtLabelSimpleDateInputLine 3-71
newtLabelTimeInputLine 3-75
newtNewStationeryButton 4-8

newtNRLabelDateInputLine 3-72
newtNRLabelDateNTimeInputLine 3-75
newtNRLabelTimeInputLine 3-74
newtNumView 3-52
newtOverLayout 3-37
newtPageLayout 3-37
newtPrefsView 3-25
newtProtoLine 3-63
newtROLabelDateInputLine 3-71
newtROLabelInputLine 3-67
newtROLabelNumInputLine 3-67
newtROLabelTimeInputLine 3-74
newtRollEntryView 3-45
newtRollLayout 3-36
newtRollOverLayout 3-41
newtRollShowStationeryButton 4-11
newtRONumView 3-52
newtROTextDateView 3-53
newtROTextPhoneView 3-55
newtROTextTimeView 3-54
newtROTextView 3-51
newtShowStationeryButton 4-9
newtSmartNameView 3-78
newtSoup 3-3

AddEntry 3-4
AdoptEntry 3-5
CreateBlankEntry 3-5
DeleteEntry 3-6
DuplicateEntry 3-6
FillNewSoup 3-6
GetAlias 3-7
GetCursor 3-7
GetCursorPosition 3-7
MakeSoup 3-8
Query 3-8
SetupCursor 3-8

newtStationery 4-3
newtStationeryPopupButton 4-6
newtStationeryView 3-59
newtStatusBar 3-30
newtStatusBarNoClose 3-29
newtTextDateView 3-54

I N D E X

IN-30

NewtApp (continued)
newtTextPhoneView 3-56
newtTextTimeView 3-55
newtTextView 3-51
protos 3-1
RemoveScript 3-2
Slot Views 3-49
superSymbol 3-13
TextScript 3-50

newtApplication 3-8
allDataDefs 3-12
allSoups slot 3-3, 3-10
allViewDefs 3-12
superSymbol 3-13

newtApplication base view 3-8
newtAZTabs 3-27
newtCheckBox 3-58
newtClockShowBar 3-28
newtEditView 3-57
newtEntryLockedIcon 3-59
newtEntryPageHeader 3-46
newtEntryRollHeader 3-46
newtEntryShowStationeryButton 4-11
newtEntryView 3-42

EndFlush 3-43
EntryCool 3-43
JamFromEntry 3-44
Retarget 3-44
StartFlush 3-43

newtEntryViewActionButton 3-47
newtEntryViewFilingButton 3-47
newtFalseEntryView 3-44
newtFilingButton 3-26
newtFloatingBar 3-31
newtFolderTab 3-28
newtInfoBox 3-47
newtInfoButton 3-23

DoInfoAbout 3-23, 3-24
newtLabelDateInputLine 3-69
newtLabelInputLine 3-65
newtLabelNumInputLine 3-68
newtLabelPhoneInputLine 3-76

newtLabelSimpleDateInputLine 3-71
newtLabelTimeInputLine 3-75
newtLayout

masterSoupSlot 3-32
newtNewStationeryButton 4-8
newtNRLabelDateInputLine 3-72
newtNRLabelDateNTimeInputLine 3-75
newtNRLabelTimeInputLine 3-74
newtNumView 3-52
NewtonScript errors A-30 to A-36
newtOverLayout 3-37
newtPageLayout 3-37
newtPrefsView 3-25
newtProtoLine 3-63
newtROEditView 3-56
newtROLabelDateInputLine 3-71
newtROLabelInputLine 3-67
newtROLabelNumInputLine 3-67
newtROLabelTimeInputLine 3-74
newtRollEntryView 3-45
newtRollLayout 3-36
newtRollLayout, protoChild slot 3-36
newtRollOverLayout 3-41
newtRollShowStationeryButton 4-11
newtRONumView 3-52
newtROTextDateView 3-53
newtROTextPhoneView 3-55
newtROTextTimeView 3-54
newtROTextView 3-51
newtShowStationeryButton 4-9
newtSmartNameView 3-78
newtSoup 3-3

AddEntry 3-4
AdoptEntry 3-5
CreateBlankEntry 3-5
DeleteEntry 3-6
DuplicateEntry 3-6
FillNewSoup 3-6
GetAlias 3-7
GetCursor 3-7
GetCursorPosition 3-7
MakeSoup 3-8

I N D E X

IN-31

newtSoup (continued)
proto 3-3
Query 3-8
SetupCursor 3-8

newtStationery 4-3
newtStationeryPopupButton 4-6
newtStationeryView 3-59
newtStatusBar 3-30
newtStatusBarNoClose 3-29
newtTextDateView 3-54
newtTextPhoneView 3-56
newtTextTimeView 3-55
newtTextView 3-51
NewWeakArray 23-37
Next 9-63
NextAfterD 23-66
NextInkIndex 7-34
NextToDoDate 16-75
NormalizeAddress 19-29
Notes 16-81

functions and methods
MakeTextNote 16-82
NewNote 16-82

notes frames 16-62
Notes soup 16-82
Notify 14-7
NumberStr 23-18

O

object system errors A-32
object system functions and methods 23-2

ClassOf 23-2
Clone 23-3
DeepClone 23-3
EnsureInternal 23-4
GetFunctionArgCount 23-4
GetSlot 23-4
GetVariable 23-5
HasSlot 23-5

HasVariable 23-5
Intern 23-6
IsArray 23-6
IsBinary 23-6
IsCharacter 23-6
IsFrame 23-6
IsFunction 23-7
IsImmediate 23-7
IsInstance 23-7
IsInteger 23-7
IsNumber 23-8
IsReadOnly 23-8
IsReal 23-8
IsString 23-8
IsSubclass 23-9
IsSymbol 23-9
MakeBinary 23-9
Map 23-9
PrimClassOf 23-10
RemoveSlot 23-10
ReplaceObject 23-11
SetClass 23-11
SetVariable 23-12
SymbolCompareLex 23-12
SyncChildren 23-2
TotalClone 23-13

ObjEntryClass 5-130
OffsetRect 10-39
OffsetShape 10-36
OffsetView 2-24
online service errors A-29
Open 2-20, 11-3
OpenAppleTalk 21-77
OpenKeyPadFor 7-44
OpenMeeting 16-50
OpenMeetingSlip 16-47
OpenRoutingSlip 18-23
OpenTo 16-11
operating system errors A-4
Option 20-27
option frame for endpoints 20-7

I N D E X

IN-32

option labels
for built-in communications tools 21-2

options
resource arbitration 21-82

Ord 23-123
Output 20-23

output spec 20-10
output spec 20-10
overviews 5-1
OwnerInfoChanged 19-41

P

package errors A-8
package functions and methods

GetPackages 9-20
package store. See store part
page-based application proto 3-37
paper roll-based application proto 3-36
paperSize, user configuration variable 16-105
paperSizes, user configuration variable 16-106
PAP protocol errors A-16
ParaContainsInk 7-35
paragraph views 7-15
ParamStr 23-19
Parent 2-19
ParsePhone 23-122
ParseUtter function 15-13
Partial 20-25
PartialScript 20-14
parts

soup 9-56
store 9-56

passive claim option 21-83
passive state option 21-84
Pause 11-5
PCMCIA card errors A-8
Perform 23-84
PerformIfDefined 23-85
PeriodicAlarm 14-6

phone, user configuration variable 16-106
pickers 5-1

general 5-4
map 5-30
number 5-81
picture 5-82
text 5-35

PickLetterScript
newtAZTabs 3-28

PickWorld 5-31
PictBounds 2-38
PlaySoundIrregardless 11-9
PlaySoundSync 11-7
point arrays 8-30
point data

copying 8-28
filtering 8-28
resolution 8-28

PointsArrayToStroke 8-87
PointsToArray 10-44
PointToCharOffset 7-51
PointToWord 7-52
PolyContainsInk 7-35
PopupMenu 5-126
popups 5-1

date 5-63
location 5-63
time 5-63

PositionCaret 7-49
PostParse method 15-15
Pow 23-67
PowerOff 23-123
PowerOffCheck 19-31
PowerOffResume 14-35
Prefs roll 16-96
PrepareToSend 19-42
Prev 9-64
PrimClassOf 23-10
printing errors A-29
PrintNextPageScript 18-16
print routing format

initialization with FormatInitScript 18-18

I N D E X

IN-33

ProgressScript 20-32
protoActionButton 18-7
protoAddressPicker 19-43
protoAlphaKeyboard 7-40
protoAMPMCluster 6-44
protoApp 1-2
protoAZTabs 6-28
protoAZVertTabs 6-29
protoBasicEndpoint 20-18
protoBorder 6-56
protoCheckbox 6-24
protoChild 3-37
protoChild slot of newtRollLayout 3-36
protoCitiesTextPicker 5-58
protoClockFolderTab 12-7
protoCloseBox 6-20
protoCountryPicker 5-30
protoCountryTextPicker 5-56
protoDateDurationTextPicker 5-40
protoDateIntervalPopup 5-69
protoDateKeyboard 7-41
protoDateNTimePopup 5-67
protoDateNTimeTextPicker 5-46
protoDatePicker 5-64
protoDatePopup 5-63
protoDateTextPicker 5-37
protoDigitalClock 6-38
protoDivider 6-56
protoDragger 6-45
protoDragNGo 6-47
protoDrawer 6-49
protoDurationTextPicker 5-51
protoEmporiumPopup 16-5
protoFilingButton 12-2, 12-4, 12-7

ButtonClickScript method in 12-4
Update method in 12-4
viewBounds slot in 12-4
viewFormat slot in 12-4
viewJustify slot in 12-4
ViewSetupFormScript method in 12-4

protoFloater 6-49
protoFloatNGo 6-51

protoFrameFormat 18-9
protoFullRouteSlip 19-38
protoGauge 6-35
protoGeneralPopup 5-19
protoGlance 6-52
protoHorizontal2DScroller 6-2
protoHorizontalUpDownScroller 6-6
protoImageView 10-6
protoInputLine 7-17
protoKeyboard 7-37
protoKeyboardButton 7-39
protoKeypad 7-38
protoLabeledBatteryGauge 6-37
protoLabelInputLine 7-19
protoLabelPicker 5-8
protoLargeCloseBox 6-22
protoLeftRightScroller 6-5
protoListPicker 5-93
protoLongLatTextPicker 5-61
protoMapTextPicker 5-54
protoNameRefDataDef 5-97
protoNewFolderTab 12-4
protoNewSetClock 6-40
protoNumberPicker 5-81
protoNumericKeyboard 7-41
protoOrientation 6-13
protoOverview 5-85
protoPeopleDataDef 5-105
protoPeoplePopup 5-111
ProtoPerform 23-86
ProtoPerformIfDefined 23-86
protoPeriodicAlarmEditor 14-5

AlarmsEnabled 14-5
PeriodicAlarm 14-6

protoPersonaPopup 16-4
protoPhoneKeyboard 7-41
protoPicker 5-13
protoPictIndexer 5-82
protoPictRadioButton 6-18
protoPictureButton 6-9
protoPopInPlace 5-6
protoPopupButton 5-4

I N D E X

IN-34

protoPrefsRollItem 16-96
protoPrinterChooserButton 18-8
protoPrintFormat 18-9
protoProvincePicker 5-31
protoRadioButton 6-16
protoRadioCluster 6-14
protoRCheckbox 6-26
protoRecToggle 8-31
protoRepeatDateDurationTextPicker 5-43
protoRepeatPicker 16-27
protoRepeatView 16-28
protoRichInputLine 7-19
protoRichLabelInputLine 7-22
protoRoll 5-112
protoRollBrowser 5-116
protoRollItem 5-119
protoRoutingFormat 18-9
protoSetClock 6-42
protoSlider 6-33
protoSmallKeyboardButton 7-40
protoSoundChannel 11-3
protoSoupOverview 5-90
protoStatePicker 5-32
protoStaticText 6-54
protoStatus 6-59
protoStatusBar 6-60
protoStatusBarber 14-16
protoStatusButton 14-16
protoStatusCloseBox 14-16
protoStatusGauge 14-15
protoStatusIcon 14-15
protoStatusProgress 14-15
protoStatusTemplate 14-13

components 14-14
protoStatusText 14-15
protoStreamingEndpoint 20-29
protoTable 5-24
protoTableDef 5-27
protoTableEntry 5-29
proto templates

buttons and boxes 6-6
date and time 6-38

for keyboards 7-37
miscellaneous protos 6-56
newtEntryShowStationeryButton 4-11
newtNewStationeryButton 4-8
newtRollShowStationeryButton 4-11
newtShowStationeryButton 4-9
newtStationery 4-3
newtStationeryPopupButton 4-6
overviews 5-85
PickWorld 5-31
protoActionButton 18-7
protoAddressPicker 19-43
protoAlphaKeyboard 7-40
protoAMPMCluster 6-44
protoApp 1-2
protoAZTabs 6-28
protoAZVertTabs 6-29
protoBasicEndpoint 20-18
protoBorder 6-56
protoCheckbox 6-24
protoCitiesTextPicker 5-58
protoCloseBox 6-20
protoCountryPicker 5-30
protoCountryTextPicker 5-56
protoDateDurationTextPicker 5-40
protoDateIntervalPopup 5-69
protoDateKeyboard 7-41
protoDateNTimePopup 5-67
protoDateNTimeTextPicker 5-46
protoDatePicker 5-64
protoDatePopup 5-63
protoDateTextPicker 5-37
protoDigitalClock 6-38
protoDivider 6-56
protoDragger 6-45
protoDragNGo 6-47
protoDrawer 6-49
protoDurationTextPicker 5-51
protoFilingButton 12-2
protoFloater 6-49
protoFloatNGo 6-51
protoFrameFormat 18-9

I N D E X

IN-35

proto templates (continued)
protoFullRouteSlip 19-38
protoGauge 6-35
protoGeneralPopup 5-19
protoGlance 6-52
protoHorizontal2DScroller 6-2
protoHorizontalUpDownScroller 6-6
protoInputLine 7-17
protoKeyboard 7-37
protoKeyboardButton 7-39
protoKeypad 7-38
protoLabeledBatteryGauge 6-37
protoLabelInputLine 7-19
protoLabelPicker 5-8
protoLargeCloseBox 6-22
protoLeftRightScroller 6-5
protoListPicker 5-93
protoLongLatTextPicker 5-61
protoMapTextPicker 5-54
protoNameRefDataDef 5-97
protoNewSetClock 6-40
protoNumberPicker 5-81
protoNumericKeyboard 7-41
protoOrientation 6-13
protoOverview 5-85
protoPeopleDataDef 5-105
protoPeoplePopup 5-111
protoPeriodicAlarmEditor 14-5
protoPhoneKeyboard 7-41
protoPicker 5-13
protoPictIndexer 5-82
protoPictRadioButton 6-18
protoPictureButton 6-9
protoPopInPlace 5-6
protoPopupButton 5-4
protoPrinterChooserButton 18-8
protoPrintFormat 18-9
protoProvincePicker 5-31
protoRadioButton 6-16
protoRadioCluster 6-14
protoRCheckbox 6-26
protoRecToggle 8-31

protoRepeatDateDurationTextPicker 5-43
protoRichInputLine 7-19
protoRichLabelInputLine 7-22
protoRoll 5-112
protoRollBrowser 5-116
protoRollItem 5-119
protoRoutingFormat 18-9
protoSetClock 6-42
protoSlider 6-33
protoSmallKeyboardButton 7-40
protoSoundChannel 11-3
protoSoupOverview 5-90
protoStatePicker 5-32
protoStaticText 6-54
protoStatus 6-59
protoStatusBar 6-60
protoStatusBarber 14-16
protoStatusButton 14-16
protoStatusCloseBox 14-16
protoStatusGauge 14-15
protoStatusIcon 14-15
protoStatusProgress 14-15
protoStatusTemplate 14-13
protoStatusText 14-15
protoStreamingEndpoint 20-29
protoTable 5-24
protoTableDef 5-27
protoTableEntry 5-29
protoTextButton 6-7
protoTextList 5-20
protoTextPicker 5-35
protoTimeDeltaPopup 5-78
protoTimeDeltaTextPicker 5-53
protoTimeIntervalPopup 5-79
protoTimeTextPicker 5-49
protoTitle 6-58
protoTitleText 14-15
protoTransport 19-2
protoTransportHeader 19-37
protoTransportPrefs 19-44
protoUpDownScroller 6-5
protoUSstatesTextPicker 5-56

I N D E X

IN-36

proto templates (continued)
protoWorldPicker 5-34
roll protos 5-112

protoTextButton 6-7
protoTextList 5-20
protoTextPicker 5-35
protoTimeDeltaPopup 5-78
protoTimeDeltaTextPicker 5-53
protoTimeIntervalPopup 5-79
protoTimeTextPicker 5-49
protoTitle 6-58
protoTitleText 14-15
protoTransport 19-2
protoTransportHeader 19-37
protoTransportPrefs 19-44
protoUpDownScroller 6-5
protoUSstatesTextPicker 5-56
protoWorldPicker 5-34
PtInPicture 10-25
PutAwayScript 18-32

Q

Query 3-8, 9-37
QueueRequest 19-31
QuietSendAll 19-50

R

Random 23-54
RandomX 23-67
RawDial 11-7
Real 23-54
ReceiveRequest 19-32
recognition 8-1

single letter input views 8-26
recognition flags

vAddressField 8-8

vAnythingAllowed 8-11
vCapsRequired 8-10
vClickable 8-12
vCustomDictionaries 8-9
vDateField 8-10
vGesturesAllowed 8-14
vLettersAllowed 8-7
vNameField 8-8
vNoSpaces 8-15
vNothingAllowed 8-11
vNumbersAllowed 8-8, 8-10
vPhoneField 8-10
vPunctuationAllowed 8-9
vShapesAllowed 8-14
vSingleUnit 8-15
vStrokesAllowed 8-13
vTimeField 8-10

recognition functions 8-64
GetPoint 8-79
GetPointsArray 8-81
GetScoreArray 8-82
GetWordArray 8-82
InkOff 8-76
InkOffUnHobbled 8-77
SetInkerPenSize 8-78
StrokeBounds 8-81
StrokeDone 8-80

RectsOverlap 10-40
RedoChildren 2-57
Refresh 19-50
RefreshViews 2-25
RegAppClasses 18-29
RegAuxButton 16-100
RegDataDef 4-12
RegEmailSystem 23-123
RegFindApps 13-12
RegFolderChanged function 12-12
RegFormulas 16-97
RegGlobalKeyboard 7-45
RegInboxApp 18-29
RegInfoItem 16-47
RegisterOpenKeyboard 7-46

I N D E X

IN-37

RegisterViewDef 4-13
RegLogin 14-37
RegMeetingType 16-48
RegNamesRouteScript 16-12
RegPagerType 23-125
RegPhoneType 23-125
RegPowerOff 14-33
RegPowerOn 14-36
RegPrefs 16-98
RegTaskTemplate function 15-13
RegTransport 19-48
RegUnionSoup 9-36
RegUserConfigChange 16-107
RelBounds 2-34
Remainder 23-67
RememberedClose 16-50
RememberedOpen 16-51
RemoveAlarm 14-10
RemoveAppAlarms 14-12
RemoveAppFolders method 12-15
RemoveAuxButton 16-100
RemoveExtraIcon 16-92
RemoveLocale 17-19
RemoveOldToDoItems 16-75
RemoveScript function 1-6
RemoveSlot 23-10
RemoveStepView 2-28
RemoveTempItems 19-51
RemoveView 2-30
RemQuo 23-68
ReorientToScreen 2-73
ReplaceInkData 16-11
ReplaceObject 23-11
Reset 9-64
Reset method (ROM_SoupFinder) 13-4
ResetToEnd 9-64
ResolveBody 18-15
resource arbitration

passive claim option 21-83
passive state option 21-84

resource arbitration options 21-82
ReSync method (ROM_CompatibleFinder) 13-11

ReSync method (ROM_SoupFinder) 13-5
Rethrow 23-81
RethrowWithUserMessage 23-82
RevealEffect 2-42
rich string format 7-12
rich strings

functions and methods 7-31
Rint 23-68
RintToL 23-68
roll protos 5-112
ROM_click 11-10
ROM_CompatibleFinder proto 13-7

ConvertToSoupEntry 13-9
Count 13-9
Delete 13-9
FileAndMove 13-9
ForEachSelected 13-10
GetTarget 13-10
IsSelected 13-11
ReSync 13-11
SelectItem 13-11
ShowFakeEntry 13-11

ROM_crumple 11-10
ROM_drawerclose 11-10
ROM_draweropen 11-10
ROM_flip 11-10
ROM_funbeep 11-10
ROM_hilitesound 11-11
ROM_plinkbeep 11-11
ROM_plunk 11-11
ROM_poof 11-11
ROM_simplebeep 11-11
ROM_SoupFinder proto 13-1

Count 13-2
Delete 13-3
FileAndMove 13-3
ForEachSelected 13-4
GetTarget 13-4
IsSelected 13-4
Reset 13-4
ReSync 13-5
SelectItem 13-5

I N D E X

IN-38

ROM_SoupFinder proto (continued)
ShowEntry 13-6
ShowFoundItem 13-5
ShowOrdinalItem 13-6
ZeroOneOrMore 13-6

ROM_wakeupbeep 11-11
Round 23-69
RouteScript 18-6
RouteScripts array 18-6
routing functions and methods

AppInstalled 18-27
AutoPutAway 18-32
ClassAppByClass 18-27
CountPages 18-18
CreateTargetCursor 18-24
FormatInitScript 18-18
GetActiveView 18-27
GetCursorFormat 18-17
GetDefaultFormat 18-22
GetFormatTransports 18-21
GetItemTransport 18-28
GetRouteFormats 18-21
GetRouteScripts 18-28
GetTargetCursor 18-25
GetTitle 18-7
ItemCompletionScript 18-33
MakeBodyAlias 18-15
OpenRoutingSlip 18-23
PrintNextPageScript 18-16
PutAwayScript 18-32
RegAppClasses 18-29
RegInboxApp 18-29
ResolveBody 18-15
RouteScript 18-6
Send 18-19
SetDefaultFormat 18-23
SetupItem 18-13
TargetIsCursor 18-26
TargetSize 18-15
TextScript 18-14
TransportNotify 18-30
UnRegAppClasses 18-31

UnRegInboxApp 18-31
UnRegTheseAppClasses 18-31
VerifyRoutingInfo 18-33
ViewSetupChildrenScript 18-16

RTMP protocol errors A-15

S

SafeRemoveLayout 16-13
salutationPrefix template 15-10
SaveUserDictionary 8-96
Scalb 23-69
ScaleShape 10-36
scrolling view contents 2-48
SectRect 10-39
SelectItem method

(ROM_CompatibleFinder) 13-11
SelectItem method (ROM_SoupFinder) 13-5
Send 18-19
SendRequest 19-33
send request

causes 19-33
request frame 19-33

serial buffer size option 21-13
serial bytes available option 21-24
serial chip location labels 21-5
serial chip location option 21-4
serial chip specification option 21-6
serial chip specification option fields 21-8
serial circuit control option 21-10
serial configuration option 21-14
serial data rate option 21-17
serial discard data option 21-20
serial event configuration option 21-21
serial event constants 21-23
serial external clock divide option 21-26
serial flow control option fields 21-19
serial flow control options 21-18
serial framing configuration option 21-29
serial framing configuration option fields 21-30

I N D E X

IN-39

serial framing statistics option 21-31
serial MNP data rate option 21-28
serial options 21-3, 21-29
serial send break option 21-20
serial statistics option 21-24
serial statistics option fields 21-25
serial tool

buffer size option 21-13
bytes available option 21-24
chip location labels 21-5
chip location option 21-4
chip specification option 21-6
circuit control option 21-10
configuration option 21-14
data rate option 21-17
discard data option 21-20
event configuration option 21-21
event constants 21-23
external clock divide option 21-26
flow control option 21-18
flow control option fields 21-19
framed asynchronous 21-29
framing configuration option 21-29
framing configuration option fields 21-30
framing statistics option 21-31
MNP data rate option 21-28
send break option 21-20
serial chip specification option fields 21-8
statistics option 21-24
statistics option fields 21-25
summary of serial options 21-3, 21-29

serial tool errors A-19
SetAdd 23-38
SetBounds 2-34
SetCaretInfo 7-50
SetClass 23-11
SetConfig 19-34
SetContains 23-38
SetCountryClass 17-31
SetDefaultFormat 18-23
SetDefaultStore 9-34
SetDictionaryData 8-94

SetDifference 23-39
SetDone 16-76
SetEntryAlarm 16-51
SetExchangeRate 23-79
SetExtrasInfo 16-92
SetFontFace 7-29
SetFontFamily 7-29
SetFontParms 7-30
SetFontSize 7-31
SetHilite 2-55
SetInfo 9-34
SetInkerPenSize 8-78
SetInputSpec 20-24
SetKeyView 7-43
SetLength 23-39
SetLocale 17-19
SetLocalizationFrame function 17-17
SetLocation 16-81
SetMeetingIconType 16-52
SetMeetingInvitees 16-52
SetMeetingLocation 16-53
SetMeetingNotes 16-54
SetMessage 13-13
SetName 9-35, 9-50
SetOrigin 2-48
SetOverlaps 23-40
SetPopup 2-63
SetPriority 16-76
SetRandomSeed 23-55
SetRandomState 23-55
SetRemoteWriting 7-47
SetRemove 23-40
SetRepeatingEntryStopDate 16-55
SetStatus 14-28
SetStatusDialog 19-34
SetSysEntryData 16-108
SetTime 17-21
SetTimeInSeconds 17-21
setting the system clock 17-21
SetUnion 23-41
SetupForm 4-2
SetupIdle 14-3

I N D E X

IN-40

SetupItem 18-13
SetUpStatArray 4-8
SetupText, protoEmporiumPopup method 16-5
SetupText, protoPersonaPopup method 16-4
SetUserConfig 16-108
SetValue 2-25
SetVariable 23-12
SetVolume 11-8
ShapeBounds 10-37
shape-creation functions and methods

MakeLine 10-26
MakeOval 10-27
MakePict 10-30
MakePolygon 10-29
MakeRect 10-26
MakeRegion 10-30
MakeRoundRect 10-27
MakeShape 10-29
MakeText 10-31
MakeWedge 10-28

shape-operation functions and methods
DrawShape 10-35
FitToBox 10-38
GetShapeInfo 10-34
InsetRect 10-38
InvertRect 10-37
IsPtInRect 10-38
MakeTextLines 10-32
OffsetRect 10-39
OffsetShape 10-36
RectsOverlap 10-40
ScaleShape 10-36
SectRect 10-39
ShapeBounds 10-37
UnionRect 10-40

Sharp IR errors A-28
Shedule 11-4
ShortDate 17-24
ShortDateStr 17-24
Show 2-23
ShowBusyBox 14-29
ShowEntry method (ROM_SoupFinder) 13-6

ShowFakeEntry (ROM_CompatibleFinder) 13-11
ShowFoundItem 13-20, 16-14
ShowFoundItem method

(ROM_SoupFinder) 13-5
ShowManual 23-126
ShowOrdinalItem method

(ROM_SoupFinder) 13-6
Sign 23-69
signature, user configuration variable 16-106
SignBit 23-69
Sin 23-70
Sinh 23-70
Sleep 23-127
SlideEffect 2-40
Slot Views 3-49

JamFromEntry 3-50
Labelled Input Lines 3-60
path slot 3-50
TextScript 3-50

Sort 23-41
sorted array functions and methods

BDelete 23-44
BDifference 23-45
BFetch 23-45
BFetchRight 23-46
BFind 23-46
BFindRight 23-47
BInsert 23-48
BInsertRight 23-49
BIntersect 23-50
BMerge 23-51
BSearchLeft 23-52
BSearchRight 23-52

sound
resources 11-10

sound channel methods
Close 11-4
IsActive 11-5
IsPaused 11-5
Open 11-3
Pause 11-5
Schedule 11-4

I N D E X

IN-41

sound channel methods (continued)
Start 11-4
Stop 11-5

sound errors A-25
sound frame 11-1
sound functions and methods

Clicker 11-10
Dial 11-6
GetVolume 11-7
PlaySoundIrregardless 11-9
PlaySoundSync 11-7
RawDial 11-7
SetVolume 11-8

sound proto
protoSoundChannel 11-3

sound result frame 11-3
sounds in ROM

ROM_click 11-10
ROM_crumple 11-10
ROM_drawerclose 11-10
ROM_draweropen 11-10
ROM_flip 11-10
ROM_funbeep 11-10
ROM_hilitesound 11-11
ROM_plinkbeep 11-11
ROM_plunk 11-11
ROM_poof 11-11
ROM_simplebeep 11-11
ROM_wakeupbeep 11-11

soup
union soup 9-35

soup errors A-30
soupervisor frame 16-86

FileEntry 16-87
FileSoup 16-86
MoveEntry 16-87

soup functions and methods
AddToDefaultStoreXmit 9-38
AddXmit 9-40
GetAllInfo 9-43
GetIndexes 9-44
GetInfo 9-44

GetName 9-44
GetNextUid 9-44
GetSignature 9-44
GetStore 9-45
GetUnionSoupAlways 9-37
IsSoupEntry 9-45
RegUnionSoup 9-36
SetName 9-50
UnRegUnionSoup 9-37

special_event_act frames 15-6
speedCursiveOption, user configuration

variable 16-106
SplitInkAt 8-88
SPrintObject 23-20
Sqrt 23-70
stack errors A-7
StackTrace 23-106
StandardFind 13-13
Start 11-4
State 20-29
stationery

superSymbol 3-13
stationery functions and methods

FillNewEntry 4-4
GetAppDataDefs 4-16
GetDataDefs 4-15
GetDataView 4-17
GetDefs 4-14
GetEntryDataDef 4-16
GetEntryDataView 4-16
GetViewDefs 4-16
MakeNewEntry 4-5
MinimalBounds 4-2
RegDataDef 4-12
RegisterViewDef 4-13
SetupForm 4-2
SetUpStatArray 4-8
StatScript 4-8
StringExtract 4-5
TextScript 4-5
UnRegDataDef 4-12
UnRegisterViewDef 4-13

I N D E X

IN-42

stationery proto templates
newtEntryShowStationeryButton 4-11
newtNewStationeryButton 4-8
newtRollShowStationeryButton 4-11
newtShowStationeryButton 4-9
newtStationery 4-3
newtStationeryPopupButton 4-6

Stats 23-106
StatScript 4-8
status slips

components 14-14
protoStatusBarber 14-16
protoStatusButton 14-16
protoStatusCloseBox 14-16
protoStatusGauge 14-15
protoStatusIcon 14-15
protoStatusProgress 14-15
protoStatusTemplate 14-13
protoStatusText 14-15
protoTitleText 14-15

StdButtonWidth 2-37
Stop 11-5
store 9-28
store errors A-30
store functions and methods

CheckWriteProtect 9-29
Erase 9-31
GetAllInfo 9-31
GetDefaultStore 9-32
GetInfo 9-31
GetName 9-32
GetSignature 9-32
GetSoup 9-32
GetSoupNames 9-33
GetStores 9-33
HasSoup 9-33
IsReadOnly 9-33
SetDefaultStore 9-34
SetInfo 9-34
SetName 9-35
TotalSize 9-35
UsedSize 9-35

store part 9-56
stores

package stores 9-56
StrCompare 23-21
StrConcat 23-21
StreamIn 20-30
StreamOut 20-31
StrEqual 23-21
StrExactCompare 23-22
StrFilled 23-22
StrFontWidth 23-22
StrHexDump 23-107
Stringer 23-23
StringExtract 4-5
StringFilter 23-23
string functions and methods

BeginsWith 23-13
Capitalize 23-13
CapitalizeWords 23-14
Downcase 23-14
EndsWith 23-14
EvalStringer 23-15
FindStringInArray 23-15
FormattedNumberStr 23-17
IsAlphaNumeric 23-18
NumberStr 23-18
ParamStr 23-19
SPrintObject 23-20
StrCompare 23-21
StrConcat 23-21
StrEqual 23-21
StrExactCompare 23-22
StrFilled 23-22
StrFontWidth 23-22
Stringer 23-23
StringToNumber 23-24
StrLen 23-24
StrMunger 23-25
StrPos 23-26
StrReplace 23-26
StrTokenize 23-27
StyledStrTruncate 23-27

I N D E X

IN-43

string functions and methods (continued)
SubstituteChars 23-28
SubStr 23-29
TrimString 23-29
Upcase 23-29

StringToDate 17-25
StringToNumber 23-24
StringToTime 17-26
StripInk 7-33
StrLen 23-24
StrMunger 23-25
StrokeBounds 8-81
stroke bundle constants 8-1, 8-28
stroke bundle frame 8-28
stroke bundle functions and methods

CompressStrokes 8-84
CountPoints 8-84
CountStrokes 8-84
ExpandInk 8-83
ExpandUnit 8-83
GetStroke 8-85
GetStrokeBounds 8-85
GetStrokePoint 8-85
GetStrokePointsArray 8-86
InkConvert 8-86
MakeStrokeBundle 8-86
MergeInk 8-87
PointsArrayToStroke 8-87
SplitInkAt 8-88
StrokeBundleToInkWord 8-89

stroke bundles
data resolution 8-28
filtering point data in 8-28

StrokeBundleToInkWord 8-89
StrokeDone 8-80
stroke units 8-29
StrPos 23-26
StrReplace 23-26
StrTokenize 23-27
StuffByte 23-96
StuffChar 23-97
StuffCString 23-98

StuffLong 23-98
StuffPString 23-99
StuffUniChar 23-99
StuffWord 23-100
StyledStrTruncate 23-27
style frame 10-1
SubstituteChars 23-28
SubStr 23-29
superSymbol 3-13
SymbolCompareLex 23-12
SyncChildren 2-58, 23-2
synchronization

view 2-57
SyncScroll 2-50
SyncView 2-26
SysBeep 23-128
system clock

setting 17-21
system data 16-101
system errors A-2 to A-8
system exceptions A-1
system messages

ViewClickScript 8-66
ViewGestureScript 8-71
ViewStrokeScript 8-69
ViewWordScript 8-73

system services 13-1, 14-1
system services errors A-25 to A-30
system-supplied templates 15-8

T

tablet driver errors A-37
Tan 23-70
Tanh 23-71
target information frame 12-1, 12-11

target slot in 12-1
targetStore slot in 12-2
targetView slot in 12-2

TargetIsCursor 18-26

I N D E X

IN-44

TargetSize 18-15
target slot 12-1
target slot in input spec 20-15
targetStore slot 12-2
target templates 15-7, 15-8
targetView slot 12-2
task template 15-11, 15-12

structure of 15-11
termination slot in endpoint input spec 20-16
TextBounds 7-23
text display functions and methods 7-22
text flags 7-2
textFlags slot 7-16
text functions and methods

AddInk 7-25
DecodeRichString 7-32
ExtractRangeAsRichString 7-32
FontAscent 7-26
FontDescent 7-26
FontHeight 7-27
FontLeading 7-27
GetCaretBox 7-42
GetCaretInfo 7-48
GetFontFace 7-27
GetFontFamilyNum 7-27
GetFontFamilySym 7-28
GetFontSize 7-28
GetInkAt 7-34
GetKeyView 7-49
GetRemoteWriting 7-47
GetRichString 7-32
HandleInkWord 7-55
HandleInsertItems 7-54
HandleRawInk 7-56
InsertItemsAtCaret 7-54
IsRichString 7-33
KeyboardConnected 7-44
KeyboardInput 7-42
KeyIn 7-43
MakeCompactFont 7-28
MakeRichString 7-33
NextInkIndex 7-34

OpenKeyPadFor 7-44
ParaContainsInk 7-35
PointToCharOffset 7-51
PointToWord 7-52
PolyContainsInk 7-35
PositionCaret 7-49
RegGlobalKeyboard 7-45
RegisterOpenKeyboard 7-46
SetCaretInfo 7-50
SetFontFace 7-29
SetFontFamily 7-29
SetFontParms 7-30
SetFontSize 7-31
SetKeyView 7-43
SetRemoteWriting 7-47
StripInk 7-33
TextBounds 7-23
TotalTextBounds 7-24
UnRegGlobalKeyboard 7-46
UnregisterOpenKeyboard 7-46
ViewAllowsInk 7-25
ViewAllowsInkWords 7-26
ViewCaretChangedScript 7-50
ViewInkWordScript 7-56
ViewRawInkScript 7-57

TextScript 18-14
text views

determining ink types 7-25
functions and methods for measuring 7-23

text views and protos 7-12
Throw 23-80
Ticks 17-21
TieViews 2-55
Time 17-21
time and date functions and methods

Date 17-28
DateFrameSeconds 17-28
DateNTime 17-23
GetDateStringSpec 17-29
HourMinute 17-23
IsValidDate 17-30
LongDateStr 17-23

I N D E X

IN-45

time and date functions and methods (continued)
SetCountryClass 17-31
SetLocale 17-19
SetTime 17-21
SetTimeInSeconds 17-21
ShortDate 17-24
ShortDateStr 17-24
StringToDate 17-25
StringToTime 17-26
Ticks 17-21
Time 17-21
TimeInSeconds 17-22
TimeInSecondsToTime 17-22
TimeStr 17-27
TimeToTimeInSeconds 17-22
TotalMinutes 17-28
TotalSeconds 17-28

time durations
measuring 17-21

TimeInSeconds 17-22
TimeInSecondsToTime 17-22
timeoutCursiveOption, user configuration

variable 16-106
TimeStr 17-27
TimeToTimeInSeconds 17-22
Time Zones 16-78

functions and methods
GetCityEntry 16-79
GetCountryEntry 16-80
NewCity 16-81
SetLocation 16-81

TitleClickScript method 12-7, 12-10
To Do List 16-69

functions and methods
CreateToDoItem 16-70
CreateToDoItemAll 16-71
EnsureVisibleTopic 16-72
GetTaskShapes 16-74
GetToDoEntry 16-72
GetToDoItemsForRange 16-73
GetToDoItemsForThisDate 16-73
GetToDoShapes 16-74

LastVisibleTopic 16-75
NextToDoDate 16-75
RemoveOldToDoItems 16-75
SetDone 16-76
SetPriority 16-76

To Do List soup 16-77
Toggle 2-22
TotalClone 23-13
TotalMinutes 17-28
TotalSeconds 17-28
TotalSize 9-35
TotalTextBounds 7-24
TrackButton 2-53
TrackHilite 2-53
transfer mode 2-13
Translate 20-33
TranslateError 19-35
TransportChanged 19-43
transport methods

AddText 19-38
AppClosed 19-8
AppInFront 19-9
AppOpened 19-10
BottomOfSlip 19-40
BuildText 19-37
CancelRequest 19-10
CanPutAway 19-11
CheckOutbox 19-12
CloseStatusDialog 19-13
ConnectionDetect 19-13
ContinueSend 19-42
DeleteTransport 19-49
FormatChanged 19-41
GetConfig 19-14
GetCurrentFormat 19-49
GetDefaultOwnerStore 19-14
GetFolderName 19-14
GetFromText 19-15
GetGroupTransport 19-49
GetItemInfo 19-15
GetItemStateString 19-16
GetItemTime 19-16

I N D E X

IN-46

transport methods (continued)
GetItemTitle 19-17
GetNameText 19-17
GetStatusString 19-17
GetTitle 19-20
GetTitleInfoShape 19-18
GetToText 19-19
GetTransportScripts 19-19
HandleError 19-21
HandleThrow 19-21
IgnoreError 19-22
InfoChanged 19-38
InstallScript 19-22
IOBoxExtensions 19-22
IsInItem 19-23
IsLogItem 19-23
ItemCompleted 19-23
ItemCompletionScript 18-33
ItemDeleted 19-25
ItemDuplicated 19-25
ItemPutAway 19-26
ItemRequest 19-26
MakeLogEntry 19-27
MissingTarget 19-27
NewFromItem 19-28
NewItem 19-28
NormalizeAddress 19-29
OwnerInfoChanged 19-41
PowerOffCheck 19-31
PrepareToSend 19-42
QueueRequest 19-31
QuietSendAll 19-50
ReceiveRequest 19-32
Refresh 19-50
RegTransport 19-48
RemoveTempItems 19-51
SendRequest 19-33
SetConfig 19-34
SetStatusDialog 19-34
TranslateError 19-35
TransportChanged 19-43
UnRegTransport 19-48

VerifyRoutingInfo 19-36
TransportNotify 18-30
transport protos

protoAddressPicker 19-43
protoFullRouteSlip 19-38
protoTransport 19-2
protoTransportHeader 19-37
protoTransportPrefs 19-44

TrimString 23-29
TrueSize 23-107
Trunc 23-71
TSI errors A-30

U

UnBind 20-19
UnDefGlobalFn 23-103
UnDefGlobalVar 23-104
UnionRect 10-40
union soup 9-35
Unordered 23-71
UnorderedGreaterOrEqual 23-71
UnorderedLessOrEqual 23-72
UnorderedOrEqual 23-72
UnorderedOrGreater 23-72
UnorderedOrLess 23-72
UnRegAppClasses 18-31
UnRegAuxButton 16-101
UnRegDataDef 4-12
UnRegEmailSystem 23-128
UnRegFindApps 13-12
UnRegFolderChanged function 12-13
UnRegFormulas 16-97
UnRegGlobalKeyboard 7-46
UnRegInboxApp 18-31
UnRegInfoItem 16-56
UnregisterOpenKeyboard 7-46
UnRegisterViewDef 4-13
UnRegLogin 14-38
UnRegMeetingType 16-56

I N D E X

IN-47

UnRegNamesRouteScript 16-14
UnRegPagerType 23-128
UnRegPhoneType 23-129
UnRegPowerOff 14-35
UnRegPowerOn 14-37
UnRegPrefs 16-98
UnRegTheseAppClasses 18-31
UnRegTransport 19-48
UnRegUnionSoup 9-37
UnRegUserConfigChange 16-109
Upcase 23-29
UpdateIndicator 14-24
Update method 12-4
UpdateText 3-65
UseCurrentEmporium 16-109
UseCurrentPersona 16-110
UsedSize 9-35
user alert 14-7
user configuration variables 16-101

address 16-101
cityZip 16-101
company 16-101
country 16-101
countrySlot 16-102
currentAreaCode 16-102
currentCountry 16-102
currentEmporium 16-102
currentPersona 16-102
currentPrinter 16-102
dialingPrefix 16-102
doAutoAdd 16-103
doInkWordRecognition 16-103
doShapeRecognition 16-103
doTextRecognition 16-103
emailPassword 16-103
faxPhone 16-103
homePhone 16-103
learningEnabledOption 16-103
leftHanded 16-103
letterInFieldsOption 16-104
lettersCursiveOption 16-104
letterSetSelection 16-104

letterSpaceCursiveOption 16-104
location 16-105
mailAccount 16-105
mailNetwork 16-105
mailPhone 16-105
name 16-105
paperSize 16-105
paperSizes 16-106
phone 16-106
signature 16-106
speedCursiveOption 16-106
timeoutCursiveOption 16-106
userFont 16-106

userFont, user configuration variable 16-106
user object template 15-8
useWeekNumber, Dates variable 16-24
utility functions 23-1

V

V.42bis 21-61, 21-62
vAddressField 8-8
vAnythingAllowed 8-11
vApplication flag 2-5
vCalculateBounds flag 2-5
vCapsRequired 8-10
vCharsAllowed 8-7
vClickable 8-12
vClickable flag 2-6
vClipping flag 2-5
vCustomDictionaries 8-9
vDateField 8-10
VerifyRoutingInfo 18-33, 19-36
vFloating flag 2-5
vGesturesAllowed 8-14
view

adding dynamically 2-27
alignment 2-6
behavior 2-4
controlling recognition in 8-6

I N D E X

IN-48

view (continued)
copyProtection slot 7-16
dependencies between 2-55
dirtying 2-20
displaying 2-20
fill color 2-11
frame color 2-11
frame inset 2-12
frame roundedness 2-12
frame shadow 2-12
frame thickness 2-12
hiding 2-20
highlighting 2-52
idler for 14-3
laying out multiple children 2-59
limiting text in 2-9
lines in 2-12
modal 2-31
synchronization 2-57
testing whether open 2-21
textFlags slot 7-16
viewFrontKey 2-20
viewFrontMost 2-20
viewFrontMostApp 2-20
viewTransferMode slot 2-13

ViewAddChildScript 2-76
ViewAllowsInk 7-25
ViewAllowsInkWords 7-26
viewBounds slot 12-4
ViewCaretChangedScript 7-50
ViewChangedScript 2-77
view class constants 2-2
view classes

clEditView 7-12
clGaugeView 6-30
clKeyboardView 7-35
clMonthView 5-123
clOutline 5-121
clParagraphView 7-15
clPictureView 10-4
clPolygonView 10-4
clRemoteView 10-5

clView 1-1
ViewClickScript 8-66
viewDef

data structure 4-1
MinimalBounds 4-2
SetupForm 4-2

ViewDragFeedbackScript 2-82
ViewDrawDragBackgroundScript 2-80
ViewDrawDragDataScript 2-80
ViewDrawScript 2-71
ViewDrawScript method 12-7, 12-10
ViewDropApproveScript 2-81
ViewDropChildScript 2-77
ViewDropDoneScript 2-85
ViewDropMoveScript 2-84
ViewDropRemoveScript 2-85
ViewDropScript 2-84
viewEffect constants

fxBarnDoorCloseEffect 2-17
fxBarnDoorEffect 2-17
fxCheckerboardEffect 2-17
fxColAltHPhase 2-15
fxColAltVPhase 2-16
fxColumns 2-15
fxDown 2-16
fxDrawerEffect 2-18
fxFromEdge 2-17
fxHStartPhase 2-15
fxIrisCloseEffect 2-17
fxIrisOpenEffect 2-17
fxLeft 2-16
fxMoveH 2-15
fxMoveV 2-15
fxPopDownEffect 2-18
fxRevealLine 2-16
fxRight 2-16
fxRowAltHPhase 2-15
fxRowAltVPhase 2-16
fxRows 2-15
fxSteps 2-14
fxStepTime 2-15
fxUp 2-16

I N D E X

IN-49

viewEffect constants (continued)
fxVenetianBlindEffect 2-17
fxVStartPhase 2-15
fxWipe 2-16
fxZoomCloseEffect 2-18
fxZoomOpenEffect 2-18
fxZoomVerticalEffect 2-18

view errors A-3, A-4
ViewFindTargetScript 2-81
viewFlags

vAddressField 8-8
vAnythingAllowed 8-11
vApplication 2-5
vCalculateBounds 2-5
vCapsRequired 8-10
vClickable 2-6, 8-12
vClipping 2-5
vCustomDictionaries 8-9
vDateField 8-10
vFloating 2-5
vGesturesAllowed 8-14
vLettersAllowed 8-7
vNameField 8-8
vNoFlags 2-6
vNoScripts 2-6
vNoSpaces 8-15
vNothingAllowed 8-11
vNumbersAllowed 8-8, 8-10
vPhoneField 8-10
vPunctuationAllowed 8-9
vReadOnly 2-5
vShapesAllowed 8-14
vSingleUnit 8-15
vStrokesAllowed 8-13
vTimeField 8-10
vVisible 2-4
vWriteProtected 2-5

viewFlags slot 8-6
viewFrontKey 2-20
viewFrontMost 2-20
viewFrontMostApp 2-20

view functions and methods
AddStepView 2-27
AddView 2-29
AsyncConfirm 2-32
BuildContext 2-31
ButtonToggleScript 2-65
ChildViewFrames 2-19
Close 2-21
Delete 2-44
Dirty 2-24
DirtyBox 2-36
Drag 2-45
DragAndDrop 2-46
Effect 2-38
FilterDialog 2-33
GetDrawBox 2-36
GetHiliteOffsets 2-54
GetRoot 2-19
GetView 2-20
GetViewFlags 2-64
GlobalBox 2-35
GlobalOuterBox 2-35
Hide 2-23
Hilite 2-52
HiliteOwner 2-54
HiliteUnique 2-52
LayoutColumn 2-63
LayoutTable 2-59
LocalBox 2-36
ModalConfirm 2-32
ModalDialog 2-33
MoveBehind 2-26
OffsetView 2-24
Open 2-20
Parent 2-19
PictBounds 2-38
RedoChildren 2-57
RefreshViews 2-25
RelBounds 2-34
RemoveStepView 2-28
RemoveView 2-30
ReorientToScreen 2-73

I N D E X

IN-50

view functions and methods (continued)
RevealEffect 2-42
SetBounds 2-34
SetHilite 2-55
SetOrigin 2-48
SetPopup 2-63
SetValue 2-25
Show 2-23
SlideEffect 2-40
StdButtonWidth 2-37
SyncChildren 2-58
SyncScroll 2-50
SyncView 2-26
TieViews 2-55
Toggle 2-22
TrackButton 2-53
TrackHilite 2-53
ViewAddChildScript 2-76
ViewChangedScript 2-77
ViewDragFeedbackScript 2-82
ViewDrawDragBackgroundScript 2-80
ViewDrawDragDataScript 2-80
ViewDrawScript 2-71
ViewDropApproveScript 2-81
ViewDropChildScript 2-77
ViewDropDoneScript 2-85
ViewDropMoveScript 2-84
ViewDropRemoveScript 2-85
ViewDropScript 2-84
ViewFindTargetScript 2-81
ViewGetDropDataScript 2-83
ViewGetDropTypesScript 2-81
ViewHideScript 2-70
ViewHiliteScript 2-72
ViewIdleScript 2-78
ViewIsOpen 2-65
ViewOverviewScript 2-75
ViewPostQuitScript 2-69
ViewQuitScript 2-68
ViewScrollDownScript 2-74
ViewScrollUpScript 2-74
ViewSetupChildrenScript 2-67

ViewSetupDoneScript 2-67
ViewSetupFormScript 2-66
ViewShowScript 2-70
Visible 2-64

ViewGestureScript 8-71
ViewGetDropDataScript 2-83
ViewGetDropTypesScript 2-81
viewHelpTopic slot 15-12
ViewHideScript 2-23, 2-70
ViewHiliteScript 2-72
ViewIdleScript 2-78
ViewInkWordScript 7-56
ViewIntoBitmap 10-23
ViewIsOpen 2-65
viewJustify constants 2-6
viewJustify slot 12-4
ViewOverviewScript 2-75
ViewPostQuitScript 2-69
ViewQuitScript 2-68
ViewRawInkScript 7-57
views

single-letter input views 8-26
ViewScrollDownScript 2-74
ViewScrollUpScript 2-74
ViewSet 14-22
ViewSetupChildrenScript 2-67, 18-16
ViewSetupDoneScript 2-67
ViewSetupFormScript 2-66
ViewShowScript 2-70
ViewStrokeScript 8-69
viewTransferMode constants

modeBic 2-13
modeCopy 2-13
modeMask 2-14
modeNotBic 2-14
modeNotCopy 2-14
modeNotOr 2-14
modeNotXor 2-14
modeOr 2-13
modeXor 2-13

viewTransferMode slot 2-13
view warning messages 2-86

I N D E X

IN-51

ViewWordScript 8-73
Visible 2-64
vLettersAllowed 8-7
vNameField 8-8
vNoFlags flag 2-6
vNoScripts flag 2-6
vNoSpaces 8-15
vNothingAllowed 8-11
vNumbersAllowed 8-8, 8-10
voice support 21-58
vPhoneField 8-10
vPunctuationAllowed 8-9
vReadOnly flag 2-5
vShapesAllowed 8-14
vSingleUnit 8-15
vStrokesAllowed 8-13
vTimeField 8-10
vVisible flag 2-4
vWriteProtected flag 2-5

W, X, Y

WeeklyMeeting 16-26
word units 8-29
written input and recognition 8-1

Z

ZeroOneOrMore method
(ROM_SoupFinder) 13-6

ZIP protocol errors A-17

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Line art was
created using Adobe™ Illustrator.
PostScript™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®.

LEAD WRITER
Christopher Bey

WRITERS
Bob Anders, Christopher Bey,
Cheryl Chambers, Gary Hillerson,
John Perry, Jonathan Simonoff,
Yvonne Tornatta, Dirk van Nouhuys,
Adrian Yacub

PROJECT LEADER
Christopher Bey

ILLUSTRATOR
Peggy Kunz

EDITORS
Linda Ackerman, David Schneider,
Anne Szabla

PRODUCTION EDITOR
Rex Wolf

ELECTRONIC MEDIA TEAM
Gary Hillerson, Gerry Kane,
Christopher Bey

PROJECT MANAGER
Gerry Kane

Special thanks to J. Christopher Bell,
Gregory Christie, Bob Ebert,
Mike Engber, Dan Peterson,
Maurice Sharp, and Fred Tou.

